Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advances in germline predisposition to acute leukaemias and myeloid neoplasms

Abstract

Although much work has focused on the elucidation of somatic alterations that drive the development of acute leukaemias and other haematopoietic diseases, it has become increasingly recognized that germline mutations are common in many of these neoplasms. In this Review, we highlight the different genetic pathways impacted by germline mutations that can ultimately lead to the development of familial and sporadic haematological malignancies, including acute lymphoblastic leukaemia, acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS). Many of the genes disrupted by somatic mutations in these diseases (for example, TP53, RUNX1, IKZF1 and ETV6) are the same as those that harbour germline mutations in children and adolescents who develop these malignancies. Moreover, the presumption that familial leukaemias only present in childhood is no longer true, in large part due to the numerous studies demonstrating germline DDX41 mutations in adults with MDS and AML. Lastly, we highlight how different cooperating events can influence the ultimate phenotype in these different familial leukaemia syndromes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Association of germline mutations in genes encoding transcription factors with lineage development.
Fig. 2: Genetics of cancer predisposition genes in paediatric myeloid disorder malignancies.
Fig. 3: Genetics of cancer predisposition genes in paediatric ALL.
Fig. 4: Model of disease development.

References

  1. 1.

    The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

    CAS  Google Scholar 

  2. 2.

    Zhang, J. et al. Germline mutations in predisposition genes in pediatric cancer. N. Engl. J. Med. 373, 2336–2346 (2015). This seminal study estimates the prevalence of deleterious germline mutations in childhood cancer, based on interrogation of a panel of genes.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Grobner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature 555, 321–327 (2018).

    PubMed  Google Scholar 

  4. 4.

    Parsons, D. W. et al. Diagnostic yield of clinical tumor and germline whole-exome sequencing for children with solid tumors. JAMA Oncol. 2, 616–624 (2016).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Huang, K. L. et al. Pathogenic germline variants in 10,389 adult cancers. Cell 173, 355–370.e14 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Arber, D. A. et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127, 2391–2405 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Godley, L. A. Inherited predisposition to acute myeloid leukemia. Semin. Hematol. 51, 306–321 (2014).

    PubMed  Google Scholar 

  8. 8.

    Churchman, M. L. et al. Germline genetic IKZF1 variation and predisposition to childhood acute lymphoblastic leukemia. Cancer Cell 33, 937–948.e8 (2018). This paper identifies germline non-silent IKZF1 variants in familial and sporadic ALL, showing that many of the germline variants are more deleterious than previously identified somatic variants.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Qian, M. et al. Novel susceptibility variants at the ERG locus for childhood acute lymphoblastic leukemia in Hispanics. Blood 133, 724–729 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Moriyama, T. et al. Germline genetic variation in ETV6 and risk of childhood acute lymphoblastic leukaemia: a systematic genetic study. Lancet Oncol. 16, 1659–1666 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Topka, S. et al. Germline ETV6 mutations confer susceptibility to acute lymphoblastic leukemia and thrombocytopenia. PLoS Genet. 11, e1005262 (2015). This study is one of several that identify germline ETV6 variants associated with ALL and thrombocytopenia.

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Shah, S. et al. A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia. Nat. Genet. 45, 1226–1231 (2013). This paper identifies germline PAX5 variants as causal in familial B-ALL with loss of chromosome 9p leading to hemizygosity of the variant allele.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Perez-Andreu, V. et al. Inherited GATA3 variants are associated with Ph-like childhood acute lymphoblastic leukemia and risk of relapse. Nat. Genet. 45, 1494–1498 (2013). This paper presents an example of a GWAS showing association of a germline SNP (in GATA3) with a specific subtype and ancestry of B-ALL.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Polprasert, C. et al. Inherited and somatic defects in DDX41 in myeloid neoplasms. Cancer Cell 27, 658–670 (2015). This comprehensive study evaluates the frequency of germline and somatic DDX41 mutations in myeloid malignancies.

    CAS  PubMed  Google Scholar 

  15. 15.

    Pastor, V. B. et al. Constitutional SAMD9L mutations cause familial myelodysplastic syndrome and transient monosomy 7. Haematologica 103, 427–437 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Schwartz, J. R. et al. Germline SAMD9 mutation in siblings with monosomy 7 and myelodysplastic syndrome. Leukemia 31, 1827–1830 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Narumi, S. et al. SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7. Nat. Genet. 48, 792–797 (2016). This paper presents the first description of germline SAMD9 mutations in children with MIRAGE syndrome.

    CAS  PubMed  Google Scholar 

  18. 18.

    Tesi, B. et al. Gain-of-function SAMD9L mutations cause a syndrome of cytopenia, immunodeficiency, MDS, and neurological symptoms. Blood 129, 2266–2279 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Wong, J. C. et al. Germline SAMD9 and SAMD9L mutations are associated with extensive genetic evolution and diverse hematologic outcomes. JCI Insight 3, e121086 (2018). This work uses historical samples to demonstrate germline mutations in SAMD9 and SAMD9L in families with myelodysplasia and leukaemia syndrome with monosomy, and illuminates the variety of revertant and cooperating mutations that influence clinical phenotypes.

    PubMed Central  Google Scholar 

  20. 20.

    Mangaonkar, A. A. & Patnaik, M. M. Hereditary predisposition to hematopoietic neoplasms: when bloodline matters for blood cancers. Mayo Clin. Proc. 95, 1482–1498 (2020).

    CAS  PubMed  Google Scholar 

  21. 21.

    Furutani, E. & Shimamura, A. Germline genetic predisposition to hematologic malignancy. J. Clin. Oncol. 35, 1018–1028 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Porter, C. C. et al. Recommendations for surveillance for children with leukemia-predisposing conditions. Clin. Cancer Res. 23, e14–e22 (2017).

    PubMed  Google Scholar 

  23. 23.

    Wegman-Ostrosky, T. & Savage, S. A. The genomics of inherited bone marrow failure: from mechanism to the clinic. Br. J. Haematol. 177, 526–542 (2017).

    PubMed  Google Scholar 

  24. 24.

    Faber, Z. J. et al. The genomic landscape of core-binding factor acute myeloid leukemias. Nat. Genet. 48, 1551–1556 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Gaidzik, V. I. et al. RUNX1 mutations in acute myeloid leukemia are associated with distinct clinico-pathologic and genetic features. Leukemia 30, 2160–2168 (2016).

    CAS  PubMed  Google Scholar 

  26. 26.

    Grossmann, V. et al. Prognostic relevance of RUNX1 mutations in T-cell acute lymphoblastic leukemia. Haematologica 96, 1874–1877 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Osato, M. et al. Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2αB gene associated with myeloblastic leukemias. Blood 93, 1817–1824 (1999).

    CAS  PubMed  Google Scholar 

  28. 28.

    Zelent, A., Greaves, M. & Enver, T. Role of the TEL–AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia. Oncogene 23, 4275–4283 (2004).

    CAS  PubMed  Google Scholar 

  29. 29.

    Zhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Latger-Cannard, V. et al. Haematological spectrum and genotype–phenotype correlations in nine unrelated families with RUNX1 mutations from the French network on inherited platelet disorders. Orphanet J. Rare Dis. 11, 49 (2016).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Song, W. J. et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat. Genet. 23, 166–175 (1999). This paper links familial platelet disorder with predisposition to AML with germline alterations in RUNX1.

    CAS  PubMed  Google Scholar 

  32. 32.

    Antony-Debre, I. et al. Somatic mutations associated with leukemic progression of familial platelet disorder with predisposition to acute myeloid leukemia. Leukemia 30, 999–1002 (2016).

    CAS  PubMed  Google Scholar 

  33. 33.

    Michaud, J. et al. In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis. Blood 99, 1364–1372 (2002).

    CAS  PubMed  Google Scholar 

  34. 34.

    Brown, A. L. et al. RUNX1-mutated families show phenotype heterogeneity and a somatic mutation profile unique to germline predisposed AML. Blood Adv. 4, 1131–1144 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Churpek, J. E. et al. Genomic analysis of germ line and somatic variants in familial myelodysplasia/acute myeloid leukemia. Blood 126, 2484–2490 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Preudhomme, C. et al. High frequency of RUNX1 biallelic alteration in acute myeloid leukemia secondary to familial platelet disorder. Blood 113, 5583–5587 (2009).

    CAS  PubMed  Google Scholar 

  37. 37.

    Shiba, N. et al. CBL mutation in chronic myelomonocytic leukemia secondary to familial platelet disorder with propensity to develop acute myeloid leukemia (FPD/AML). Blood 119, 2612–2614 (2012).

    CAS  PubMed  Google Scholar 

  38. 38.

    Pabst, T. et al. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-α (C/EBPα), in acute myeloid leukemia. Nat. Genet. 27, 263–270 (2001).

    CAS  PubMed  Google Scholar 

  39. 39.

    Frohling, S. et al. CEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics: prognostic relevance and analysis of cooperating mutations. J. Clin. Oncol. 22, 624–633 (2004).

    PubMed  Google Scholar 

  40. 40.

    Pabst, T., Eyholzer, M., Haefliger, S., Schardt, J. & Mueller, B. U. Somatic CEBPA mutations are a frequent second event in families with germline CEBPA mutations and familial acute myeloid leukemia. J. Clin. Oncol. 26, 5088–5093 (2008).

    CAS  PubMed  Google Scholar 

  41. 41.

    Tawana, K. et al. Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood 126, 1214–1223 (2015). This work studies diagnosis and relapse leukaemia samples from patients with germline CEBPA mutations and demonstrates that disease recurrence is commonly driven by new, independent clones rather than re-emergence of an existing clone present at diagnosis.

    CAS  PubMed  Google Scholar 

  42. 42.

    Smith, M. L., Cavenagh, J. D., Lister, T. A. & Fitzgibbon, J. Mutation of CEBPA in familial acute myeloid leukemia. N. Engl. J. Med. 351, 2403–2407 (2004).

    CAS  PubMed  Google Scholar 

  43. 43.

    Taskesen, E. et al. Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity. Blood 117, 2469–2475 (2011).

    CAS  PubMed  Google Scholar 

  44. 44.

    Pathak, A. et al. Whole exome sequencing reveals a C-terminal germline variant in CEBPA-associated acute myeloid leukemia: 45-year follow up of a large family. Haematologica 101, 846–852 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Wlodarski, M. W., Collin, M. & Horwitz, M. S. GATA2 deficiency and related myeloid neoplasms. Semin. Hematol. 54, 81–86 (2017).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Wlodarski, M. W. et al. Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents. Blood 127, 1387–1397 (2016). This definitive and comprehensive study demonstrates the prevalence of germline GATA2 mutations in paediatric MDS.

    CAS  PubMed  Google Scholar 

  47. 47.

    Cortes-Lavaud, X. et al. GATA2 germline mutations impair GATA2 transcription, causing haploinsufficiency: functional analysis of the p.Arg396Gln mutation. J. Immunol. 194, 2190–2198 (2015).

    CAS  PubMed  Google Scholar 

  48. 48.

    Hsu, A. P. et al. GATA2 haploinsufficiency caused by mutations in a conserved intronic element leads to MonoMAC syndrome. Blood 121, 3830–3837 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Wehr, C. et al. A novel disease-causing synonymous exonic mutation in GATA2 affecting RNA splicing. Blood 132, 1211–1215 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Kozyra, E. J. et al. Synonymous GATA2 mutations result in selective loss of mutated RNA and are common in patients with GATA2 deficiency. Leukemia 34, 2673–2687 (2020).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Cavalcante de Andrade Silva, M. et al. Breaking the spatial constraint between neighboring zinc fingers: a new germline mutation in GATA2 deficiency syndrome. Leukemia https://doi.org/10.1038/s41375-020-0820-2 (2020).

    Article  PubMed  Google Scholar 

  52. 52.

    Yoshida, M. et al. Prevalence of germline GATA2 and SAMD9/9L variants in paediatric haematological disorders with monosomy 7. Br. J. Haematol. 191, 835–843 (2020).

    CAS  Google Scholar 

  53. 53.

    Micol, J. B. & Abdel-Wahab, O. Collaborating constitutive and somatic genetic events in myeloid malignancies: ASXL1 mutations in patients with germline GATA2 mutations. Haematologica 99, 201–203 (2014).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    West, R. R., Hsu, A. P., Holland, S. M., Cuellar-Rodriguez, J. & Hickstein, D. D. Acquired ASXL1 mutations are common in patients with inherited GATA2 mutations and correlate with myeloid transformation. Haematologica 99, 276–281 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Bodor, C. et al. Germ-line GATA2 p.THR354MET mutation in familial myelodysplastic syndrome with acquired monosomy 7 and ASXL1 mutation demonstrating rapid onset and poor survival. Haematologica 97, 890–894 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Al Seraihi, A. F. et al. GATA2 monoallelic expression underlies reduced penetrance in inherited GATA2-mutated MDS/AML. Leukemia 32, 2502–2507 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Rocak, S. & Linder, P. DEAD-box proteins: the driving forces behind RNA metabolism. Nat. Rev. Mol. Cell Biol. 5, 232–241 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Fullam, A. & Schroder, M. DExD/H-box RNA helicases as mediators of anti-viral innate immunity and essential host factors for viral replication. Biochim. Biophys. Acta 1829, 854–865 (2013).

    CAS  PubMed  Google Scholar 

  59. 59.

    Zhang, Z. et al. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat. Immunol. 12, 959–965 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Lee, K. G. et al. Bruton’s tyrosine kinase phosphorylates DDX41 and activates its binding of dsDNA and STING to initiate type 1 interferon response. Cell Rep. 10, 1055–1065 (2015).

    CAS  PubMed  Google Scholar 

  61. 61.

    Cardoso, S. R. et al. Germline heterozygous DDX41 variants in a subset of familial myelodysplasia and acute myeloid leukemia. Leukemia 30, 2083–2086 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Li, R., Sobreira, N., Witmer, P. D., Pratz, K. W. & Braunstein, E. M. Two novel germline DDX41 mutations in a family with inherited myelodysplasia/acute myeloid leukemia. Haematologica 101, e228–e231 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Lewinsohn, M. et al. Novel germ line DDX41 mutations define families with a lower age of MDS/AML onset and lymphoid malignancies. Blood 127, 1017–1023 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Sebert, M. et al. Germline DDX41 mutations define a significant entity within adult MDS/AML patients. Blood 134, 1441–1444 (2019).

    PubMed  Google Scholar 

  65. 65.

    Quesada, A. E. et al. DDX41 mutations in myeloid neoplasms are associated with male gender, TP53 mutations and high-risk disease. Am. J. Hematol. 94, 757–766 (2019).

    CAS  PubMed  Google Scholar 

  66. 66.

    Polprasert, C. et al. Novel DDX41 variants in Thai patients with myeloid neoplasms. Int. J. Hematol. 111, 241–246 (2020).

    CAS  PubMed  Google Scholar 

  67. 67.

    Takeda, J. et al. Genetic predispositions to myeloid neoplasms caused by germline DDX41 mutations. Blood 126, 2843–2843 (2015).

    Google Scholar 

  68. 68.

    Inoue, D., Bradley, R. K. & Abdel-Wahab, O. Spliceosomal gene mutations in myelodysplasia: molecular links to clonal abnormalities of hematopoiesis. Genes Dev. 30, 989–1001 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Kadono, M. et al. Biological implications of somatic DDX41 p.R525H mutation in acute myeloid leukemia. Exp. Hematol. 44, 745–754.e4 (2016).

    CAS  PubMed  Google Scholar 

  70. 70.

    Chen, D. H. et al. Ataxia-pancytopenia syndrome is caused by missense mutations in SAMD9L. Am. J. Hum. Genet. 98, 1146–1158 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Buonocore, F. et al. Somatic mutations and progressive monosomy modify SAMD9-related phenotypes in humans. J. Clin. Invest. 127, 1700–1713 (2017).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Schwartz, J. R. et al. The genomic landscape of pediatric myelodysplastic syndromes. Nat. Commun. 8, 1557 (2017). This study is the first to comprehensively profile the genomic landscape of paediatric MDS and describes germline mutations in SAMD9 or SAMD9L in nearly 20% of cases.

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Bluteau, O. et al. A landscape of germ line mutations in a cohort of inherited bone marrow failure patients. Blood 131, 717–732 (2018).

    CAS  PubMed  Google Scholar 

  74. 74.

    Nagata, Y. et al. Germline loss-of-function SAMD9 and SAMD9L alterations in adult myelodysplastic syndromes. Blood 132, 2309–2313 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Nagamachi, A. et al. Haploinsufficiency of SAMD9L, an endosome fusion facilitator, causes myeloid malignancies in mice mimicking human diseases with monosomy 7. Cancer Cell 24, 305–317 (2013).

    CAS  PubMed  Google Scholar 

  76. 76.

    Liu, J. & McFadden, G. SAMD9 is an innate antiviral host factor with stress response properties that can be antagonized by poxviruses. J. Virol. 89, 1925–1931 (2015).

    PubMed  Google Scholar 

  77. 77.

    Nounamo, B. et al. An interaction domain in human SAMD9 is essential for myxoma virus host-range determinant M062 antagonism of host anti-viral function. Virology 503, 94–102 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Sivan, G., Ormanoglu, P., Buehler, E. C., Martin, S. E. & Moss, B. Identification of restriction factors by human genome-wide RNA interference screening of viral host range mutants exemplified by discovery of SAMD9 and WDR6 as inhibitors of the vaccinia virus K1LC7L mutant. mBio 6, e01122 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Meng, X. et al. A paralogous pair of mammalian host restriction factors form a critical host barrier against poxvirus infection. PLoS Pathog. 14, e1006884 (2018).

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Mekhedov, S. L., Makarova, K. S. & Koonin, E. V. The complex domain architecture of SAMD9 family proteins, predicted STAND-like NTPases, suggests new links to inflammation and apoptosis. Biol. Direct 12, 13 (2017).

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Wong, J. C. et al. Functional evidence implicating chromosome 7q22 haploinsufficiency in myelodysplastic syndrome pathogenesis. eLife 4, e07839 (2015).

    PubMed Central  Google Scholar 

  82. 82.

    Honda, H., Nagamachi, A. & Inaba, T. -7/7q- syndrome in myeloid-lineage hematopoietic malignancies: attempts to understand this complex disease entity. Oncogene 34, 2413–2425 (2015).

    CAS  PubMed  Google Scholar 

  83. 83.

    de Jesus, A. A. et al. Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases. J. Clin. Invest. 130, 1669–1682 (2020).

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Ripperger, T. et al. MDS1 and EVI1 complex locus (MECOM): a novel candidate gene for hereditary hematological malignancies. Haematologica 103, e55–e58 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Rio-Machin, A. et al. The complex genetic landscape of familial MDS and AML reveals pathogenic germline variants. Nat. Commun. 11, 1044 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Bluteau, D. et al. Thrombocytopenia-associated mutations in the ANKRD26 regulatory region induce MAPK hyperactivation. J. Clin. Invest. 124, 580–591 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Al Daama, S. A. et al. A missense mutation in ANKRD26 segregates with thrombocytopenia. Blood 122, 461–462 (2013).

    CAS  PubMed  Google Scholar 

  88. 88.

    Noris, P. et al. Mutations in ANKRD26 are responsible for a frequent form of inherited thrombocytopenia: analysis of 78 patients from 21 families. Blood 117, 6673–6680 (2011).

    CAS  PubMed  Google Scholar 

  89. 89.

    Pippucci, T. et al. Mutations in the 5′ UTR of ANKRD26, the ankirin repeat domain 26 gene, cause an autosomal-dominant form of inherited thrombocytopenia, THC2. Am. J. Hum. Genet. 88, 115–120 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Perez Botero, J. et al. ASXL1 mutated chronic myelomonocytic leukemia in a patient with familial thrombocytopenia secondary to germline mutation in ANKRD26. Blood Cancer J. 5, e315 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Sanders, M. A. et al. MBD4 guards against methylation damage and germ line deficiency predisposes to clonal hematopoiesis and early-onset AML. Blood 132, 1526–1534 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Ward, A. F., Braun, B. S. & Shannon, K. M. Targeting oncogenic Ras signaling in hematologic malignancies. Blood 120, 3397–3406 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Arico, M., Biondi, A. & Pui, C. H. Juvenile myelomonocytic leukemia. Blood 90, 479–488 (1997).

    CAS  PubMed  Google Scholar 

  94. 94.

    Niemeyer, C. M. & Kratz, C. P. Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia: molecular classification and treatment options. Br. J. Haematol. 140, 610–624 (2008).

    CAS  PubMed  Google Scholar 

  95. 95.

    Flotho, C. et al. Genotype–phenotype correlation in cases of juvenile myelomonocytic leukemia with clonal RAS mutations. Blood 111, 966–967 (2008).

    CAS  PubMed  Google Scholar 

  96. 96.

    Chang, T. Y., Dvorak, C. C. & Loh, M. L. Bedside to bench in juvenile myelomonocytic leukemia: insights into leukemogenesis from a rare pediatric leukemia. Blood 124, 2487–2497 (2014).

    CAS  PubMed  Google Scholar 

  97. 97.

    Stiller, C. A., Chessells, J. M. & Fitchett, M. Neurofibromatosis and childhood leukaemia/lymphoma: a population-based UKCCSG study. Br. J. Cancer 70, 969–972 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Shannon, K. M. et al. Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. N. Engl. J. Med. 330, 597–601 (1994).

    CAS  PubMed  Google Scholar 

  99. 99.

    Niemeyer, C. M. JMML genomics and decisions. Hematol. Am. Soc. Hematol Educ. Program. 2018, 307–312 (2018).

    Google Scholar 

  100. 100.

    Niemeyer, C. M. et al. Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nat. Genet. 42, 794–800 (2010). This genomic and clinical analysis of patients with germline CBL mutations demonstrates a propensity for spontaneous resolution of haematopoietic abnormalities with prolonged risk for vascular and developmental complications.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Loh, M. L. et al. Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood 114, 1859–1863 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Strullu, M. et al. Juvenile myelomonocytic leukaemia and Noonan syndrome. J. Med. Genet. 51, 689–697 (2014).

    CAS  PubMed  Google Scholar 

  103. 103.

    Kratz, C. P. et al. The mutational spectrum of PTPN11 in juvenile myelomonocytic leukemia and Noonan syndrome/myeloproliferative disease. Blood 106, 2183–2185 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Cave, H. et al. Acute lymphoblastic leukemia in the context of RASopathies. Eur. J. Med. Genet. 59, 173–178 (2016).

    PubMed  Google Scholar 

  105. 105.

    Cave, H. et al. Mutations in RIT1 cause Noonan syndrome with possible juvenile myelomonocytic leukemia but are not involved in acute lymphoblastic leukemia. Eur. J. Hum. Genet. 24, 1124–1131 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Flex, E. et al. Activating mutations in RRAS underlie a phenotype within the RASopathy spectrum and contribute to leukaemogenesis. Hum. Mol. Genet. 23, 4315–4327 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Roberts, A. E. et al. Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat. Genet. 39, 70–74 (2007).

    CAS  PubMed  Google Scholar 

  108. 108.

    Kratz, C. P., Rapisuwon, S., Reed, H., Hasle, H. & Rosenberg, P. S. Cancer in Noonan, Costello, cardiofaciocutaneous and LEOPARD syndromes. Am. J. Med. Genet. 157, 83–89 (2011).

    Google Scholar 

  109. 109.

    Stieglitz, E. et al. The genomic landscape of juvenile myelomonocytic leukemia. Nat. Genet. 47, 1326–1333 (2015). This paper genomically characterizes serial samples from patients with JMML, including diagnosis, relapse and transformation to AML, and identifies recurrent mutations in genes involved in signal transduction, splicing, PRC2 and transcription.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Caye, A. et al. Juvenile myelomonocytic leukemia displays mutations in components of the RAS pathway and the PRC2 network. Nat. Genet. 47, 1334–1340 (2015).

    CAS  PubMed  Google Scholar 

  111. 111.

    Murakami, N. et al. Integrated molecular profiling of juvenile myelomonocytic leukemia. Blood 131, 1576–1586 (2018).

    CAS  PubMed  Google Scholar 

  112. 112.

    Stieglitz, E. et al. Subclonal mutations in SETBP1 confer a poor prognosis in juvenile myelomonocytic leukemia. Blood 125, 516–524 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Stieglitz, E. et al. Genome-wide DNA methylation is predictive of outcome in juvenile myelomonocytic leukemia. Nat. Commun. 8, 2127 (2017).

    PubMed  PubMed Central  Google Scholar 

  114. 114.

    Lipka, D. B. et al. RAS-pathway mutation patterns define epigenetic subclasses in juvenile myelomonocytic leukemia. Nat. Commun. 8, 2126 (2017).

    PubMed  PubMed Central  Google Scholar 

  115. 115.

    Hitzler, J. K. & Zipursky, A. Origins of leukaemia in children with down syndrome. Nat. Rev. Cancer 5, 11–20 (2005).

    CAS  PubMed  Google Scholar 

  116. 116.

    Mullighan, C. G. et al. Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nat. Genet. 41, 1243–1246 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Lange, B. J. et al. Distinctive demography, biology, and outcome of acute myeloid leukemia and myelodysplastic syndrome in children with Down syndrome: Children’s Cancer Group Studies 2861 and 2891. Blood 91, 608–615 (1998).

    CAS  PubMed  Google Scholar 

  118. 118.

    Rainis, L. et al. Mutations in exon 2 of GATA1 are early events in megakaryocytic malignancies associated with trisomy 21. Blood 102, 981–986 (2003).

    CAS  PubMed  Google Scholar 

  119. 119.

    Wechsler, J. et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat. Genet. 32, 148–152 (2002).

    CAS  PubMed  Google Scholar 

  120. 120.

    Li, Z. et al. Developmental stage-selective effect of somatically mutated leukemogenic transcription factor GATA1. Nat. Genet. 37, 613–619 (2005).

    CAS  PubMed  Google Scholar 

  121. 121.

    Yoshida, K. et al. The landscape of somatic mutations in Down syndrome-related myeloid disorders. Nat. Genet. 45, 1293–1299 (2013).

    CAS  PubMed  Google Scholar 

  122. 122.

    Mateos, M. K., Barbaric, D., Byatt, S. A., Sutton, R. & Marshall, G. M. Down syndrome and leukemia: insights into leukemogenesis and translational targets. Transl. Pediatr. 4, 76–92 (2015).

    PubMed  PubMed Central  Google Scholar 

  123. 123.

    Landgren, O. et al. Increased risks of polycythemia vera, essential thrombocythemia, and myelofibrosis among 24,577 first-degree relatives of 11,039 patients with myeloproliferative neoplasms in Sweden. Blood 112, 2199–2204 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Jones, A. V. et al. The JAK2 46/1 haplotype predisposes to MPL-mutated myeloproliferative neoplasms. Blood 115, 4517–4523 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Jones, A. V. et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat. Genet. 41, 446–449 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Kilpivaara, O. et al. A germline JAK2 SNP is associated with predisposition to the development of JAK2V617F-positive myeloproliferative neoplasms. Nat. Genet. 41, 455–459 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Olcaydu, D. et al. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat. Genet. 41, 450–454 (2009).

    CAS  PubMed  Google Scholar 

  128. 128.

    Andrikovics, H. et al. JAK2 46/1 haplotype analysis in myeloproliferative neoplasms and acute myeloid leukemia. Leukemia 24, 1809–1813 (2010).

    CAS  PubMed  Google Scholar 

  129. 129.

    Trifa, A. P. et al. MECOM, HBS1L-MYB, THRB-RARB, JAK2, and TERT polymorphisms defining the genetic predisposition to myeloproliferative neoplasms: a study on 939 patients. Am. J. Hematol. 93, 100–106 (2018).

    CAS  PubMed  Google Scholar 

  130. 130.

    Tapper, W. et al. Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms. Nat. Commun. 6, 6691 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Harutyunyan, A. S. et al. Germline RBBP6 mutations in familial myeloproliferative neoplasms. Blood 127, 362–365 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Chen, Y. et al. The polymorphisms in LNK gene correlated to the clinical type of myeloproliferative neoplasms. PLoS ONE 11, e0154183 (2016).

    PubMed  PubMed Central  Google Scholar 

  133. 133.

    Rumi, E. et al. LNK mutations in familial myeloproliferative neoplasms. Blood 128, 144–145 (2016).

    CAS  PubMed  Google Scholar 

  134. 134.

    Saliba, J. et al. Germline duplication of ATG2B and GSKIP predisposes to familial myeloid malignancies. Nat. Genet. 47, 1131–1140 (2015).

    CAS  PubMed  Google Scholar 

  135. 135.

    Izraeli, S. The acute lymphoblastic leukemia of Down syndrome—genetics and pathogenesis. Eur. J. Med. Genet. 59, 158–161 (2016).

    PubMed  Google Scholar 

  136. 136.

    Pastorczak, A., Szczepanski, T. & Mlynarski, W. Clinical course and therapeutic implications for lymphoid malignancies in Nijmegen breakage syndrome. Eur. J. Med. Genet. 59, 126–132 (2016).

    PubMed  Google Scholar 

  137. 137.

    Schutte, P. et al. Preexisting conditions in pediatric ALL patients: spectrum, frequency and clinical impact. Eur. J. Med. Genet. 59, 143–151 (2016).

    CAS  PubMed  Google Scholar 

  138. 138.

    Harrison, C. J. & Schwab, C. Constitutional abnormalities of chromosome 21 predispose to iAMP21-acute lymphoblastic leukaemia. Eur. J. Med. Genet. 59, 162–165 (2016).

    PubMed  Google Scholar 

  139. 139.

    Trevino, L. R. et al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat. Genet. 41, 1001–1005 (2009). This study is one of the first to demonstrate the utility of GWAS to identify susceptibility loci in B-ALL.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Vijayakrishnan, J. et al. Identification of four novel associations for B-cell acute lymphoblastic leukaemia risk. Nat. Commun. 10, 5348 (2019).

    PubMed  PubMed Central  Google Scholar 

  141. 141.

    Karol, S. E. et al. Genetics of ancestry-specific risk for relapse in acute lymphoblastic leukemia. Leukemia 31, 1325–1332 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Yang, J. J. et al. Ancestry and pharmacogenomics of relapse in acute lymphoblastic leukemia. Nat. Genet. 43, 237–241 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Holmfeldt, L. et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat. Genet. 45, 242–252 (2013). This paper presents genomic analysis of hypodiploid ALL, showing constellations of genomic alterations in low hypodiploid and near haploid ALL and near-universal TP53 mutation in low hypodiploid ALL, approximately half of which are germline in paediatric, but not adult, low hypodiploid ALL.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Noetzli, L. et al. Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nat. Genet. 47, 535–538 (2015). This paper is one of the initial studies documenting the syndrome of germline ETV6 mutation, thrombocytopenia and ALL.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Zhang, M. Y. et al. Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy. Nat. Genet. 47, 180–185 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Jarviaho, T. et al. Predisposition to childhood acute lymphoblastic leukemia caused by a constitutional translocation disrupting ETV6. Blood Adv. 3, 2722–2731 (2019).

    PubMed  PubMed Central  Google Scholar 

  147. 147.

    Rampersaud, E. et al. Germline deletion of ETV6 in familial acute lymphoblastic leukemia. Blood Adv. 3, 1039–1046 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Szczepanski, T. et al. Late recurrence of childhood T-cell acute lymphoblastic leukemia frequently represents a second leukemia rather than a relapse: first evidence for genetic predisposition. J. Clin. Oncol. 29, 1643–1649 (2011). This study focuses on the genomics of relapse in T-ALL, identifying a case with germline deletions of LMO2, and demonstrates that relapse is due to propagation of a second primary leukaemia.

    CAS  PubMed  Google Scholar 

  149. 149.

    Waanders, E. et al. Mutational landscape and patterns of clonal evolution in relapsed pediatric acute lymphoblastic leukemia. Blood Cancer Discov. 1, 96–111 (2020).

    PubMed  PubMed Central  Google Scholar 

  150. 150.

    Qian, M. et al. TP53 germline variations influence the predisposition and prognosis of B-cell acute lymphoblastic leukemia in children. J. Clin. Oncol. 36, 591–599 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. 151.

    Papaemmanuil, E. et al. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat. Genet. 41, 1006–1010 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152.

    Urayama, K. Y. et al. Regional evaluation of childhood acute lymphoblastic leukemia genetic susceptibility loci among Japanese. Sci. Rep. 8, 789 (2018).

    PubMed  PubMed Central  Google Scholar 

  153. 153.

    Xu, H. et al. Novel susceptibility variants at 10p12.31-12.2 for childhood acute lymphoblastic leukemia in ethnically diverse populations. J. Natl Cancer Inst. 105, 733–742 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. 154.

    Migliorini, G. et al. Variation at 10p12.2 and 10p14 influences risk of childhood B-cell acute lymphoblastic leukemia and phenotype. Blood 122, 3298–3307 (2013).

    CAS  PubMed  Google Scholar 

  155. 155.

    Sherborne, A. L. et al. Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk. Nat. Genet. 42, 492–494 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156.

    Hungate, E. A. et al. A variant at 9p21.3 functionally implicates CDKN2B in paediatric B-cell precursor acute lymphoblastic leukaemia aetiology. Nat. Commun. 7, 10635 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Vijayakrishnan, J. & Houlston, R. S. Candidate gene association studies and risk of childhood acute lymphoblastic leukemia: a systematic review and meta-analysis. Haematologica 95, 1405–1414 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158.

    Wiemels, J. L. et al. GWAS in childhood acute lymphoblastic leukemia reveals novel genetic associations at chromosomes 17q12 and 8q24.21. Nat. Commun. 9, 286 (2018).

    PubMed  PubMed Central  Google Scholar 

  159. 159.

    Ellinghaus, E. et al. Identification of germline susceptibility loci in ETV6–RUNX1-rearranged childhood acute lymphoblastic leukemia. Leukemia 26, 902–909 (2012).

    CAS  PubMed  Google Scholar 

  160. 160.

    Jain, N. et al. GATA3 rs3824662A allele is overrepresented in adult patients with Ph-like ALL, especially in patients with CRLF2 abnormalities. Blood 130, 1430–1430 (2017).

    Google Scholar 

  161. 161.

    Qian, M. et al. Genome-wide association study of susceptibility loci for T-cell acute lymphoblastic leukemia in children. J. Natl Cancer Inst. 111, 1350–1357 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162.

    Liu, Y. et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat. Genet. 49, 1211–1218 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163.

    Somasundaram, R., Prasad, M. A., Ungerback, J. & Sigvardsson, M. Transcription factor networks in B-cell differentiation link development to acute lymphoid leukemia. Blood 126, 144–152 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. 164.

    Roberts, K. G. & Mullighan, C. G. The biology of B-progenitor acute lymphoblastic leukemia. Cold Spring Harb. Perspect. Med. 10, a034835 (2020).

    CAS  PubMed  Google Scholar 

  165. 165.

    Yang, H. et al. Non-coding germline GATA3 variants alter chromatin topology and contribute to pathogenesis of acute lymphoblastic leukemia. Preprint at bioRxiv https://doi.org/10.1101/2020.02.23.961672 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  166. 166.

    Auer, F. et al. Inherited susceptibility to pre B-ALL caused by germline transmission of PAX5 c.547G>A. Leukemia 28, 1136–1138 (2014).

    CAS  PubMed  Google Scholar 

  167. 167.

    Nutt, S. L., Heavey, B., Rolink, A. G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999).

    CAS  PubMed  Google Scholar 

  168. 168.

    Mullighan, C. G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446, 758–764 (2007).

    CAS  PubMed  Google Scholar 

  169. 169.

    Kuiper, R. P. et al. High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression. Leukemia 21, 1258–1266 (2007).

    CAS  PubMed  Google Scholar 

  170. 170.

    An, Q. et al. Variable breakpoints target PAX5 in patients with dicentric chromosomes: a model for the basis of unbalanced translocations in cancer. Proc. Natl Acad. Sci. USA 105, 17050–17054 (2008).

    CAS  PubMed  Google Scholar 

  171. 171.

    Bousquet, M. et al. A novel PAX5–ELN fusion protein identified in B-cell acute lymphoblastic leukemia acts as a dominant negative on wild-type PAX5. Blood 109, 3417–3423 (2007).

    CAS  PubMed  Google Scholar 

  172. 172.

    Cazzaniga, G. et al. The paired box domain gene PAX5 is fused to ETV6/TEL in an acute lymphoblastic leukemia case. Cancer Res. 61, 4666–4670 (2001).

    CAS  PubMed  Google Scholar 

  173. 173.

    Coyaud, E. et al. Wide diversity of PAX5 alterations in B-ALL: a Groupe Francophone de Cytogenetique Hematologique study. Blood 115, 3089–3097 (2010).

    CAS  PubMed  Google Scholar 

  174. 174.

    Kawamata, N. et al. Molecular allelokaryotyping of pediatric acute lymphoblastic leukemias by high-resolution single nucleotide polymorphism oligonucleotide genomic microarray. Blood 111, 776–784 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. 175.

    Nebral, K. et al. Incidence and diversity of PAX5 fusion genes in childhood acute lymphoblastic leukemia. Leukemia 23, 134–143 (2009).

    CAS  PubMed  Google Scholar 

  176. 176.

    Strehl, S., Konig, M., Dworzak, M. N., Kalwak, K. & Haas, O. A. PAX5/ETV6 fusion defines cytogenetic entity dic(9;12)(p13;p13). Leukemia 17, 1121–1123 (2003).

    CAS  PubMed  Google Scholar 

  177. 177.

    Schwab, C. et al. Intragenic amplification of PAX5: a novel subgroup in B-cell precursor acute lymphoblastic leukemia? Blood Adv. 1, 1473–1477 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. 178.

    Gu, Z. et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat. Genet. 51, 296–307 (2019). This paper presents a large-scale genomic analysis of B-ALL identifying new subtypes driven by diverse PAX5 alterations, including a single mutation defining one subgroup (PAX5P80R).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. 179.

    Eberhard, D., Jimenez, G., Heavey, B. & Busslinger, M. Transcriptional repression by Pax5 (BSAP) through interaction with corepressors of the Groucho family. EMBO J. 19, 2292–2303 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. 180.

    Dang, J. et al. Pax5 is a tumor suppressor in mouse mutagenesis models of acute lymphoblastic leukemia. Blood 125, 3609–3617 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. 181.

    Malkin, D. et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250, 1233–1238 (1990).

    CAS  PubMed  Google Scholar 

  182. 182.

    Guha, T. & Malkin, D. Inherited TP53 mutations and the Li–Fraumeni syndrome. Cold Spring Harb. Perspect. Med. 7, a026187 (2017).

    PubMed  PubMed Central  Google Scholar 

  183. 183.

    Zebisch, A. et al. Acute myeloid leukemia with TP53 germ line mutations. Blood 128, 2270–2272 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. 184.

    Link, D. C. et al. Identification of a novel TP53 cancer susceptibility mutation through whole-genome sequencing of a patient with therapy-related AML. JAMA 305, 1568–1576 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. 185.

    Harrison, C. J. et al. Three distinct subgroups of hypodiploidy in acute lymphoblastic leukaemia. Br. J. Haematol. 125, 552–559 (2004).

    PubMed  Google Scholar 

  186. 186.

    Groeneveld-Krentz, S. et al. Aneuploidy in children with relapsed B-cell precursor acute lymphoblastic leukaemia: clinical importance of detecting a hypodiploid origin of relapse. Br. J. Haematol. 185, 266–283 (2019).

    CAS  PubMed  Google Scholar 

  187. 187.

    Muhlbacher, V. et al. Acute lymphoblastic leukemia with low hypodiploid/near triploid karyotype is a specific clinical entity and exhibits a very high TP53 mutation frequency of 93%. Genes Chromosomes Cancer 53, 524–536 (2014).

    PubMed  Google Scholar 

  188. 188.

    Swaminathan, M. et al. Hematologic malignancies and Li–Fraumeni syndrome. Cold Spring Harb. Mol. Case Stud. 5, a003210 (2019).

    PubMed  PubMed Central  Google Scholar 

  189. 189.

    Chen, Q. et al. Multiple functions of Ikaros in hematological malignancies, solid tumor and autoimmune diseases. Gene 684, 47–52 (2019).

    CAS  PubMed  Google Scholar 

  190. 190.

    Georgopoulos, K. et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell 79, 143–156 (1994).

    CAS  PubMed  Google Scholar 

  191. 191.

    Mullighan, C. G. et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453, 110–114 (2008).

    CAS  PubMed  Google Scholar 

  192. 192.

    Mullighan, C. G. et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N. Engl. J. Med. 360, 470–480 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. 193.

    Den Boer, M. L. et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 10, 125–134 (2009).

    Google Scholar 

  194. 194.

    Zhang, J. et al. Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nat. Genet. 48, 1481–1489 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. 195.

    Martinelli, G. et al. IKZF1 (Ikaros) deletions in BCR-ABL1-positive acute lymphoblastic leukemia are associated with short disease-free survival and high rate of cumulative incidence of relapse: a GIMEMA AL WP report. J. Clin. Oncol. 27, 5202–5207 (2009).

    CAS  PubMed  Google Scholar 

  196. 196.

    van der Veer, A. et al. IKZF1 status as a prognostic feature in BCR-ABL1-positive childhood ALL. Blood 123, 1691–1698 (2014).

    PubMed  Google Scholar 

  197. 197.

    Zaliova, M. et al. ERG deletion is associated with CD2 and attenuates the negative impact of IKZF1 deletion in childhood acute lymphoblastic leukemia. Leukemia 28, 182–185 (2014).

    CAS  PubMed  Google Scholar 

  198. 198.

    Dorge, P. et al. IKZF1 deletion is an independent predictor of outcome in pediatric acute lymphoblastic leukemia treated according to the ALL-BFM 2000 protocol. Haematologica 98, 428–432 (2013).

    PubMed  PubMed Central  Google Scholar 

  199. 199.

    Slayton, W. B. et al. Dasatinib plus intensive chemotherapy in children, adolescents, and young adults with philadelphia chromosome-positive acute lymphoblastic leukemia: results of Children’s Oncology Group trial AALL0622. J. Clin. Oncol. 36, 2306–2314 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. 200.

    Li, J. F. et al. Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1,223 cases. Proc. Natl Acad. Sci. USA 115, E11711–e11720 (2018).

    CAS  PubMed  Google Scholar 

  201. 201.

    Iacobucci, I. et al. Expression of spliced oncogenic Ikaros isoforms in Philadelphia-positive acute lymphoblastic leukemia patients treated with tyrosine kinase inhibitors: implications for a new mechanism of resistance. Blood 112, 3847–3855 (2008).

    CAS  PubMed  Google Scholar 

  202. 202.

    Churchman, M. L. et al. Efficacy of retinoids in IKZF1-mutated BCR-ABL1 acute lymphoblastic leukemia. Cancer Cell 28, 343–356 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. 203.

    Joshi, I. et al. Loss of Ikaros DNA-binding function confers integrin-dependent survival on pre-B cells and progression to acute lymphoblastic leukemia. Nat. Immunol. 15, 294–304 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. 204.

    Virely, C. et al. Haploinsufficiency of the IKZF1 (IKAROS) tumor suppressor gene cooperates with BCR-ABL in a transgenic model of acute lymphoblastic leukemia. Leukemia 24, 1200–1204 (2010).

    CAS  PubMed  Google Scholar 

  205. 205.

    Boutboul, D. et al. Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. J. Clin. Invest. 128, 3071–3087 (2018).

    PubMed  PubMed Central  Google Scholar 

  206. 206.

    Kuehn, H. S. et al. Loss of B cells in patients with heterozygous mutations in IKAROS. N. Engl. J. Med. 374, 1032–1043 (2016). This paper identifies IKZF1 germline mutations in the region encoding the N-terminal zinc finger as a cause of B-lineage immunodeficiency.

    CAS  PubMed  PubMed Central  Google Scholar 

  207. 207.

    Yoshida, N. et al. Germline IKAROS mutation associated with primary immunodeficiency that progressed to T-cell acute lymphoblastic leukemia. Leukemia 31, 1221–1223 (2017).

    CAS  PubMed  Google Scholar 

  208. 208.

    Hoshino, A. et al. Abnormal hematopoiesis and autoimmunity in human subjects with germline IKZF1 mutations. J. Allergy Clin. Immunol. 140, 223–231 (2017).

    CAS  PubMed  Google Scholar 

  209. 209.

    Lentaigne, C. et al. Germline mutations in the transcription factor IKZF5 cause thrombocytopenia. Blood 134, 2070–2081 (2019).

    PubMed  Google Scholar 

  210. 210.

    Hock, H. & Shimamura, A. ETV6 in hematopoiesis and leukemia predisposition. Semin. Hematol. 54, 98–104 (2017).

    PubMed  PubMed Central  Google Scholar 

  211. 211.

    Shurtleff, S. A. et al. TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia 9, 1985–1989 (1995).

    CAS  PubMed  Google Scholar 

  212. 212.

    Raynaud, S. et al. The 12;21 translocation involving TEL and deletion of the other TEL allele: two frequently associated alterations found in childhood acute lymphoblastic leukemia. Blood 87, 2891–2899 (1996).

    CAS  PubMed  Google Scholar 

  213. 213.

    Papaemmanuil, E. et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6–RUNX1 acute lymphoblastic leukemia. Nat. Genet. 46, 116–125 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. 214.

    Di Paola, J. & Porter, C. C. ETV6-related thrombocytopenia and leukemia predisposition. Blood 134, 663–667 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. 215.

    Melazzini, F. et al. Clinical and pathogenic features of ETV6-related thrombocytopenia with predisposition to acute lymphoblastic leukemia. Haematologica 101, 1333–1342 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. 216.

    Paulsson, K. et al. Genetic landscape of high hyperdiploid childhood acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA 107, 21719–21724 (2010).

    CAS  PubMed  Google Scholar 

  217. 217.

    Nishii, R. et al. Molecular basis of ETV6-mediated predisposition to childhood acute lymphoblastic leukemia. Blood https://doi.org/10.1182/blood.2020006164 (2020).

    Article  PubMed  Google Scholar 

  218. 218.

    Poggi, M. et al. Germline variants in ETV6 underlie reduced platelet formation, platelet dysfunction and increased levels of circulating CD34+ progenitors. Haematologica 102, 282–294 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. 219.

    Karastaneva, A. et al. Novel phenotypes observed in patients with ETV6-linked leukaemia/familial thrombocytopenia syndrome and a biallelic ARID5B risk allele as leukaemogenic cofactor. J. Med. Genet. 57, 427–433 (2020).

    PubMed  Google Scholar 

  220. 220.

    Bersenev, A., Wu, C., Balcerek, J. & Tong, W. Lnk controls mouse hematopoietic stem cell self-renewal and quiescence through direct interactions with JAK2. J. Clin. Invest. 118, 2832–2844 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. 221.

    Roberts, K. G. et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N. Engl. J. Med. 371, 1005–1015 (2014).

    PubMed  PubMed Central  Google Scholar 

  222. 222.

    Roberts, K. G. et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell 22, 153–166 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. 223.

    Perez-Garcia, A. et al. Genetic loss of SH2B3 in acute lymphoblastic leukemia. Blood 122, 2425–2432 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. 224.

    Lin, M. et al. JAK2 p.G571S in B-cell precursor acute lymphoblastic leukemia: a synergizing germline susceptibility. Leukemia 33, 2331–2335 (2019).

    PubMed  PubMed Central  Google Scholar 

  225. 225.

    Waanders, E. et al. Germline activating TYK2 mutations in pediatric patients with two primary acute lymphoblastic leukemia occurrences. Leukemia 31, 821–828 (2017).

    CAS  PubMed  Google Scholar 

  226. 226.

    Sanda, T. et al. TYK2–STAT1–BCL2 pathway dependence in T-cell acute lymphoblastic leukemia. Cancer Discov. 3, 564–577 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. 227.

    Mullighan, C. G. et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 471, 235–239 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. 228.

    Pasqualucci, L. et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 471, 189–195 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. 229.

    de Smith, A. J. et al. Predisposing germline mutations in high hyperdiploid acute lymphoblastic leukemia in children. Genes Chromosomes Cancer 58, 723–730 (2019).

    PubMed  Google Scholar 

  230. 230.

    Winer, P. et al. Germline variants in predisposition genes in children with Down syndrome and acute lymphoblastic leukemia. Blood Adv. 4, 672–675 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. 231.

    Pouliot, G. P. et al. Fanconi–BRCA pathway mutations in childhood T-cell acute lymphoblastic leukemia. PLoS ONE 14, e0221288 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. 232.

    Wilson, C. L. et al. Estimated number of adult survivors of childhood cancer in United States with cancer-predisposing germline variants. Pediatr. Blood Cancer 67, e28047 (2020).

    PubMed  Google Scholar 

  233. 233.

    Oberg, J. A. et al. Implementation of next generation sequencing into pediatric hematology–oncology practice: moving beyond actionable alterations. Genome Med. 8, 133 (2016).

    PubMed  PubMed Central  Google Scholar 

  234. 234.

    Sud, A. et al. Analysis of 153 115 patients with hematological malignancies refines the spectrum of familial risk. Blood 134, 960–969 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. 235.

    Diets, I. J. et al. High yield of pathogenic germline mutations causative or likely causative of the cancer phenotype in selected children with cancer. Clin. Cancer Res. 24, 1594–1603 (2018).

    CAS  PubMed  Google Scholar 

  236. 236.

    Pastor, S. et al. Optical mapping of the 22q11.2DS region reveals complex repeat structures and preferred locations for non-allelic homologous recombination (NAHR). Sci. Rep. 10, 12235 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. 237.

    Jenko Bizjan, B. et al. Challenges in identifying large germline structural variants for clinical use by long read sequencing. Comput. Struct. Biotechnol. J. 18, 83–92 (2020).

    CAS  PubMed  Google Scholar 

  238. 238.

    Ritter, D. I. et al. A case for expert curation: an overview of cancer curation in the Clinical Genome Resource (ClinGen). Cold Spring Harb. Mol. Case Stud. 5, a004739 (2019).

    PubMed  PubMed Central  Google Scholar 

  239. 239.

    Luo, X. et al. ClinGen myeloid malignancy variant curation expert panel recommendations for germline RUNX1 variants. Blood Adv. 3, 2962–2979 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. 240.

    Mullighan, C. G. The ASH Agenda for Hematology Research: a roadmap for advancing scientific discovery and cures for hematologic diseases. Blood Adv. 2, 2430–2432 (2018).

    PubMed  PubMed Central  Google Scholar 

  241. 241.

    Rehm, H. L. et al. ClinGen — the Clinical Genome Resource. N. Engl. J. Med. 372, 2235–2242 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. 242.

    Findlay, G. M. et al. Accurate classification of BRCA1 variants with saturation genome editing. Nature 562, 217–222 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. 243.

    Boettcher, S. et al. A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies. Science 365, 599–604 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. 244.

    Wu, D. et al. How I curate: applying American Society of Hematology–Clinical Genome Resource Myeloid Malignancy Variant Curation Expert Panel rules for RUNX1 variant curation for germline predisposition to myeloid malignancies. Haematologica 105, 870–887 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. 245.

    Hahn, C. N. et al. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat. Genet. 43, 1012–1017 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. 246.

    Hirabayashi, S., Wlodarski, M. W., Kozyra, E. & Niemeyer, C. M. Heterogeneity of GATA2-related myeloid neoplasms. Int. J. Hematol. 106, 175–182 (2017).

    CAS  PubMed  Google Scholar 

  247. 247.

    Dokal, I. Dyskeratosis congenita in all its forms. Br. J. Haematol. 110, 768–779 (2000).

    CAS  PubMed  Google Scholar 

  248. 248.

    Savage, S. A. & Dufour, C. Classical inherited bone marrow failure syndromes with high risk for myelodysplastic syndrome and acute myelogenous leukemia. Semin. Hematol. 54, 105–114 (2017).

    PubMed  Google Scholar 

  249. 249.

    Alter, B. P. et al. Malignancies and survival patterns in the National Cancer Institute inherited bone marrow failure syndromes cohort study. Br. J. Haematol. 150, 179–188 (2010).

    PubMed  PubMed Central  Google Scholar 

  250. 250.

    Rusch, M. et al. Clinical cancer genomic profiling by three-platform sequencing of whole genome, whole exome and transcriptome. Nat. Commun. 9, 3962 (2018).

    PubMed  PubMed Central  Google Scholar 

  251. 251.

    Howard Sharp, K. M. et al. Factors associated with declining to participate in a pediatric oncology next generation sequencing study. JCO Precis. Oncol. 4, 202–211 (2020).

    PubMed  PubMed Central  Google Scholar 

  252. 252.

    Berger, G. et al. Re-emergence of acute myeloid leukemia in donor cells following allogeneic transplantation in a family with a germline DDX41 mutation. Leukemia 31, 520–522 (2017).

    CAS  PubMed  Google Scholar 

  253. 253.

    Kobayashi, S. et al. Donor cell leukemia arising from preleukemic clones with a novel germline DDX41 mutation after allogenic hematopoietic stem cell transplantation. Leukemia 31, 1020–1022 (2017).

    CAS  PubMed  Google Scholar 

  254. 254.

    Galera, P. et al. Donor-derived MDS/AML in families with germline GATA2 mutation. Blood 132, 1994–1998 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank I. Iacobucci for assistance with figure preparation. The authors are supported by the American Lebanese Syrian Associated Charities of St. Jude Children’s Research Hospital, the St. Jude Comprehensive Cancer Center (Core Grant CA021765), the National Heart, Lung, and Blood Institute (NHLBI) (R01 HL144653 to J.M.K.), the Edward P. Evans Foundation (to J.M.K.), the National Cancer Institute (NCI) (R35 CA197695 to C.G.M.), the Henry Schueler 19 Foundation (to C.G.M.) and a St. Baldrick’s Foundation Robert J. Arceci Innovation Award (to C.G.M.).

Author information

Affiliations

Authors

Contributions

Both authors researched data for the article, substantially contributed to discussion of content and wrote the article.

Corresponding authors

Correspondence to Jeffery M. Klco or Charles G. Mullighan.

Ethics declarations

Competing interests

C.G.M. has received research funding from Loxo Oncology, Pfizer and AbbVie; has received speaking and travel fees from Amgen; holds stock in Amgen; and has been compensated for advisory board participation for Illumina. J.M.K. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinVar: https://www.ncbi.nlm.nih.gov/clinvar/

Online Mendelian Inheritance in Man (OMIM): https://www.omim.org/

RefSeq: https://www.ncbi.nlm.nih.gov/refseq/

St Jude Cloud Visualization Community: https://viz.stjude.cloud/stjude/visualization/pax5-driven-subtypes-of-b-progenitor-acute-lymphoblastic-leukemia-genomepaint

Glossary

Clonal haematopoiesis

The expansion of a clonal population of haematopoietic cells marked by somatic mutations.

Cytopenic phase

A period marked by a decrease in peripheral blood cell counts (anaemia, red blood cells; thrombocytopenia, platelets; leukopenia, white blood cells).

Monocytopenia

A decrease in monocytes.

Pulmonary alveolar proteinosis

A lung disease characterized by a build-up of proteins and lipids in the functional units of the lung (alveoli) that is part of MonoMac syndrome, which results from GATA2 germline mutations.

Sensorineural deafness

A form of hearing loss that results from damage to the inner ear or auditory nerve that is part of Emberger syndrome, which results from GATA2 germline mutations.

Thrombocytopenia 2

An autosomal dominant syndrome resulting from germline mutations in ANKRD26 that is characterized by lifelong mild-to-moderate thrombocytopenia and an increase in the risk for myeloid malignancies.

Philadelphia chromosome-like ALL

A group of B lymphoblastic leukaemias that have a global expression profile similar to BCR–ABL1-positive (Ph+) acute lymphoblastic leukaemia (ALL) but have alterations in other kinase signalling and cytokine receptor pathways.

Ataxia telangiectasia

An autosomal recessive condition caused by mutations in the ATM gene. This syndrome is characterized by immunodeficiency, decreased DNA damage repair and neurological abnormalities.

Nijmegen breakage syndrome

An autosomal recessive disorder that leads to chromosomal instability and is clinically characterized by microcephaly, growth retardation, immunodeficiency and predisposition to cancer.

Robertsonian translocation

A non-reciprocal chromosomal translocation in which the long arms of two distinct acrocentric chromosomes become fused and share a single centromere.

Ring chromosome

An abnormal chromosome in which the ends of a single chromosome fuse to form a ring.

Li–Fraumeni syndrome

An autosomal dominant condition caused by an inherited mutation in TP53 that renders humans highly susceptible to numerous cancers, including breast cancer, leukaemia and sarcoma.

BCR–ABL1-positive (Ph+) B-ALL

A class of B cell acute lymphoblastic leukaemia (B-ALL) haematopoietic disorders driven by the BCR–ABL1 fusion oncoprotein.

Optical mapping

An approach to genome assembly in which DNA molecules are fluorescently labelled and imaged to construct maps.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Klco, J.M., Mullighan, C.G. Advances in germline predisposition to acute leukaemias and myeloid neoplasms. Nat Rev Cancer 21, 122–137 (2021). https://doi.org/10.1038/s41568-020-00315-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing