Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Zebrafish patient avatars in cancer biology and precision cancer therapy

Abstract

In precision oncology, two major strategies are being pursued for predicting clinically relevant tumour behaviours, such as treatment response and emergence of drug resistance: inference based on genomic, transcriptomic, epigenomic and/or proteomic analysis of patient samples, and phenotypic assays in personalized cancer avatars. The latter approach has historically relied on in vivo mouse xenografts and in vitro organoids or 2D cell cultures. Recent progress in rapid combinatorial genetic modelling, the development of a genetically immunocompromised strain for xenotransplantation of human patient samples in adult zebrafish and the first clinical trial using xenotransplantation in zebrafish larvae for phenotypic testing of drug response bring this tiny vertebrate to the forefront of the precision medicine arena. In this Review, we discuss advances in transgenic and transplantation-based zebrafish cancer avatars, and how these models compare with and complement mouse xenografts and human organoids. We also outline the unique opportunities that these different models present for prediction studies and current challenges they face for future clinical deployment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Timeline of key developments in zebrafish cancer avatars.
Fig. 2: Generation of zebrafish avatars.
Fig. 3: Drug administration in zebrafish.

References

  1. 1.

    National Cancer Institute. Targeted cancer therapies. NCI https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies/targeted-therapies-fact-sheet (2020).

  2. 2.

    Morrison, C. Fresh from the biotech pipeline — 2018. Nat. Biotechnol. 37, 118–123 (2019).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Friedman, A. A., Letai, A., Fisher, D. E. & Flaherty, K. T. Precision medicine for cancer with next-generation functional diagnostics. Nat. Rev. Cancer 15, 747–756 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Hyman, D. M., Taylor, B. S. & Baselga, J. Implementing genome-driven oncology. Cell 168, 584–599 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Clohessy, J. G. & Pandolfi, P. P. Mouse hospital and co-clinical trial project — from bench to bedside. Nat. Rev. Clin. Oncol. 12, 491 (2015). This review discusses mouse co-clinical trials for precision cancer therapy.

    Article  PubMed  Google Scholar 

  6. 6.

    Drost, J. & Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 18, 407–418 (2018).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Tuveson, D. & Clevers, H. Cancer modeling meets human organoid technology. Science 364, 952–955 (2019).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Schwartzberg, L., Kim, E. S., Liu, D. & Schrag, D. Precision oncology: who, how, what, when, and when not? Am. Soc. Clin. Oncol. Educ. Book 37, 160–169 (2017).

    Article  PubMed  Google Scholar 

  9. 9.

    Strauss, D. G. & Blinova, K. Clinical trials in a dish. Trends Pharmacol. Sci. 38, 4–7 (2017).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Aparicio, S., Hidalgo, M. & Kung, A. L. Examining the utility of patient-derived xenograft mouse models. Nat. Rev. Cancer 15, 311 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Tentler, J. J. et al. Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 9, 338 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Ablain, J. et al. Human tumor genomics and zebrafish modeling identify SPRED1 loss as a driver of mucosal melanoma. Science 362, 1055–1060 (2018). This article shows rapid generation of genetic avatars in zebrafish using combinatorial mosaic transgenesis.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Fior, R. et al. Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts. Proc. Natl Acad. Sci. USA 114, E8234–E8243 (2017). This study conducts phenotypic drug response testing and migration scoring of PDXs in zebrafish larvae.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Yan, C. et al. Visualizing engrafted human cancer and therapy responses in immunodeficient zebrafish. Cell 177, 1903–1914 (2019). This article demonstrates establishment of PDXs in adult zebrafish.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    White, R., Rose, K. & Zon, L. Zebrafish cancer: the state of the art and the path forward. Nat. Rev. Cancer 13, 624–636 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Pulak, R. Tools for automating the imaging of zebrafish larvae. Methods 96, 118–126 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Zhao, Y. et al. A review of automated microinjection of zebrafish embryos. Micromachines 10, 7 (2018).

    Article  PubMed Central  Google Scholar 

  18. 18.

    Ablain, J., Durand, E. M., Yang, S., Zhou, Y. & Zon, L. I. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Dev. Cell 32, 756–764 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Gengenbacher, N., Singhal, M. & Augustin, H. G. Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nat. Rev. Cancer 17, 751 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Howe, K. et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498–503 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Carneiro, M. C., de Castro, I. P. & Ferreira, M. G. Telomeres in aging and disease: lessons from zebrafish. Dis. Model. Mech. 9, 737–748 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Berghmans, S. et al. Making waves in cancer research: new models in the zebrafish. Biotechniques 39, 227–237 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Langenau, D. M. et al. Myc-induced T cell leukemia in transgenic zebrafish. Science 299, 887–890 (2003). This article reports the first transgenic cancer model in zebrafish.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Yang, H. W. et al. Targeted expression of human MYCN selectively causes pancreatic neuroendocrine tumors in transgenic zebrafish. Cancer Res. 64, 7256–7262 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Patton, E. E. et al. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr. Biol. 15, 249–254 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Cagan, R. L., Zon, L. I. & White, R. M. Modeling cancer with flies and fish. Dev. Cell 49, 317–324 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Kirchberger, S., Sturtzel, C., Pascoal, S. & Distel, M. Quo natas, Danio? — Recent progress in modeling cancer in zebrafish. Front. Oncol. 7, 186 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Letrado, P., de Miguel, I., Lamberto, I., Diez-Martinez, R. & Oyarzabal, J. Zebrafish: speeding up the cancer drug discovery process. Cancer Res. 78, 6048–6058 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Vogelstein, B. & Kinzler, K. W. The path to cancer –three strikes and you’re out. N. Engl. J. Med. 373, 1895–1898 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    McConnell, A. M. et al. Neural crest state activation in NRAS driven melanoma, but not in NRAS-driven melanocyte expansion. Dev. Biol. 449, 107–114 (2019).

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Pea, A., Hruban, R. H. & Wood, L. D. Genetics of pancreatic neuroendocrine tumors: implications for the clinic. Expert Rev. Gastroenterol. Hepatol. 9, 1407–1419 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. 33.

    Berghmans, S. et al. tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc. Natl Acad. Sci. USA 102, 407–412 (2005).

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Ceol, C. J. et al. The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature 471, 513–517 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Kendall, G. C. et al. PAX3-FOXO1 transgenic zebrafish models identify HES3 as a mediator of rhabdomyosarcoma tumorigenesis. eLife 7, e33800 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Langenau, D. M. et al. Effects of RAS on the genesis of embryonal rhabdomyosarcoma. Genes Dev. 21, 1382–1395 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Sanchez-Rivera, F. J. & Jacks, T. Applications of the CRISPR-Cas9 system in cancer biology. Nat. Rev. Cancer 15, 387–395 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31, 227–229 (2013). This study reports the first use of CRISPR in zebrafish.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Kawakami, K. et al. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev. Cell 7, 133–144 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Heppt, M. V. et al. Prognostic significance of BRAF and NRAS mutations in melanoma: a German study from routine care. BMC Cancer 17, 536 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. 41.

    Shain, A. H. et al. The genetic evolution of melanoma from precursor lesions. N. Engl. J. Med. 373, 1926–1936 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. 42.

    Burns, M. A. et al. Hedgehog pathway mutations drive oncogenic transformation in high-risk T-cell acute lymphoblastic leukemia. Leukemia 32, 2126–2137 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Callahan, S. J. et al. Cancer modeling by transgene electroporation in adult zebrafish (TEAZ). Dis. Model. Mech. 11, (2018). This article shows mosaic transgenesis in adult zebrafish through electroporation of plasmid DNA.

  44. 44.

    White, R. M. et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2, 183–189 (2008). This article reports development of the optically clear casper zebrafish strain often used for transplantation studies.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Weintraub, A. All eyes on zebrafish. Lab. Anim. 46, 323–326 (2017).

    Article  Google Scholar 

  46. 46.

    Smith, A. C. et al. High-throughput cell transplantation establishes that tumor-initiating cells are abundant in zebrafish T-cell acute lymphoblastic leukemia. Blood 115, 3296–3303 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Blackburn, J. S. et al. Clonal evolution enhances leukemia-propagating cell frequency in T cell acute lymphoblastic leukemia through Akt/mTORC1 pathway activation. Cancer Cell 25, 366–378 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Tang, Q. et al. Optimized cell transplantation using adult rag2 mutant zebrafish. Nat. Methods 11, 821–824 (2014). This article reports allotransplantation of zebrafish tumours in immunocompromised recipients.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Tang, Q. et al. Imaging tumour cell heterogeneity following cell transplantation into optically clear immune-deficient zebrafish. Nat. Commun. 7, 10358 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Hayes, M. N. et al. Vangl2/RhoA signaling pathway regulates stem cell self-renewal programs and growth in rhabdomyosarcoma. Cell Stem Cell 22, 414–427.e6 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Ignatius, M. S. et al. The NOTCH1/SNAIL1/MEF2C pathway regulates growth and self-renewal in embryonal rhabdomyosarcoma. Cell Rep. 19, 2304–2318 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Moore, J. C. et al. Single-cell imaging of normal and malignant cell engraftment into optically clear prkdc-null SCID zebrafish. J. Exp. Med. 213, 2575–2589 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Tenente, I. M. et al. Myogenic regulatory transcription factors regulate growth in rhabdomyosarcoma. eLife 6, e19214 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Li, P. et al. Epoxyeicosatrienoic acids enhance embryonic haematopoiesis and adult marrow engraftment. Nature 523, 468–471 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Tamplin, O. J. et al. Hematopoietic stem cell arrival triggers dynamic remodeling of the perivascular niche. Cell 160, 241–252 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Heilmann, S. et al. A quantitative system for studying metastasis using transparent zebrafish. Cancer Res. 75, 4272–4282 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Zhang, M. et al. Adipocyte-derived lipids mediate melanoma progression via FATP proteins. Cancer Discov. 8, 1006–1025 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Nicoli, S., Ribatti, D., Cotelli, F. & Presta, M. Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Cancer Res. 67, 2927–2931 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Haldi, M., Ton, C., Seng, W. L. & McGrath, P. Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis 9, 139–151 (2006).

    PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Topczewska, J. M. et al. Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness. Nat. Med. 12, 925–932 (2006).

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Mercatali, L. et al. Development of a patient-derived xenograft (PDX) of breast cancer bone metastasis in a zebrafish model. Int. J. Mol. Sci. 17, 1375 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  62. 62.

    Bentley, V. L. et al. Focused chemical genomics using zebrafish xenotransplantation as a pre-clinical therapeutic platform for T-cell acute lymphoblastic leukemia. Haematologica 100, 70–76 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Lin, J. et al. A clinically relevant in vivo zebrafish model of human multiple myeloma to study preclinical therapeutic efficacy. Blood 128, 249–252 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Chapman, A. et al. Heterogeneous tumor subpopulations cooperate to drive invasion. Cell Rep. 8, 688–695 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Renshaw, S. A. & Trede, N. S. A model 450 million years in the making: zebrafish and vertebrate immunity. Dis. Model. Mech. 5, 38–47 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Langenau, D. M. et al. In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish. Proc. Natl Acad. Sci. USA 101, 7369–7374 (2004).

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Tang, Q. et al. Dissecting hematopoietic and renal cell heterogeneity in adult zebrafish at single-cell resolution using RNA sequencing. J. Exp. Med. 214, 2875–2887 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Trede, N. S., Langenau, D. M., Traver, D., Look, A. T. & Zon, L. I. The use of zebrafish to understand immunity. Immunity 20, 367–379 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Willett, C. E., Cortes, A., Zuasti, A. & Zapata, A. G. Early hematopoiesis and developing lymphoid organs in the zebrafish. Dev. Dyn. 214, 323–336 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Konantz, M. et al. Zebrafish xenografts as a tool for in vivo studies on human cancer. Ann. NY Acad. Sci. 1266, 124–137 (2012).

    Article  PubMed  Google Scholar 

  71. 71.

    He, S. et al. Neutrophil-mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model. J. Pathol. 227, 431–445 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Visvader, J. E. & Lindeman, G. J. Cancer stem cells: current status and evolving complexities. Cell Stem Cell 10, 717–728 (2012).

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Stoletov, K., Montel, V., Lester, R. D., Gonias, S. L. & Klemke, R. High-resolution imaging of the dynamic tumor cell vascular interface in transparent zebrafish. Proc. Natl Acad. Sci. USA 104, 17406–17411 (2007).

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Traver, D. et al. Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat. Immunol. 4, 1238–1246 (2003).

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Traver, D. et al. Effects of lethal irradiation in zebrafish and rescue by hematopoietic cell transplantation. Blood 104, 1298–1305 (2004).

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Larsen, E. C. et al. Dexamethasone and high-dose methotrexate improve outcome for children and young adults with high-risk B-acute lymphoblastic leukemia: a report from Children’s Oncology Group Study AALL0232. J. Clin. Oncol. 34, 2380–2388 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Matsuda, M. et al. Human NK cell development in hIL-7 and hIL-15 knockin NOD/SCID/IL2rgKO mice. Life Sci. Alliance 2, 201800195 (2019).

    Article  Google Scholar 

  78. 78.

    Herndler-Brandstetter, D. et al. Humanized mouse model supports development, function, and tissue residency of human natural killer cells. Proc. Natl Acad. Sci. USA 114, E9626–E9634 (2017). This article reports engineering of NSG mice towards humanized models and more robust PDX support.

    CAS  Article  PubMed  Google Scholar 

  79. 79.

    Dang, M., Henderson, R. E., Garraway, L. A. & Zon, L. I. Long-term drug administration in the adult zebrafish using oral gavage for cancer preclinical studies. Dis. Model. Mech. 9, 811–820 (2016). This study administers a drug in adult zebrafish through intraperitoneal injection and oral gavage.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Samaee, S. M., Seyedin, S. & Varga, Z. M. An affordable intraperitoneal injection setup for juvenile and adult zebrafish. Zebrafish 14, 77–79 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Usai, A. et al. A model of zebrafish avatar for co-clinical trials. Cancers 12, 677 (2019). This article reports preliminary results of zebrafish co-clinical trial NCT03668418.

    Article  Google Scholar 

  82. 82.

    Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Goessling, W., North, T. E. & Zon, L. I. Ultrasound biomicroscopy permits in vivo characterization of zebrafish liver tumors. Nat. Methods 4, 551–553 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Jin, Y. et al. Comparison of efficacy and toxicity of bevacizumab, endostar and apatinib in transgenic and human lung cancer xenograft zebrafish model. Sci. Rep. 8, 15837 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  85. 85.

    Chen, C. et al. A multiplex preclinical model for adenoid cystic carcinoma of the salivary gland identifies regorafenib as a potential therapeutic drug. Sci. Rep. 7, 11410 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  86. 86.

    Wu, J. Q. et al. Patient-derived xenograft in zebrafish embryos: a new platform for translational research in gastric cancer. J. Exp. Clin. Cancer Res. 36, 160 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  87. 87.

    Wang, L. et al. Patient-derived heterogeneous xenograft model of pancreatic cancer using zebrafish larvae as hosts for comparative drug assessment. J. Vis. Exp. 146, e59507 (2019). This is a method guide for the drug testing of zPDXs in larvae.

    Google Scholar 

  88. 88.

    Ikonomopoulou, M. P. et al. Gomesin inhibits melanoma growth by manipulating key signaling cascades that control cell death and proliferation. Sci. Rep. 8, 11519 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  89. 89.

    Wang, G. et al. The novel autophagy inhibitor elaiophylin exerts antitumor activity against multiple myeloma with mutant TP53 in part through endoplasmic reticulum stress-induced apoptosis. Cancer Biol. Ther. 18, 584–595 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    von Massenhausen, A. et al. Targeting DDR2 in head and neck squamous cell carcinoma with dasatinib. Int. J. Cancer 139, 2359–2369 (2016).

    Article  CAS  Google Scholar 

  91. 91.

    Ochoa-Alvarez, J. A. et al. Antibody and lectin target podoplanin to inhibit oral squamous carcinoma cell migration and viability by distinct mechanisms. Oncotarget 6, 9045–9060 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Ghotra, V. P. et al. SYK is a candidate kinase target for the treatment of advanced prostate cancer. Cancer Res. 75, 230–240 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    van der Ent, W. et al. Ewing sarcoma inhibition by disruption of EWSR1-FLI1 transcriptional activity and reactivation of p53. J. Pathol. 233, 415–424 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  94. 94.

    Tan, D. S. et al. Bosutinib inhibits migration and invasion via ACK1 in KRAS mutant non-small cell lung cancer. Mol. Cancer 13, 13 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  95. 95.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01858168 (2013).

  96. 96.

    Liu, P. H. et al. An IRAK1-PIN1 signalling axis drives intrinsic tumour resistance to radiation therapy. Nat. Cell Biol. 21, 203–213 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Smith, M. P. et al. Effect of SMURF2 targeting on susceptibility to MEK inhibitors in melanoma. J. Natl Cancer Inst. 105, 33–46 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. 98.

    Yoganantharjah, P. & Gibert, Y. The use of the zebrafish model to aid in drug discovery and target validation. Curr. Top. Med. Chem. 17, 2041–2055 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99.

    Sarmah, S. & Marrs, J. A. Zebrafish as a vertebrate model system to evaluate effects of environmental toxicants on cardiac development and function. Int. J. Mol. Sci. 17, 2123 (2016).

    PubMed Central  Article  CAS  Google Scholar 

  100. 100.

    Chakraborty, C., Sharma, A. R., Sharma, G. & Lee, S. S. Zebrafish: a complete animal model to enumerate the nanoparticle toxicity. J. Nanobiotech. 14, 65 (2016).

    Article  CAS  Google Scholar 

  101. 101.

    Kanungo, J., Cuevas, E., Ali, S. F. & Paule, M. G. Zebrafish model in drug safety assessment. Curr. Pharm. Des. 20, 5416–5429 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  102. 102.

    Chakravarthy, S., Sadagopan, S., Nair, A. & Sukumaran, S. K. Zebrafish as an in vivo high-throughput model for genotoxicity. Zebrafish 11, 154–166 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  103. 103.

    Peterson, R. T. & Macrae, C. A. Systematic approaches to toxicology in the zebrafish. Annu. Rev. Pharmacol. Toxicol. 52, 433–453 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  104. 104.

    Boumahdi, S. & de Sauvage, F. J. The great escape: tumour cell plasticity in resistance to targeted therapy. Nat. Rev. Drug Discov. 19, 39–56 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  105. 105.

    Yao, Y. et al. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell 26, 17–26.e6 (2020). This article reports the use of organoids to assess drug response in the neoadjuvant setting.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  106. 106.

    Fazio, M. & Zon, L. I. Fishing for answers in precision cancer medicine. Proc. Natl Acad. Sci. USA 114, 10306–10308 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  107. 107.

    Baeten, J. T. & de Jong, J. L. O. Genetic models of leukemia in zebrafish. Front. Cell Dev. Biol. 6, 115 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Kurata, M. et al. Highly multiplexed genome engineering using CRISPR/Cas9 gRNA arrays. PLoS one 13, e0198714 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  109. 109.

    Zhang, Y. et al. A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae. Nat. Commun. 10, 1053 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  110. 110.

    Kuzu, O. F., Nguyen, F. D., Noory, M. A. & Sharma, A. Current state of animal (mouse) modeling in melanoma research. Cancer Growth Metastasis 8 (Suppl. 1), 81–94 (2015).

    PubMed  PubMed Central  Google Scholar 

  111. 111.

    Xue, W. et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514, 380–384 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    Sanchez-Rivera, F. J. et al. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature 516, 428–431 (2014). This article reports mosaic transgenesis in mouse cancer models.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    National Research Council. Guide for the Care and Use of Laboratory Animals 8th edn (National Academies Press, 2011)

  114. 114.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03668418 (2018).

  115. 115.

    Vlachogiannis, G. et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359, 920–926 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  116. 116.

    Tiriac, H. et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discov. 8, 1112–1129 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Ganesh, K. et al. A rectal cancer organoid platform to study individual responses to chemoradiation. Nat. Med. 25, 1607–1614 (2019).

    CAS  Article  PubMed  Google Scholar 

  118. 118.

    Ben-David, U., Beroukhim, R. & Golub, T. R. Genomic evolution of cancer models: perils and opportunities. Nat. Rev. Cancer 19, 97–109 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119.

    Wang, K. et al. Patient-derived xenotransplants can recapitulate the genetic driver landscape of acute leukemias. Leukemia 31, 151–158 (2017).

    CAS  Article  PubMed  Google Scholar 

  120. 120.

    Ben-David, U. et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat. Genet. 49, 1567–1575 (2017). This article shows the evolution of mouse PDXs compared with donor patients.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. 121.

    Ooft, S. N. et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci. Transl Med. 11, eaay2574 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Hirata, E. & Sahai, E. Tumor microenvironment and differential responses to therapy. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a026781 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. 124.

    Vargas, R. et al. Case study: patient-derived clear cell adenocarcinoma xenograft model longitudinally predicts treatment response. NPJ Precis. Oncol. 2, 14 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Nardella, C., Lunardi, A., Patnaik, A., Cantley, L. C. & Pandolfi, P. P. The APL paradigm and the ‘co-clinical trial’ project. Cancer Discov. 1, 108–116 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

L.I.Z. is supported by the Melanoma Research Alliance and US National Institutes of Health (grants P01CA163222 and R01 CA103846). M.F. was supported by Boehringer Ingelheim Fonds. D.M.L. is funded by the US National Institutes of Health (grants R01CA154923, R01CA211734, R01CA215118, R01CA226926 and R24OD016761) and the MGH Research Scholars Program. Y.C. is supported by the Alex Lemonade Stand Foundation.

Author information

Affiliations

Authors

Contributions

M.F. and J.A. researched data for the article, substantially contributed to discussion of the content, wrote the manuscript, and reviewed and edited the manuscript before submission. Y.C. researched data for the article and wrote the manuscript. D.L. substantially contributed to discussion of the content, and reviewed and edited the manuscript before submission. L.I.Z. substantially contributed to discussion of the content, wrote the manuscript, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Leonard I. Zon.

Ethics declarations

Competing interests

L.I.Z. is a founder and stockholder of Fate Therapeutics Inc., Scholar Rock and Camp4 Therapeutics Inc., and is a scientific adviser for Stemgent. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cancer thanks M. G. Ferreira, Z. Gong, R. Stewart and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

One-cell stage

The zebrafish embryonic stage where the egg has been fertilized by sperm, but before the first cell division.

Nevi

Benign skin lesions of melanocytes, also known as moles, which are thought to be senescent.

Tol2 transposon

Tol2 is an active transposon derived from the medaka fish and is used as a gene delivery method.

U6 promoter

An RNA polymerase III type 3 promoter commonly used to drive short hairpin RNAs or guide RNAs.

Casper zebrafish strain

An optically clear strain of zebrafish obtained by crossing the roy (mpv17−/−) and nacre (mitfa−/−) mutants, which results in the lack of iridophores and melanocytes, respectively.

NSG mice

Genetically engineered immunocompromised strain of mice widely used as recipients for engraftment of human primary cells or tumours (for example, patient-derived xenografts).

RECIST criteria

A set of published rules that define when patients with cancer improve (‘respond’), stay the same (‘stable’) or worsen (‘progression’) during treatments.

Hydrodynamic injection

Rapid injection of a relatively large volume of DNA solution, which is used for gene delivery in mouse livers.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fazio, M., Ablain, J., Chuan, Y. et al. Zebrafish patient avatars in cancer biology and precision cancer therapy. Nat Rev Cancer 20, 263–273 (2020). https://doi.org/10.1038/s41568-020-0252-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing