Mutations and mechanisms of WNT pathway tumour suppressors in cancer

A Publisher Correction to this article was published on 04 November 2020

This article has been updated


Mutation-induced activation of WNT–β-catenin signalling is a frequent driver event in human cancer. Sustained WNT–β-catenin pathway activation endows cancer cells with sustained self-renewing growth properties and is associated with therapy resistance. In healthy adult stem cells, WNT pathway activity is carefully controlled by core pathway tumour suppressors as well as negative feedback regulators. Gene inactivation experiments in mouse models unequivocally demonstrated the relevance of WNT tumour suppressor loss-of-function mutations for cancer growth. However, in human cancer, a far more complex picture has emerged in which missense or truncating mutations mediate stable expression of mutant proteins, with distinct functional and phenotypic ramifications. Herein, we review recent advances and challenges in our understanding of how different mutational subsets of WNT tumour suppressor genes link to distinct cancer types, clinical outcomes and treatment strategies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: WNT signalling pathway regulation and mutation routes to WNT-independent or WNT-hypersensitive growth states in cancer.
Fig. 2: Frequencies and types of WNT pathway mutation in human cancer types.
Fig. 3: Correlation of APC truncation position and CID domain loss with tumour phenotype.
Fig. 4: Tumorigenic mechanism of AXIN1 missense mutations.
Fig. 5: RNF43 and ZNRF43 structural organization and tumorigenic mechanisms of RNF43 mutations.

Change history

  • 04 November 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.


  1. 1.

    Nusse, R. & Varmus, H. E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31, 99–109 (1982).

    CAS  Google Scholar 

  2. 2.

    Nusse, R. & Varmus, H. Three decades of Wnts: a personal perspective on how a scientific field developed. EMBO J. 31, 2670–2684 (2012).

    CAS  Google Scholar 

  3. 3.

    Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat. Genet. 19, 379–383 (1998).

    CAS  Google Scholar 

  4. 4.

    Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. & Birchmeier, W. β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105, 533–545 (2001).

    CAS  Google Scholar 

  5. 5.

    Pinto, D., Gregorieff, A., Begthel, H. & Clevers, H. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev. 17, 1709–1713 (2003).

    CAS  Google Scholar 

  6. 6.

    Tan, X., Behari, J., Cieply, B., Michalopoulos, G. K. & Monga, S. P. S. Conditional deletion of β-catenin reveals its role in liver growth and regeneration. Gastroenterology 131, 1561–1572 (2006).

    CAS  Google Scholar 

  7. 7.

    Yang, W. et al. Wnt/β-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res. 68, 4287–4295 (2008).

    CAS  Google Scholar 

  8. 8.

    Morin, P. J. et al. Activation of β-catenin–Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790 (1997).

    CAS  Google Scholar 

  9. 9.

    Zeng, L. et al. The mouse fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90, 181–192 (1997).

    CAS  Google Scholar 

  10. 10.

    Ikeda, S. et al. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J. 17, 1371–1384 (1998).

    CAS  Google Scholar 

  11. 11.

    Behrens, J. et al. Functional interaction of an axin homolog, conductin, with β-catenin, APC, and GSK3β. Science 280, 596–599 (1998).

    CAS  Google Scholar 

  12. 12.

    Lustig, B. et al. Negative feedback loop of Wnt signaling through upregulation of conductin/Axin2 in colorectal and liver tumors. Mol. Cell. Biol. 22, 1184–1193 (2002).

    CAS  Google Scholar 

  13. 13.

    Hao, H. X. et al. ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature 485, 195–202 (2012).

    CAS  Google Scholar 

  14. 14.

    Koo, B. K. et al. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature 488, 665–669 (2012). Together with Hao et al. (2012), this study is the first to uncover negative feedback roles of the WNT target genes RNF43 and ZNRF3. The discovery that both proteins mediate WNT receptor endocytosis and that RNF43 is mutated in cancer has founded the concept that WNT hypersensitivity drives tumour growth. In addition, this study demonstrates that RNF43- and ZNRF3-mutant cancers are sensitive to PORCN inhibitor treatment.

    CAS  Google Scholar 

  15. 15.

    Polakis, P. Wnt signaling in cancer. Cold Spring Harb. Perspect. Biol. 4, 9 (2012).

    Google Scholar 

  16. 16.

    Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature 434, 843–850 (2005).

    CAS  Google Scholar 

  17. 17.

    Zhong, Z. & Virshup, D. M. Wnt signaling and drug resistance in cancer. Mol. Pharmacol. 97, 72–89 (2020).

    CAS  Google Scholar 

  18. 18.

    Martínez-Jiménez, F. et al. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 20, 555–572 (2020).

    Google Scholar 

  19. 19.

    Nusse, R. & Clevers, H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985–999 (2017).

    CAS  Google Scholar 

  20. 20.

    Rubinfeld, B. et al. Association of the APC gene product with β-catenin. Science 262, 1731–1734 (1993).

    CAS  Google Scholar 

  21. 21.

    Munemitsu, S., Albert, I., Souza, B., Rubinfeld, D. & Polakis, P. Regulation of intracellular β-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc. Natl Acad. Sci. USA 92, 3046–3050 (1995).

    CAS  Google Scholar 

  22. 22.

    Rubinfeld, B. et al. Binding of GSK3β to the APC–β-catenin complex and regulation of complex assembly. Science 272, 1023–1026 (1996).

    CAS  Google Scholar 

  23. 23.

    Hart, M. J., De Los Santos, R., Albert, I. N., Rubinfeld, B. & Polakis, P. Downregulation of β-catenin by human Axin and its association with the APC tumor suppressor, β-catenin and GSK3β. Curr. Biol. 8, 573–581 (1998).

    CAS  Google Scholar 

  24. 24.

    Hart, M. et al. The F-box protein β-TrCP associates with phosphorylated β-catenin and regulates its activity in the cell. Curr. Biol. 9, 207–211 (1999).

    CAS  Google Scholar 

  25. 25.

    Amit, S. et al. Axin-mediated CKI phosphorylation of β-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev. 16, 1066–1076 (2002).

    CAS  Google Scholar 

  26. 26.

    Liu, C. et al. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108, 837–847 (2002).

    CAS  Google Scholar 

  27. 27.

    Van Kappel, E. C. & Maurice, M. M. Molecular regulation and pharmacological targeting of the β-catenin destruction complex. Br. J. Pharmacol. 174, 4575–4588 (2017).

    Google Scholar 

  28. 28.

    Tamai, K. et al. LDL-receptor-related proteins in Wnt signal transduction. Nature 407, 530–535 (2000).

    CAS  Google Scholar 

  29. 29.

    Mao, J. et al. Low-density lipoprotein receptor-related protein-5 binds to axin and regulates the canonical Wnt signaling pathway. Mol. Cell 7, 801–809 (2001).

    CAS  Google Scholar 

  30. 30.

    Cliffe, A., Hamada, F. & Bienz, M. A role of Dishevelled in relocating Axin to the plasma membrane during wingless signaling. Curr. Biol. 13, 960–966 (2003).

    CAS  Google Scholar 

  31. 31.

    Tamai, K. et al. A mechanism for Wnt coreceptor activation. Mol. Cell 13, 149–156 (2004).

    CAS  Google Scholar 

  32. 32.

    Zeng, X. et al. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438, 873–877 (2005).

    CAS  Google Scholar 

  33. 33.

    Chen, S. et al. Structural and functional studies of LRP6 ectodomain reveal a platform for Wnt signaling. Dev. Cell 21, 848–861 (2011).

    CAS  Google Scholar 

  34. 34.

    Janda, C. Y., Waghray, D., Levin, A. M., Thomas, C. & Garcia, K. C. Structural basis of Wnt recognition by Frizzled. Science 336, 59–64 (2012).

    Google Scholar 

  35. 35.

    Tauriello, D. V. F. et al. Wnt/β-catenin signaling requires interaction of the Dishevelled DEP domain and C terminus with a discontinuous motif in Frizzled. Proc. Natl Acad. Sci. USA 109, E812–E820 (2012).

    CAS  Google Scholar 

  36. 36.

    Behrens, J. et al. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382, 638–642 (1996).

    CAS  Google Scholar 

  37. 37.

    Molenaar, M. et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996).

    CAS  Google Scholar 

  38. 38.

    Jho, E.-h et al. Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell Biol. 22, 1172–1183 (2002).

    CAS  Google Scholar 

  39. 39.

    Spit, M. et al. RNF43 truncations trap CK1 to drive niche‐independent self‐renewal in cancer. EMBO J. 39, e103932 (2020). This study uncovers a class of RNF43 truncating cancer mutations that drive oncogenic β-catenin-mediated transcription despite exhibiting WNT receptor downregulation. Mechanistically, these RNF43 mutants interfere with β-catenin turnover by selectively trapping AXIN1 and CK1 at the plasma membrane. Contrary to RNF43 LOF mutations, these RNF43 mutations confer resistance to PORCN inhibitor treatment. This work illustrates the relevance of studying patient-derived mutations for understanding disease mechanisms and applications of precision medicine.

    CAS  Google Scholar 

  40. 40.

    Zebisch, M. et al. Structural and molecular basis of ZNRF3/RNF43 transmembrane ubiquitin ligase inhibition by the Wnt agonist R-spondin. Nat. Commun. 4, 2787 (2013).

    Google Scholar 

  41. 41.

    Chen, P. et al. The structural basis of R-spondin recognition by LGR5 and RNF43. Genes Dev. 27, 1345–1350 (2013).

    CAS  Google Scholar 

  42. 42.

    Szenker-Ravi, E. et al. RSPO2 inhibition of RNF43 and ZNRF3 governs limb development independently of LGR4/5/6. Nature 557, 564–569 (2018).

    CAS  Google Scholar 

  43. 43.

    Lebensohn, A. M. & Rohatgi, R. R-spondins can potentiate WNT signaling without LGRs. eLife 7, e33126 (2018).

    Google Scholar 

  44. 44.

    Park, S. et al. Differential activities and mechanisms of the four R-spondins in potentiating Wnt/β-catenin signaling. J. Biol. Chem. 293, 9759–9769 (2018).

    CAS  Google Scholar 

  45. 45.

    Dubey, R. et al. R-Spondins engage heparan sulfate proteoglycans to potentiate Wnt signaling. eLife 9, 1–25 (2020).

    Google Scholar 

  46. 46.

    Kinzler, K. W. et al. Identification of FAP locus genes from chromosome 5q21. Science 253, 661–665 (1991).

    CAS  Google Scholar 

  47. 47.

    Liu, W. et al. Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating β-catenin/TCF signalling. Nat. Genet. 26, 146–147 (2000).

    CAS  Google Scholar 

  48. 48.

    Satoh, S. et al. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat. Genet. 24, 245–250 (2000).

    CAS  Google Scholar 

  49. 49.

    Nanki, K. et al. Divergent routes toward Wnt and R-spondin niche independency during human gastric carcinogenesis. Cell 174, 856–869.e17 (2018). This study reveals that combined CDH1 and TP53 mutations in gastric cancer generate a state of RSPO-independent tumour growth. These tumours are sensitive to PORCN inhibitor treatment in vivo, indicating the existence of alternative mutational routes that lead to WNT-dependent growth states.

    CAS  Google Scholar 

  50. 50.

    Seshagiri, S. et al. Recurrent R-spondin fusions in colon cancer. Nature 488, 660–664 (2012).

    CAS  Google Scholar 

  51. 51.

    Han, T. et al. R-Spondin chromosome rearrangements drive Wnt-dependent tumour initiation and maintenance in the intestine. Nat. Commun. 8, 1–12 (2017).

    Google Scholar 

  52. 52.

    Giannakis, M. et al. RNF43 is frequently mutated in colorectal and endometrial cancers. Nat. Genet. 46, 1264–1266 (2014).

    CAS  Google Scholar 

  53. 53.

    Yang, L.-H. et al. Abnormal hypermethylation and clinicopathological significance of Axin gene in lung cancer. Tumor Biol. 34, 749–757 (2013).

    CAS  Google Scholar 

  54. 54.

    Lannagan, T. R. M. et al. Genetic editing of colonic organoids provides a molecularly distinct and orthotopic preclinical model of serrated carcinogenesis. Gut 68, 684–692 (2019).

    CAS  Google Scholar 

  55. 55.

    Nishisho, I. et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253, 665–669 (1991).

    CAS  Google Scholar 

  56. 56.

    Groden, J. et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66, 589–600 (1991).

    CAS  Google Scholar 

  57. 57.

    Joslyn, G. et al. Identification of deletion mutations and three new genes at the familial polyposis locus. Cell 66, 601–613 (1991).

    CAS  Google Scholar 

  58. 58.

    Rowan, A. J. et al. APC mutations in sporadic colorectal tumors: a mutational ‘hotspot’ and interdependence of the ‘two hits’. Proc. Natl Acad. Sci. USA 97, 3352–3357 (2000).

    CAS  Google Scholar 

  59. 59.

    Segditsas, S. & Tomlinson, I. Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 25, 7531–7537 (2006).

    CAS  Google Scholar 

  60. 60.

    Fearon, E. F. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1989).

    Google Scholar 

  61. 61.

    Nicholson, A. M. et al. Fixation and spread of somatic mutations in adult human colonic epithelium. Cell Stem Cell 22, 909–918.e8 (2018).

    CAS  Google Scholar 

  62. 62.

    Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    CAS  Google Scholar 

  63. 63.

    Polakis, P., Porfiri, E., Albert, I., Robbins, P. & Rubinfeld, B. The adenomatous polyposis coli (APC) tumor suppressor, catenins and cancer. FASEB J. 12, A1302 (1998).

    Google Scholar 

  64. 64.

    Muzny, D. M. et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

    CAS  Google Scholar 

  65. 65.

    Yaeger, R. et al. Clinical sequencing defines the genomic landscape of metastatic colorectal cancer. Cancer Cell 33, 125–136.e3 (2018).

    CAS  Google Scholar 

  66. 66.

    Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015). This study classifies CRCs into four CMSs based on gene expression data.

    CAS  Google Scholar 

  67. 67.

    Yan, H. H. N. et al. RNF43 germline and somatic mutation in serrated neoplasia pathway and its association with BRAF mutation. Gut 66, 1645–1656 (2017).

    CAS  Google Scholar 

  68. 68.

    Dienstmann, R. et al. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat. Rev. Cancer 17, 79–92 (2017).

    CAS  Google Scholar 

  69. 69.

    Bond, C. E. et al. RNF43 and ZNRF3 are commonly altered in serrated pathway colorectal tumorigenesis. Oncotarget 7, 70589–70600 (2016).

    Google Scholar 

  70. 70.

    Sekine, S. et al. Frequent PTPRK–RSPO3 fusions and RNF43 mutations in colorectal traditional serrated adenoma. J. Pathol. 239, 133–138 (2016).

    CAS  Google Scholar 

  71. 71.

    McCarthy, A. J., Serra, S. & Chetty, R. Traditional serrated adenoma: an overview of pathology and emphasis on molecular pathogenesis. BMJ Open Gastroenterol. 6, e000317 (2019).

    Google Scholar 

  72. 72.

    Panarelli, N. C., Vaughn, C. P., Samowitz, W. S. & Yantiss, R. K. Sporadic microsatellite instability-high colon cancers rarely display immunohistochemical evidence of Wnt signaling activation. Am. J. Surg. Pathol. 39, 313–317 (2015).

    Google Scholar 

  73. 73.

    Li, Y. et al. Frequent RNF43 mutation contributes to moderate activation of Wnt signaling in colorectal signet-ring cell carcinoma. Protein Cell 11, 292–298 (2020).

    CAS  Google Scholar 

  74. 74.

    Lai, C. et al. RNF43 frameshift mutations contribute to tumourigenesis in right-sided colon cancer. Pathol. Res. Pract. 215, 152453 (2019).

    CAS  Google Scholar 

  75. 75.

    Salem, M. E. et al. Molecular analyses of left‐ and right‐sided tumors in adolescents and young adults with colorectal cancer. Oncologist 25, 404–413 (2020).

    CAS  Google Scholar 

  76. 76.

    Christie, M. et al. Different APC genotypes in proximal and distal sporadic colorectal cancers suggest distinct WNT/β-catenin signalling thresholds for tumourigenesis. Oncogene 32, 4675–4682 (2013).

    CAS  Google Scholar 

  77. 77.

    Leedham, S. J. et al. A basal gradient of Wnt and stem-cell number influences regional tumour distribution in human and mouse intestinal tracts. Gut 62, 83–93 (2013).

    CAS  Google Scholar 

  78. 78.

    Iacopetta, B. Are there two sides to colorectal cancer? Int. J. Cancer 101, 403–408 (2002).

    CAS  Google Scholar 

  79. 79.

    LaPointe, L. C. et al. Map of differential transcript expression in the normal human large intestine. Physiol. Genomics 33, 50–64 (2008).

    CAS  Google Scholar 

  80. 80.

    Franko, J. et al. Prognosis of patients with peritoneal metastatic colorectal cancer given systemic therapy: an analysis of individual patient data from prospective randomised trials from the Analysis and Research in Cancers of the Digestive System (ARCAD) database. Lancet Oncol. 17, 1709–1719 (2016).

    Google Scholar 

  81. 81.

    Hugen, N. & Nagtegaal, I. D. Distinct metastatic patterns in colorectal cancer patients based on primary tumour location. Eur. J. Cancer 75, 3–4 (2017).

    Google Scholar 

  82. 82.

    Forner, A., Reig, M. & Bruix, J. Hepatocellular carcinoma. Lancet 391, 1301–1314 (2018).

    Google Scholar 

  83. 83.

    Boyault, S. et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 45, 42–52 (2007).

    CAS  Google Scholar 

  84. 84.

    Zucman-Rossi, J. et al. Differential effects of inactivated Axin1 and activated β-catenin mutations in human hepatocellular carcinomas. Oncogene 26, 774–780 (2007).

    CAS  Google Scholar 

  85. 85.

    Zhang, S. et al. The polyploid state plays a tumor-suppressive role in the liver. Dev. Cell 44, 447–459.e5 (2018).

    CAS  Google Scholar 

  86. 86.

    Park, J. Y. et al. Mutations of β-catenin and AXIN I genes are a late event in human hepatocellular carcinogenesis. Liver Int. 25, 70–76 (2005).

    CAS  Google Scholar 

  87. 87.

    Zhu, M. et al. Somatic mutations increase hepatic clonal fitness and regeneration in chronic liver disease. Cell 177, 608–621.e12 (2019).

    CAS  Google Scholar 

  88. 88.

    Marquardt, J. U. et al. Sequential transcriptome analysis of human liver cancer indicates late stage acquisition of malignant traits. J. Hepatol. 60, 346–353 (2014).

    CAS  Google Scholar 

  89. 89.

    Rebouissou, S. & Nault, J. C. Advances in molecular classification and precision oncology in hepatocellular carcinoma. J. Hepatol. 72, 215–229 (2020). This review describes the molecular subtypes of HCC and their link to clinical prognosis. Based on transcriptional profiles and clinical presentation, AXIN1-mutant and CTNNB1-mutant cases are shown to belong to distinct HCC subclasses, emphasizing differences in the underlying pathogenic mechanisms.

    CAS  Google Scholar 

  90. 90.

    Abitbol, S. et al. AXIN deficiency in human and mouse hepatocytes induces hepatocellular carcinoma in the absence of β-catenin activation. J. Hepatol. 68, 1203–1213 (2018). This study reveals that AXIN1 mutations in HCC do not induce a conventional β-catenin-mediated transcriptional signature but instead are linked with the activation of Notch and YAP signalling pathways.

    CAS  Google Scholar 

  91. 91.

    Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  Google Scholar 

  92. 92.

    Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  Google Scholar 

  93. 93.

    Lamlum, H. et al. The type of somatic mutation at APC in familial adenomatous polyposis is determined by the site of the germline mutation: a new facet to Knudson’s ‘two-hit’ hypothesis. Nat. Med. 5, 1071–1075 (1999).

    CAS  Google Scholar 

  94. 94.

    Albuquerque, C. The ‘just-right’ signaling model: APC somatic mutations are selected based on a specific level of activation of the β-catenin signaling cascade. Hum. Mol. Genet. 11, 1549–1560 (2002). This study puts forward the ‘just-right’ signalling model, in which biallelic APC mutations are selected to retain some β-catenin downregulating activity to achieve a specific degree of β-catenin signalling that is optimal for tumour formation within the colon.

    CAS  Google Scholar 

  95. 95.

    Kohler, E. M., Chandra, S. H. V., Behrens, J. & Schneikert, J. β-Catenin degradation mediated by the CID domain of APC provides a model for the selection of APC mutations in colorectal, desmoid and duodenal tumours. Hum. Mol. Genet. 18, 213–226 (2009).

    CAS  Google Scholar 

  96. 96.

    Gaspar, C. & Fodde, R. APC dosage effects in tumorigenesis and stem cell differentiation. Int. J. Dev. Biol. 48, 377–386 (2004).

    CAS  Google Scholar 

  97. 97.

    Roberts, D. M. et al. Deconstructing the β-catenin destruction complex: mechanistic roles for the tumor suppressor APC in regulating Wnt signaling. Mol. Biol. Cell 22, 1845–1863 (2011). This study discovers that the APC 20R2 region and CID are essential for a late step in destruction complex-mediated β-catenin turnover.

    CAS  Google Scholar 

  98. 98.

    Novellasdemunt, L. et al. USP7 is a tumor-specific WNT activator for APC-mutated colorectal cancer by mediating β-catenin deubiquitination. Cell Rep. 21, 612–627 (2017). This study employs CRISPR–Cas9-mediated gene editing to systematically investigate the consequences of incremental APC truncations in mouse intestinal organoids. The results reveal that loss of the CID in APC is essential for driving WNT-independent activation of β-catenin.

    CAS  Google Scholar 

  99. 99.

    Miyoshi, Y. et al. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum. Mol. Genet. 1, 229–233 (1992).

    CAS  Google Scholar 

  100. 100.

    Schatoff, E. M. et al. Distinct colorectal cancer-associated APC mutations dictate response to tankyrase inhibition. Cancer Discov. 9, 1358–1371 (2019).

    CAS  Google Scholar 

  101. 101.

    Moser, A. R., Pitot, H. C. & Dove, W. F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247, 322–324 (1990).

    CAS  Google Scholar 

  102. 102.

    Moser, A. R. et al. ApcMin, a mutation in the murine APC gene, predisposes to mammary carcinomas and focal alveolar hyperplasias. Proc. Natl Acad. Sci. USA 90, 8977–8981 (1993).

    CAS  Google Scholar 

  103. 103.

    Pollard, P. et al. The Apc1322T mouse develops severe polyposis associated with submaximal nuclear β-catenin expression. Gastroenterology 136, 2204–2213.e13 (2009).

    CAS  Google Scholar 

  104. 104.

    Lewis, A. et al. Severe polyposis in Apc1322T mice is associated with submaximal Wnt signalling and increased expression of the stem cell marker Lgr5. Gut 59, 1680–1686 (2010).

    CAS  Google Scholar 

  105. 105.

    Fodde, R. et al. A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors. Proc. Natl Acad. Sci. USA 91, 8969–8973 (1994).

    CAS  Google Scholar 

  106. 106.

    Gaspar, C. et al. A targeted constitutive mutation in the Apc tumor suppressor gene underlies mammary but not intestinal tumorigenesis. PLoS Genet. 5, e1000547 (2009). This study describes a mouse model in which APC truncations distal to the CID (position 1572T) underlie mammary, but not intestinal, tumorigenesis. Furthermore, these hypomorphic APC mutants drive lower levels of WNT signalling than shorter APC forms, supporting the hypothesis that specific dosages of WNT signalling initiate tumorigenesis in a tissue-specific manner.

    Google Scholar 

  107. 107.

    Smits, R. et al. Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. Genes Dev. 13, 1309–1321 (1999).

    CAS  Google Scholar 

  108. 108.

    Li, V. S. W. et al. Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell 149, 1245–1256 (2012).

    CAS  Google Scholar 

  109. 109.

    Voloshanenko, O. et al. Wnt secretion is required to maintain high levels of Wnt activity in colon cancer cells. Nat. Commun. 4, 1–13 (2013).

    Google Scholar 

  110. 110.

    Pronobis, M. I., Rusan, N. M. & Peifer, M. A novel GSK3-regulated APC:Axin interaction regulates Wnt signaling by driving a catalytic cycle of efficient β-catenin destruction. eLife 4, 1–31 (2015).

    Google Scholar 

  111. 111.

    Choi, S. H., Estarás, C., Moresco, J. J., Yates, J. R. & Jones, K. A. α-Catenin interacts with APC to regulate β-catenin proteolysis and transcriptional repression of Wnt target genes. Genes Dev. 27, 2473–2488 (2013).

    CAS  Google Scholar 

  112. 112.

    Su, Y. Y. et al. APC is essential for targeting phosphorylated β-catenin to the SCFβ-TrCP ubiquitin ligase. Mol. Cell 32, 652–661 (2008).

    CAS  Google Scholar 

  113. 113.

    Toki, H. et al. Novel mouse model for gardner syndrome generated by a large-scale N-ethyl-N-nitrosourea mutagenesis program. Cancer Sci. 104, 937–944 (2013).

    CAS  Google Scholar 

  114. 114.

    Cai, J., Maitra, A., Anders, R. A., Taketo, M. M. & Pan, D. β-Catenin destruction complex-independent regulation of Hippo–YAP signaling by APC in intestinal tumorigenesis. Genes Dev. 29, 1493–1506 (2015).

    CAS  Google Scholar 

  115. 115.

    Kaplan, K. B. et al. A role for the adenomatous polyposis coli protein in chromosome segregation. Nat. Cell Biol. 3, 429–432 (2001).

    CAS  Google Scholar 

  116. 116.

    Nakagawa, H. et al. Identification of a brain-specific APC homologue, APCL, and its interaction with β-catenin. Cancer Res. 58, 5176–5181 (1998).

    CAS  Google Scholar 

  117. 117.

    Van, Es, J. H. et al. Identification of APC2, a homologue of the adenomatous polyposis coli tumour suppressor. Curr. Biol. 9, 105–108 (1999).

    Google Scholar 

  118. 118.

    Schneikert, J. et al. Functional comparison of human adenomatous polyposis coli (APC) and APC-like in targeting β-catenin for degradation. PLoS ONE 8, e68072 (2013).

    CAS  Google Scholar 

  119. 119.

    Mokarram, P. et al. Distinct high-profile methylated genes in colorectal cancer. PLoS ONE 4, e7012 (2009).

    Google Scholar 

  120. 120.

    He, Y. et al. Hypermethylation of APC2 is a predictive epigenetic biomarker for Chinese colorectal cancer. Dis. Markers 2018, 8619462 (2018).

    Google Scholar 

  121. 121.

    Daly, C. S. et al. Functional redundancy between Apc and Apc2 regulates tissue homeostasis and prevents tumorigenesis in murine mammary epithelium. Oncogene 36, 1793–1803 (2017).

    CAS  Google Scholar 

  122. 122.

    Hamada, F. et al. Negative regulation of wingless signaling by d-Axin, a Drosophila homolog of Axin. Science 283, 1739–1742 (1999).

    CAS  Google Scholar 

  123. 123.

    Korswagen, H. C. et al. The Axin-like protein PRY-1 is a negative regulator of a canonical Wnt pathway in C. elegans. Genes Dev. 16, 1291–1302 (2002).

    CAS  Google Scholar 

  124. 124.

    Chia, I. V. & Costantini, F. Mouse Axin and Axin2/Conductin proteins are functionally equivalent in vivo. Mol. Cell Biol. 25, 4371–4376 (2005).

    CAS  Google Scholar 

  125. 125.

    Feng, G. J. et al. Conditional disruption of Axin1 leads to development of liver tumors in mice. Gastroenterology 143, 1650–1659 (2012).

    CAS  Google Scholar 

  126. 126.

    Dong, B. et al. Activating CAR and β-catenin induces uncontrolled liver growth and tumorigenesis. Nat. Commun. 6, 5944 (2015).

    CAS  Google Scholar 

  127. 127.

    Ringel, T. et al. Genome-scale CRISPR screening in human intestinal organoids identifies drivers of TGF-β resistance. Cell Stem Cell 26, 431–440.e8 (2020).

    CAS  Google Scholar 

  128. 128.

    Picco, G. et al. Loss of AXIN1 drives acquired resistance to WNT pathway blockade in colorectal cancer cells carrying RSPO3 fusions. EMBO Mol. Med. 9, 293–303 (2017). This study reveals that AXIN1 loss is a mutational route for resistance to PORCN inhibitor treatment.

    CAS  Google Scholar 

  129. 129.

    Shen, J., Yu, Z. & Li, N. The E3 ubiquitin ligase RNF146 promotes colorectal cancer by activating the Wnt/β-catenin pathway via ubiquitination of Axin1. Biochem. Biophys. Res. Commun. 503, 991–997 (2018).

    CAS  Google Scholar 

  130. 130.

    Gao, Y. et al. Overexpression of RNF146 in non-small cell lung cancer enhances proliferation and invasion of tumors through the wnt/β-catenin signaling pathway. PLoS ONE 9, e85377 (2014).

    Google Scholar 

  131. 131.

    Liu, D., Li, L., Yang, Y., Liu, W. & Wu, J. The Axin2 rs2240308 polymorphism and susceptibility to lung cancer in a Chinese population. Tumor Biol. 35, 10987–10991 (2014).

    CAS  Google Scholar 

  132. 132.

    Bahl, C., Sharma, S., Singh, N. & Behera, D. Association study between genetic variations in Axin2 gene and lung cancer risk in North Indian population: a multiple interaction analysis. Tumor Biol. (2017).

  133. 133.

    Marvin, M. L. et al. AXIN2-associated autosomal dominant ectodermal dysplasia and neoplastic syndrome. Am. J. Med. Genet. A 155, 898–902 (2011).

    CAS  Google Scholar 

  134. 134.

    Aristizabal-Pachon, A. F., Carvalho, T. I., Carrara, H. H., Andrade, J. & Takahashi, C. S. AXIN2 polymorphisms, the β-catenin destruction complex expression profile and breast cancer susceptibility. Asian Pac. J. Cancer Prev. 16, 7277–7284 (2015).

    Google Scholar 

  135. 135.

    Lammi, L. et al. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am. J. Hum. Genet. 74, 1043–1050 (2004).

    CAS  Google Scholar 

  136. 136.

    Rivera, B. et al. A novel AXIN2 germline variant associated with attenuated FAP without signs of oligondontia or ectodermal dysplasia. Eur. J. Hum. Genet. 22, 423–426 (2014).

    CAS  Google Scholar 

  137. 137.

    Rosales-Reynoso, M. A. et al. AXIN2 polymorphisms and their association with colorectal cancer in Mexican patients. Genet. Test. Mol. Biomarkers 20, 438–444 (2016).

    CAS  Google Scholar 

  138. 138.

    Mazzoni, S. M., Petty, E. M., Stoffel, E. M. & Fearon, E. R. An AXIN2 mutant allele associated with predisposition to colorectal neoplasia has context-dependent effects on AXIN2 protein function. Neoplasia 17, 463–472 (2015).

    CAS  Google Scholar 

  139. 139.

    Thorvaldsen, T. E., Pedersen, N. M., Wenzel, E. M. & Stenmark, H. Differential roles of AXIN1 and AXIN2 in tankyrase inhibitor-induced formation of degradasomes and β-catenin degradation. PLoS ONE 12, 1–12 (2017).

    Google Scholar 

  140. 140.

    Otero, L. et al. Variations in AXIN2 predict risk and prognosis of colorectal cancer. BDJ Open 5, 13 (2019).

    CAS  Google Scholar 

  141. 141.

    Anvarian, Z. et al. Axin cancer mutants form nanoaggregates to rewire the Wnt signaling network. Nat. Struct. Mol. Biol. 23, 324–332 (2016). This study reveals that missense mutations in the AXIN1 RGS domain drive basal β-catenin-mediated transcription and tumour growth in vivo by a gain-of-function mechanism. By mediating structural destabilization of the RGS domain, these mutations promote the formation of small-scale aggregates that rewire the AXIN1 interactome. Prevention of aggregation rescues AXIN1 tumour suppressor activity, underlining the role of aggregation for cancer-promoting activity.

    CAS  Google Scholar 

  142. 142.

    Schwarz-Romond, T. et al. The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization. Nat. Struct. Mol. Biol. 14, 484–492 (2007).

    CAS  Google Scholar 

  143. 143.

    Schaefer, K. N. et al. Supramolecular assembly of the β-catenin destruction complex and the effect of Wnt signaling on its localization, molecular size, and activity in vivo. PLoS Genet. 14, e1007339 (2018).

    Google Scholar 

  144. 144.

    Eto, T. et al. Impact of loss-of-function mutations at the RNF43 locus on colorectal cancer development and progression. J. Pathol. 245, 445–455 (2018).

    CAS  Google Scholar 

  145. 145.

    Jiang, X. et al. Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. Proc. Natl Acad. Sci. USA 110, 12649–12654 (2013).

    CAS  Google Scholar 

  146. 146.

    Neumeyer, V. et al. Loss of endogenous RNF43 function enhances proliferation and tumour growth of intestinal and gastric cells. Carcinogenesis 40, 551–559 (2018).

    Google Scholar 

  147. 147.

    Basham, K. J. et al. A ZNRF3-dependent Wnt/β-catenin signaling gradient is required for adrenal homeostasis. Genes Dev. 33, 209–220 (2019).

    CAS  Google Scholar 

  148. 148.

    Kleeman, S. O. et al. Exploiting differential Wnt target gene expression to generate a molecular biomarker for colorectal cancer stratification. Gut 69, 1092–1103 (2020).

    CAS  Google Scholar 

  149. 149.

    Tsukiyama, T. et al. Molecular role of RNF43 in canonical and noncanonical Wnt signaling. Mol. Cell Biol. 35, 2007–2023 (2015).

    CAS  Google Scholar 

  150. 150.

    Lindeboom, R. G. H., Supek, F. & Lehner, B. The rules and impact of nonsense-mediated mRNA decay in human cancers. Nat. Genet. 48, 1112–1118 (2016).

    CAS  Google Scholar 

  151. 151.

    Ivanov, I., Lo, K. C., Hawthorn, L., Cowell, J. K. & Ionov, Y. Identifying candidate colon cancer tumor suppressor genes using inhibition of nonsense-mediated mRNA decay in colon cancer cells. Oncogene 26, 2873–2884 (2007).

    CAS  Google Scholar 

  152. 152.

    Wang, K. et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat. Genet. 46, 573–582 (2014).

    CAS  Google Scholar 

  153. 153.

    Tu, J. et al. The most common RNF43 mutant G659Vfs*41 is fully functional in inhibiting Wnt signaling and unlikely to play a role in tumorigenesis. Sci. Rep. 9, 18557 (2019).

    CAS  Google Scholar 

  154. 154.

    Li, S. et al. Commonly observed RNF43 mutations retain functionality in attenuating Wnt/β-catenin signaling and unlikely confer Wnt-dependency onto colorectal cancers. Oncogene 39, 3458–3472 (2020).

    CAS  Google Scholar 

  155. 155.

    Van De Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015).

    Google Scholar 

  156. 156.

    Schwank, G. et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653–658 (2013).

    CAS  Google Scholar 

  157. 157.

    Drost, J. et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521, 43–47 (2015).

    CAS  Google Scholar 

  158. 158.

    Liu, Xling, Ding, J. & Meng, Lhua Oncogene-induced senescence: a double edged sword in cancer. Acta Pharmacol. Sin. 39, 1553–1558 (2018).

    CAS  Google Scholar 

  159. 159.

    Dow, L. E. et al. Apc restoration promotes cellular differentiation and reestablishes crypt homeostasis in colorectal cancer. Cell 161, 1539–1552 (2015). This study reveals that restoration of APC expression in advanced invasive intestinal carcinoma harbouring TP53 and KRAS mutations drives tumour cell differentiation and sustained regression. This work discovers that WNT pathway alterations remain important for tumour maintenance at late stages of cancer development and provides compelling evidence that CRC cells can revert to normal functioning cells by therapeutic targeting of WNT signalling.

    CAS  Google Scholar 

  160. 160.

    Jung, Y.-S. & Park, J.-I. Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond β-catenin and the destruction complex. Exp. Mol. Med. 52, 183–191 (2020).

    CAS  Google Scholar 

  161. 161.

    Huang, S. M. A. et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461, 614–620 (2009).

    CAS  Google Scholar 

  162. 162.

    Mariotti, L. et al. Tankyrase requires SAM domain-dependent polymerization to support Wnt–β-catenin signaling. Mol. Cell 63, 498–513 (2016).

    CAS  Google Scholar 

  163. 163.

    Lau, T. et al. A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth. Cancer Res. 73, 3132–3144 (2013).

    CAS  Google Scholar 

  164. 164.

    Tanaka, N. et al. APC mutations as a potential biomarker for sensitivity to tankyrase inhibitors in colorectal cancer. Mol. Cancer Ther. 16, 752–762 (2017).

    CAS  Google Scholar 

  165. 165.

    Croy, H. E. et al. The poly(ADP-ribose) polymerase enzyme Tankyrase antagonizes activity of the β-catenin destruction complex through ADP-ribosylation of Axin and APC2. J. Biol. Chem. 291, 12747–12760 (2016).

    CAS  Google Scholar 

  166. 166.

    Menon, M. et al. A novel tankyrase inhibitor, MSC2504877, enhances the effects of clinical CDK4/6 inhibitors. Sci. Rep. 9, 1–16 (2019).

    Google Scholar 

  167. 167.

    Kahn, M. Can we safely target the WNT pathway? Nat. Rev. Drug Discov. 13, 513–532 (2014).

    CAS  Google Scholar 

  168. 168.

    An, T. et al. USP7 inhibitor P5091 inhibits Wnt signaling and colorectal tumor growth. Biochem. Pharmacol. 131, 29–39 (2017).

    CAS  Google Scholar 

  169. 169.

    Ma, P. et al. The ubiquitin ligase RNF220 enhances canonical Wnt signaling through USP7-mediated deubiquitination of β-catenin. Mol. Cell Biol. 34, 4355–4366 (2014).

    Google Scholar 

  170. 170.

    Ji, L. et al. USP7 inhibits Wnt/β-catenin signaling through promoting stabilization of Axin. Nat. Commun. 10, 4184 (2019).

    Google Scholar 

  171. 171.

    Cha, P. H. et al. Small-molecule binding of the axin RGS domain promotes β-catenin and Ras degradation. Nat. Chem. Biol. 12, 593–600 (2016).

    CAS  Google Scholar 

  172. 172.

    Lee, S.-K. et al. β-Catenin–RAS interaction serves as a molecular switch for RAS degradation via GSK3β. EMBO Rep. 19, e406060 (2018).

    Google Scholar 

  173. 173.

    Chen, B. et al. Small molecule–mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat. Chem. Biol. 5, 100–107 (2009).

    CAS  Google Scholar 

  174. 174.

    Koo, B. K., Van Es, J. H., Van Den Born, M. & Clevers, H. Porcupine inhibitor suppresses paracrine Wnt-driven growth of Rnf43;Znrf3-mutant neoplasia. Proc. Natl Acad. Sci. USA 112, 7548–7550 (2015).

    CAS  Google Scholar 

  175. 175.

    US National Library of Medicine. (2011).

  176. 176.

    US National Library of Medicine. (2014).

  177. 177.

    US National Library of Medicine. (2015).

  178. 178.

    US National Library of Medicine. (2018).

  179. 179.

    US National Library of Medicine. (2016).

  180. 180.

    US National Library of Medicine. (2018).

  181. 181.

    Janku, F. et al. Abstract C45: phase I study of WNT974, a first-in-class Porcupine inhibitor, in advanced solid tumors. Mol. Cancer Ther. 14, C45–C45 (2015).

    Google Scholar 

  182. 182.

    Ng, M. et al. First-in-human phase 1 study of ETC-159 an oral PORCN inhibitor in patients with advanced solid tumours. J. Clin. Oncol. 35, 2584 (2017).

    Google Scholar 

  183. 183.

    Madan, B. et al. Bone loss from Wnt inhibition mitigated by concurrent alendronate therapy. Bone Res. 6, 17 (2018).

    Google Scholar 

  184. 184.

    Zhong, Z. et al. PORCN inhibition synergizes with PI3K/mTOR inhibition in Wnt-addicted cancers. Oncogene 38, 6662–6677 (2019).

    CAS  Google Scholar 

  185. 185.

    Steinhart, Z. et al. Genome-wide CRISPR screens reveal a Wnt–FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. Nat. Med. 23, 60–68 (2017).

    CAS  Google Scholar 

  186. 186.

    Fenderico, N. et al. Anti-LRP5/6 VHHs promote differentiation of Wnt-hypersensitive intestinal stem cells. Nat. Commun. 10, 365 (2019).

    CAS  Google Scholar 

  187. 187.

    Smith, D. C. et al. First-in-human evaluation of the human monoclonal antibody vantictumab (OMP-18R5; anti-Frizzled) targeting the WNT pathway in a phase I study for patients with advanced solid tumors. J. Clin. Oncol. 31, 2540 (2013).

    Google Scholar 

  188. 188.

    Flanagan, D. J. et al. Frizzled-7 is required for wnt signaling in gastric tumors with and without Apc mutations. Cancer Res. 79, 970–981 (2019).

    CAS  Google Scholar 

  189. 189.

    Noutsou, M. et al. Critical scaffolding regions of the tumor suppressor Axin1 are natively unfolded. J. Mol. Biol. 405, 773–786 (2011).

    CAS  Google Scholar 

  190. 190.

    Minde, D. P., Radli, M., Forneris, F., Maurice, M. M. & Rüdiger, S. G. D. Large extent of disorder in adenomatous polyposis coli offers a strategy to guard Wnt signalling against point mutations. PLoS ONE 8, 1–9 (2013).

    Google Scholar 

  191. 191.

    Merenda, A., Fenderico, N. & Maurice, M. M. Wnt signaling in 3D: recent advances in the applications of intestinal organoids. Trends Cell Biol. 30, 60–73 (2020).

    CAS  Google Scholar 

  192. 192.

    Schell, M. J. et al. A multigene mutation classification of 468 colorectal cancers reveals a prognostic role for APC. Nat. Commun. 7, 11743 (2016).

    CAS  Google Scholar 

  193. 193.

    Hashimoto, T. et al. Acquisition of WNT pathway gene alterations coincides with the transition from precursor polyps to traditional serrated adenomas. Am. J. Surg. Pathol. 43, 132–139 (2019).

    Google Scholar 

  194. 194.

    Taupin, D. et al. A deleterious RNF43 germline mutation in a severely affected serrated polyposis kindred. Hum. Genome Var. 2, 15013 (2015).

    CAS  Google Scholar 

  195. 195.

    Quintana, I. et al. Evidence suggests that germline RNF43 mutations are a rare cause of serrated polyposis. Gut 67, 2230–2232 (2018).

    CAS  Google Scholar 

  196. 196.

    Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Google Scholar 

  197. 197.

    Weinstein, J. N. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

    Google Scholar 

  198. 198.

    Jiang, X., Charlat, O., Zamponi, R., Yang, Y. & Cong, F. Dishevelled promotes Wnt receptor degradation through recruitment of ZNRF3/RNF43 E3 ubiquitin ligases. Mol. Cell 58, 522–533 (2015).

    CAS  Google Scholar 

  199. 199.

    Kishida, S. et al. Axin, a negative regulator of the Wnt signaling pathway, directly interacts with adenomatous polyposis coli and regulates the stabilization of β-catenin. J. Biol. Chem. 273, 10823–10826 (1998).

    CAS  Google Scholar 

  200. 200.

    Spink, K. E., Fridman, S. G. & Weis, W. I. Molecular mechanisms of β-catenin recognition by adenomatous polyposis coli revealed by the structure of an APC–β-catenin complex. EMBO J. 20, 6203–6212 (2001).

    CAS  Google Scholar 

  201. 201.

    Nakamura, T. et al. Axin, an inhibitor of the Wnt signalling pathway, interacts with β-catenin, GSK-3β and APC and reduces the β-catenin level. Genes Cells 3, 395–403 (1998).

    CAS  Google Scholar 

  202. 202.

    Schwarz-Romond, T., Metcalfe, C. & Bienz, M. Dynamic recruitment of axin by Dishevelled protein assemblies. J. Cell Sci. 120, 2402–2412 (2007).

    CAS  Google Scholar 

  203. 203.

    Faux, M. C. et al. Recruitment of adenomatous polyposis coli and β-catenin to axin-puncta. Oncogene 27, 5808–5820 (2008).

    CAS  Google Scholar 

  204. 204.

    Ha, N. C., Tonozuka, T., Stamos, J. L., Choi, H. J. & Weis, W. I. Mechanism of phosphorylation-dependent binding of APC to β-catenin and its role in β-catenin degradation. Mol. Cell 15, 511–521 (2004).

    CAS  Google Scholar 

  205. 205.

    Spink, K. E., Polakis, P. & Weis, W. I. Structural basis of the Axin–adenomatous polyposis coli interaction. EMBO J. 19, 2270–2279 (2000).

    CAS  Google Scholar 

  206. 206.

    Joslyn, G., Richardson, D. S., White, R. & Alber, T. Dimer formation by an N-terminal coiled coil in the APC protein. Proc. Natl Acad. Sci. USA 90, 11109–11113 (1993).

    CAS  Google Scholar 

  207. 207.

    Li, Z., Kroboth, K., Newton, I. P. & Näthke, I. S. Novel self-association of the APC molecule affects APC clusters and cell migration. J. Cell Sci. 121, 1916–1925 (2008).

    CAS  Google Scholar 

  208. 208.

    Schaefer, K. N. & Peifer, M. Wnt/β-catenin signaling regulation and a role for biomolecular condensates. Dev. Cell 48, 429–444 (2019).

    CAS  Google Scholar 

Download references


The authors thank members of the Maurice laboratory for helpful discussions and suggestions, specifically I. Jordens and A. Venhuizen for critically reading the manuscript and A. Cristobal Gonzales de Durana for providing AXIN1 immunofluorescence images. This work is part of the Oncode Institute, which is partly financed by the Dutch Cancer Society. This work was supported by European Research Council Starting Grant 242958, the Netherlands Organization for Scientific Research NWO VICI Grant 91815604 and ZonMW TOP Grant 91218050 (to M.M.M.).

Author information




J.M.B., N.F. and M.M.M all researched data for the article, provided substantial contributions to discussions of the content and contributed equally to writing the article and to the review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Madelon M. Maurice.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cancer thanks B. O. Williams, M. Waterman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links



Stem cell

An undifferentiated cell that divides indefinitely to renew itself and produce progenitors that differentiate into specialized cell types to replenish lost cells in the tissue during homeostasis and repair.

Missense mutations

Single base pair substitutions in the genome that result in a change in the codon, leading to the encoded protein bearing a single amino acid substitution.

Nonsense mutations

Single base pair substitutions in the genome that result in an early stop codon, leading to a prematurely truncated protein variant or nonsense-mediated mRNA decay.

Frameshift mutations

Mutations by which one or multiple base pairs are inserted in or deleted from the genome resulting in a change of the reading frame of the gene, leading to a truncated protein variant with an incorrect amino acid sequence downstream of the frameshift or nonsense-mediated mRNA decay.

Passenger mutations

Mutations that do not endow a competitive advantage but coincide with a driver mutation. Typical cancer genomes comprise 102–106 passenger mutations.

Driver mutations

Mutations that endow tumour cells with a growth or survival advantage over cells without this mutation. On average, cancer genomes comprise four or five driver mutations.

Loss-of-function (LOF) mutations

Genomic mutations resulting in an (partially) inactive gene product. They often involve loss of heterozygosity.

Promoter hypermethylation

A common mechanism of gene silencing, mediated by methylation of CpG islands in the promoter region. This mechanism is frequently misused by cancer cells to turn off the expression of (tumour suppressor) genes.

Familial adenomatous polyposis

(FAP). An autosomal dominant inherited condition that involves extensive polyp formation in the colon and a high risk of colorectal cancer, caused by a heterozygous germline mutation in adenomatous polyposis coli (APC). A second-hit mutation or loss of heterozygosity precedes malignant polyposis.

Chromosomal instability

(CIN). Genomic instability that involves frequent mis-segregation of chromosomes during cell division, resulting in gain or loss of entire chromosomes or sections of them.

Microsatellite instability

(MSI). A state of hypermutation due to impaired mismatch repair of the genome. Most common in colorectal, gastric and endometrial cancer.

Mismatch repair

(MMR). A DNA repair pathway that repairs DNA replication errors, such as base–base mismatches or erroneous insertions or deletions.

Sessile serrated adenoma

(SSA). Pre-malignant flat (or sessile) polyps predominantly observed on the right side of the colon. These polyps comprise the main precursor lesion of serrated carcinogenesis.

Left-sided CRC

(Left-sided colorectal cancer). Tumours originating distal to the splenic flexure (descending colon, sigmoid colon and rectum). Typically associated with higher levels of WNT signalling.

Right-sided CRC

(Right-sided colorectal cancer). Tumours originating proximal to the splenic flexure (caecum, ascending colon and transverse colon). Typically associated with lower levels of WNT signalling.

Loss of heterozygosity

(LOH). A frequent event in cancer, involving loss of one allele of a gene in the tumour genome, after which a single allele of the (mutated) gene remains.


A condition in which a cell contains more than two complete sets of chromosomes.


A mutation resulting in partial loss of function of a gene, reducing but not abolishing protein function.

Nonsense-mediated mRNA decay

(NMD). A molecular mechanism of mRNA surveillance that recognizes and eliminates mRNAs harbouring premature termination codons, thus contributing to the protection of eukaryote cells from putative toxic proteins.


Distortion of the sense of taste.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bugter, J.M., Fenderico, N. & Maurice, M.M. Mutations and mechanisms of WNT pathway tumour suppressors in cancer. Nat Rev Cancer (2020).

Download citation


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing