Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cancer progression and the invisible phase of metastatic colonization

Abstract

Metastatic dissemination occurs very early in the malignant progression of a cancer but the clinical manifestation of metastases often takes years. In recent decades, 5-year survival of patients with many solid cancers has increased due to earlier detection, local disease control and adjuvant therapies. As a consequence, we are confronted with an increase in late relapses as more antiproliferative cancer therapies prolong disease courses, raising questions about how cancer cells survive, evolve or stop growing and finally expand during periods of clinical latency. I argue here that the understanding of early metastasis formation, particularly of the currently invisible phase of metastatic colonization, will be essential for the next stage in adjuvant therapy development that reliably prevents metachronous metastasis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Tumour growth kinetics over disease courses.
Fig. 2: Metastatic dissemination and systemic support of colonization.
Fig. 3: Metastatic colony formation during the invisible phase of systemic cancer.
Fig. 4: Effects of adjuvant therapies on metachronous relapses.

References

  1. 1.

    Eyles, J. et al. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J. Clin. Invest. 120, 2030–2039 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    McCreery, M. Q. et al. Evolution of metastasis revealed by mutational landscapes of chemically induced skin cancers. Nat. Med. 21, 1514–1520 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Rhim, A. D. et al. EMT and dissemination precede pancreatic tumor formation. Cell 148, 349–361 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Hosseini, H. et al. Early dissemination seeds metastasis in breast cancer. Nature https://doi.org/10.1038/nature20785 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Husemann, Y. et al. Systemic spread is an early step in breast cancer. Cancer Cell 13, 58–68 (2008).

    PubMed  Google Scholar 

  6. 6.

    Werner-Klein, M. et al. Genetic alterations driving metastatic colony formation are acquired outside of the primary tumour in melanoma. Nat. Commun. 9, 595 (2018).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Rhim, A. D. et al. Detection of circulating pancreas epithelial cells in patients with pancreatic cystic lesions. Gastroenterology 146, 647–651 (2014).

    PubMed  Google Scholar 

  8. 8.

    Miller, K. D. et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin. 69, 363–385 (2019).

    PubMed  Google Scholar 

  9. 9.

    Manola, J., Atkins, M., Ibrahim, J. & Kirkwood, J. Prognostic factors in metastatic melanoma: a pooled analysis of Eastern Cooperative Oncology Group trials. J. Clin. Oncol. 18, 3782–3793 (2000).

    CAS  PubMed  Google Scholar 

  10. 10.

    Balch, C. M. et al. Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J. Clin. Oncol. 19, 3622–3634 (2001).

    CAS  PubMed  Google Scholar 

  11. 11.

    Miller, K. D. et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J. Clin. 66, 271–289 (2016).

    PubMed  Google Scholar 

  12. 12.

    Kolmel, K. F., Kulle, B., Lippold, A. & Seebacher, C. Survival probabilities and hazard functions of malignant melanoma in Germany 1972-1996, an analysis of 10433 patients. Evolution of gender differences and malignancy. Eur. J. Cancer 38, 1388–1394 (2002).

    CAS  PubMed  Google Scholar 

  13. 13.

    Crowley, N. J. & Seigler, H. F. Late recurrence of malignant melanoma. Analysis of 168 patients. Ann. Surg. 212, 173–177 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Faries, M. B., Steen, S., Ye, X., Sim, M. & Morton, D. L. Late recurrence in melanoma: clinical implications of lost dormancy. J. Am. Coll. Surg. 217, 27–34 (2013).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Spratt, J. S., Meyer, J. S. & Spratt, J. A. Rates of growth of human neoplasms: part II. J. Surg. Oncol. 61, 68–83 (1996).

    CAS  PubMed  Google Scholar 

  16. 16.

    Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Kennecke, H. et al. Metastatic behavior of breast cancer subtypes. J. Clin. Oncol. 28, 3271–3277 (2010).

    PubMed  Google Scholar 

  18. 18.

    Jatoi, I., Anderson, W. F., Jeong, J. H. & Redmond, C. K. Breast cancer adjuvant therapy: time to consider its time-dependent effects. J. Clin. Oncol. 29, 2301–2304 (2011).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Copson, E. et al. Prospective observational study of breast cancer treatment outcomes for UK women aged 18–40 years at diagnosis: the POSH study. J. Natl Cancer Inst. 105, 978–988 (2013).

    CAS  PubMed  Google Scholar 

  20. 20.

    Pan, H. et al. 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N. Engl. J. Med. 377, 1836–1846 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Reddy, S. M. et al. Long-term survival outcomes of triple-receptor negative breast cancer survivors who are disease free at 5 years and relationship with low hormone receptor positivity. Br. J. Cancer 118, 17–23 (2018).

    CAS  PubMed  Google Scholar 

  22. 22.

    Brustugun, O. T. et al. Substantial nation-wide improvement in lung cancer relative survival in Norway from 2000 to 2016. Lung Cancer 122, 138–145 (2018).

    PubMed  Google Scholar 

  23. 23.

    Noroxe, D. S. & Sorensen, J. B. Ultra-late relapse with a single cerebellar metastasis 10 years after complete surgery for stage IIA non-small cell lung cancer (bronchioalveolar carcinoma). J. Thorac. Oncol. 7, 764–765 (2012).

    PubMed  Google Scholar 

  24. 24.

    Martini, N. et al. Factors influencing ten-year survival in resected stages I to IIIa non-small cell lung cancer. J. Thorac. Cardiovasc. Surg. 117, 32–36 (1999).

    CAS  PubMed  Google Scholar 

  25. 25.

    Maeda, R. et al. Long-term outcome and late recurrence in patients with completely resected stage IA non-small cell lung cancer. J. Thorac. Oncol. 5, 1246–1250 (2010).

    PubMed  Google Scholar 

  26. 26.

    Collins, V. P., Loeffler, R. K. & Tivey, H. Observations on growth rates of human tumors. Am. J. Roentgenol. Radium Ther. Nucl. Med. 76, 988–1000 (1956).

    CAS  PubMed  Google Scholar 

  27. 27.

    Friberg, S. & Mattson, S. On the growth rates of human malignant tumors: implications for medical decision making. J. Surg. Oncol. 65, 284–297 (1997).

    CAS  PubMed  Google Scholar 

  28. 28.

    Klein, C. A. Parallel progression of primary tumours and metastases. Nat. Rev. Cancer 9, 302–312 (2009).

    CAS  PubMed  Google Scholar 

  29. 29.

    Berghoff, A. S. et al. Differential role of angiogenesis and tumour cell proliferation in brain metastases according to primary tumour type: analysis of 639 cases. Neuropathol. Appl. Neurobiol. 41, e41–e55 (2015).

    CAS  PubMed  Google Scholar 

  30. 30.

    Berghoff, A. S. et al. Prognostic significance of Ki67 proliferation index, HIF1 alpha index and microvascular density in patients with non-small cell lung cancer brain metastases. Strahlenther. Onkol. 190, 676–685 (2014).

    CAS  PubMed  Google Scholar 

  31. 31.

    Finlay, I. G., Meek, D., Brunton, F. & McArdle, C. S. Growth rate of hepatic metastases in colorectal carcinoma. Br. J. Surg. 75, 641–644 (1988).

    CAS  PubMed  Google Scholar 

  32. 32.

    Spratt, J. S. Jr. & Spratt, T. L. Rates of growth of pulmonary metastases and host survival. Ann. Surg. 159, 161–171 (1964).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Hadfield, G. The dormant cancer cell. Br. Med. J. 4888, 607–610 (1954).

    Google Scholar 

  34. 34.

    Willis, R. A. The Spread of Tumours in the Human Body (J. & A. Churchill, 1934).

  35. 35.

    Klein, C. A. Framework models of tumor dormancy from patient-derived observations. Curr. Opin. Genet. Dev. 21, 42–49 (2011).

    CAS  PubMed  Google Scholar 

  36. 36.

    Klein, C. A. & Holzel, D. Systemic cancer progression and tumor dormancy: mathematical models meet single cell genomics. Cell Cycle 5, 1788–1798 (2006).

    CAS  PubMed  Google Scholar 

  37. 37.

    Ulmer, A. et al. Quantitative measurement of melanoma spread in sentinel lymph nodes and survival. PLoS Med. 11, e1001604 (2014).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Paget, S. The distribution of secondary growths in cancer of the breast. Lancet 1, 99–101 (1889).

    Google Scholar 

  39. 39.

    Aleckovic, M., McAllister, S. S. & Polyak, K. Metastasis as a systemic disease: molecular insights and clinical implications. Biochim. Biophys. Acta Rev. Cancer 1872, 89–102 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Klein, C. A. Selection and adaptation during metastatic cancer progression. Nature 501, 365–372 (2013).

    CAS  PubMed  Google Scholar 

  41. 41.

    Schumacher, S. et al. Disseminated tumour cells with highly aberrant genomes are linked to poor prognosis in operable oesophageal adenocarcinoma. Br. J. Cancer 117, 725–733 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Stoecklein, N. H. et al. Direct genetic analysis of single disseminated cancer cells for prediction of outcome and therapy selection in esophageal cancer. Cancer Cell 13, 441–453 (2008).

    CAS  PubMed  Google Scholar 

  43. 43.

    Werner-Klein, M. et al. Interleukin-6 trans-signaling is a candidate mechanism to drive progression of human DCCs during clinical latency. Nat. Commun. https://doi.org/10.1038/s41467-020-18701-4 (2020).

  44. 44.

    Holcomb, I. N. et al. Genomic alterations indicate tumor origin and varied metastatic potential of disseminated cells from prostate cancer patients. Cancer Res. 68, 5599–5608 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Schardt, J. A. et al. Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell 8, 227–239 (2005).

    CAS  PubMed  Google Scholar 

  46. 46.

    Schmidt-Kittler, O. et al. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc. Natl Acad. Sci. USA 100, 7737–7742 (2003).

    CAS  PubMed  Google Scholar 

  47. 47.

    Weckermann, D. et al. Perioperative activation of disseminated tumor cells in bone marrow of patients with prostate cancer. J. Clin. Oncol. 27, 1549–1556 (2009).

    PubMed  Google Scholar 

  48. 48.

    Hu, Z. et al. Quantitative evidence for early metastatic seeding in colorectal cancer. Nat. Genet. 51, 1113–1122 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Ishaque, N. et al. Whole genome sequencing puts forward hypotheses on metastasis evolution and therapy in colorectal cancer. Nat. Commun. 9, 4782 (2018).

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Kroigard, A. B. et al. Genomic analyses of breast cancer progression reveal distinct routes of metastasis emergence. Sci. Rep. 7, 43813 (2017).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Kroigard, A. B. et al. Identification of metastasis driver genes by massive parallel sequencing of successive steps of breast cancer progression. PLoS ONE 13, e0189887 (2018).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Leung, M. L. et al. Single-cell DNA sequencing reveals a late-dissemination model in metastatic colorectal cancer. Genome Res. 27, 1287–1299 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Sanborn, J. Z. et al. Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination. Proc. Natl Acad. Sci. USA 112, 10995–11000 (2015).

    CAS  PubMed  Google Scholar 

  54. 54.

    Turajlic, S. et al. Tracking cancer evolution reveals constrained routes to metastases: TRACERx renal. Cell 173, 581–594 e512 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Yates, L. R. et al. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 32, 169–184 e167 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Kuipers, J., Jahn, K. & Beerenwinkel, N. Advances in understanding tumour evolution through single-cell sequencing. Biochim. Biophys. Acta Rev. Cancer 1867, 127–138 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Kuipers, J., Jahn, K., Raphael, B. J. & Beerenwinkel, N. Single-cell sequencing data reveal widespread recurrence and loss of mutational hits in the life histories of tumors. Genome Res. 27, 1885–1894 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Reeves, M. Q., Kandyba, E., Harris, S., Del Rosario, R. & Balmain, A. Multicolour lineage tracing reveals clonal dynamics of squamous carcinoma evolution from initiation to metastasis. Nat. Cell Biol. 20, 699–709 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Heyde, A., Reiter, J. G., Naxerova, K. & Nowak, M. A. Consecutive seeding and transfer of genetic diversity in metastasis. Proc. Natl Acad. Sci. USA 116, 14129–14137 (2019).

    CAS  PubMed  Google Scholar 

  60. 60.

    Cheung, K. J. et al. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc. Natl Acad. Sci. USA 113, E854–E863 (2016).

    CAS  PubMed  Google Scholar 

  61. 61.

    Aceto, N. et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158, 1110–1122 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Szczerba, B. M. et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 566, 553–557 (2019).

    CAS  PubMed  Google Scholar 

  63. 63.

    Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    CAS  Google Scholar 

  64. 64.

    Burnet, M. Cancer; a biological approach. I. The processes of control. Br. Med. J. 1, 779–786 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Mittal, D., Gubin, M. M., Schreiber, R. D. & Smyth, M. J. New insights into cancer immunoediting and its three component phases–elimination, equilibrium and escape. Curr. Opin. Immunol. 27, 16–25 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Alspach, E. et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature 574, 696–701 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Senovilla, L. et al. An immunosurveillance mechanism controls cancer cell ploidy. Science 337, 1678–1684 (2012).

    CAS  PubMed  Google Scholar 

  68. 68.

    Malladi, S. et al. Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell 165, 45–60 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Malaise, M. et al. KLRG1+ NK cells protect T-bet-deficient mice from pulmonary metastatic colorectal carcinoma. J. Immunol. 192, 1954–1961 (2014).

    CAS  PubMed  Google Scholar 

  70. 70.

    Chuang, H. N. et al. Carcinoma cells misuse the host tissue damage response to invade the brain. Glia 61, 1331–1346 (2013).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Celia-Terrassa, T. & Kang, Y. Metastatic niche functions and therapeutic opportunities. Nat. Cell Biol. 20, 868–877 (2018).

    CAS  PubMed  Google Scholar 

  72. 72.

    Hoye, A. M. & Erler, J. T. Structural ECM components in the premetastatic and metastatic niche. Am. J. Physiol. Cell Physiol. 310, C955–C967 (2016).

    PubMed  Google Scholar 

  73. 73.

    Smith, H. A. & Kang, Y. Determinants of organotropic metastasis. Annu. Rev. Cancer Biol. 1, 403–423 (2017).

    Google Scholar 

  74. 74.

    Giancotti, F. G. Mechanisms governing metastatic dormancy and reactivation. Cell 155, 750–764 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Sosa, M. S., Bragado, P. & Aguirre-Ghiso, J. A. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat. Rev. Cancer 14, 611–622 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Ghajar, C. M. Metastasis prevention by targeting the dormant niche. Nat. Rev. Cancer 15, 238–247 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Aslakson, C. J. & Miller, F. R. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 52, 1399–1405 (1992).

    CAS  PubMed  Google Scholar 

  78. 78.

    Aslakson, C. J., Rak, J. W., Miller, B. E. & Miller, F. R. Differential influence of organ site on three subpopulations of a single mouse mammary tumor at two distinct steps in metastasis. Int. J. Cancer 47, 466–472 (1991).

    CAS  PubMed  Google Scholar 

  79. 79.

    Bragado, P. et al. TGF-beta2 dictates disseminated tumour cell fate in target organs through TGF-beta-RIII and p38alpha/beta signalling. Nat. Cell Biol. 15, 1351–1361 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Gao, H. et al. The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell 150, 764–779 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Lu, X. et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors. Cancer Cell 20, 701–714 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Morris, V. L., Tuck, A. B., Wilson, S. M., Percy, D. & Chambers, A. F. Tumor progression and metastasis in murine D2 hyperplastic alveolar nodule mammary tumor cell lines. Clin. Exp. Metastasis 11, 103–112 (1993).

    CAS  PubMed  Google Scholar 

  83. 83.

    Ossowski, L. & Reich, E. Experimental model for quantitative study of metastasis. Cancer Res. 40, 2300–2309 (1980).

    CAS  PubMed  Google Scholar 

  84. 84.

    Ossowski, L. & Reich, E. Loss of malignancy during serial passage of human carcinoma in culture and discordance between malignancy and transformation parameters. Cancer Res. 40, 2310–2315 (1980).

    CAS  PubMed  Google Scholar 

  85. 85.

    Ossowski, L. & Reich, E. Changes in malignant phenotype of a human carcinoma conditioned by growth environment. Cell 33, 323–333 (1983).

    CAS  PubMed  Google Scholar 

  86. 86.

    Rak, J. W., McEachern, D. & Miller, F. R. Sequential alteration of peanut agglutinin binding-glycoprotein expression during progression of murine mammary neoplasia. Br. J. Cancer 65, 641–648 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Suzuki, M., Mose, E. S., Montel, V. & Tarin, D. Dormant cancer cells retrieved from metastasis-free organs regain tumorigenic and metastatic potency. Am. J. Pathol. 169, 673–681 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Wheeler, S. E. et al. Spontaneous dormancy of metastatic breast cancer cells in an all human liver microphysiologic system. Br. J. Cancer 111, 2342–2350 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Endo, H. et al. The induction of MIG6 under hypoxic conditions is critical for dormancy in primary cultured lung cancer cells with activating EGFR mutations. Oncogene 36, 2824–2834 (2017).

    CAS  PubMed  Google Scholar 

  90. 90.

    Fluegen, G. et al. Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nat. Cell Biol. 19, 120–132 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Kienast, Y. et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat. Med. 16, 116–122 (2010).

    CAS  PubMed  Google Scholar 

  92. 92.

    Ghajar, C. M. et al. The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol. 15, 807–817 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Carlson, P. et al. Targeting the perivascular niche sensitizes disseminated tumour cells to chemotherapy. Nat. Cell Biol. 21, 238–250 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Shiozawa, Y. et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J. Clin. Invest. 121, 1298–1312 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Shiozawa, Y. et al. GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche. Neoplasia 12, 116–127 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Kobayashi, A. et al. Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J. Exp. Med. 208, 2641–2655 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Yu-Lee, L. Y. et al. Osteoblast-secreted factors mediate dormancy of metastatic prostate cancer in the bone via activation of the TGFbetaRIII-p38MAPK-pS249/T252RB pathway. Cancer Res. 78, 2911–2924 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Lee, E. et al. Growth arrest-specific 6 (GAS6) promotes prostate cancer survival by G1 arrest/S phase delay and inhibition of apoptosis during chemotherapy in bone marrow. J. Cell Biochem. 117, 2815–2824 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Cackowski, F. C. et al. Mer tyrosine kinase regulates disseminated prostate cancer cellular dormancy. J. Cell Biochem. 118, 891–902 (2017).

    CAS  PubMed  Google Scholar 

  100. 100.

    Ren, D. et al. Wnt5a induces and maintains prostate cancer cells dormancy in bone. J. Exp. Med. 216, 428–449 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Johnson, R. W. et al. Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nat. Cell Biol. 18, 1078–1089 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Lee, I. K., Vansaun, M. N., Shim, J. H., Matrisian, L. M. & Gorden, D. L. Increased metastases are associated with inflammation and matrix metalloproteinase-9 activity at incision sites in a murine model of peritoneal dissemination of colorectal cancer. J. Surg. Res. 180, 252–259 (2013).

    CAS  PubMed  Google Scholar 

  103. 103.

    Roy, L. D. et al. Collagen induced arthritis increases secondary metastasis in MMTV-PyV MT mouse model of mammary cancer. BMC Cancer 11, 365 (2011).

    PubMed  PubMed Central  Google Scholar 

  104. 104.

    Albrengues, J. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science https://doi.org/10.1126/science.aao4227 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Bouchard, G. et al. Pre-irradiation of mouse mammary gland stimulates cancer cell migration and development of lung metastases. Br. J. Cancer 109, 1829–1838 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    El Rayes, T. et al. Lung inflammation promotes metastasis through neutrophil protease-mediated degradation of Tsp-1. Proc. Natl Acad. Sci. USA 112, 16000–16005 (2015).

    CAS  PubMed  Google Scholar 

  107. 107.

    De Cock, J. M. et al. Inflammation triggers Zeb1-dependent escape from tumor latency. Cancer Res. 76, 6778–6784 (2016).

    PubMed  PubMed Central  Google Scholar 

  108. 108.

    Oskarsson, T. et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat. Med. 17, 867–874 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Malanchi, I. et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481, 85–89 (2012).

    CAS  Google Scholar 

  110. 110.

    Gao, H. et al. Multi-organ site metastatic reactivation mediated by non-canonical discoidin domain receptor 1 signaling. Cell 166, 47–62 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Ombrato, L. et al. Metastatic-niche labelling reveals parenchymal cells with stem features. Nature 572, 603–608 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Montagner, M. et al. Crosstalk with lung epithelial cells regulates Sfrp2-mediated latency in breast cancer dissemination. Nat. Cell Biol. 22, 289–296 (2020).

    CAS  PubMed  Google Scholar 

  113. 113.

    Campbell, J. P. et al. Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice. PLoS Biol. 10, e1001363 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Decker, A. M. et al. Sympathetic signaling reactivates quiescent disseminated prostate cancer cells in the bone marrow. Mol. Cancer Res. 15, 1644–1655 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Zhang, X. et al. Chronic stress promotes gastric cancer progression and metastasis: an essential role for ADRB2. Cell Death Dis. 10, 788 (2019).

    PubMed  PubMed Central  Google Scholar 

  116. 116.

    Liao, C. P. et al. Loss of MAOA in epithelia inhibits adenocarcinoma development, cell proliferation and cancer stem cells in prostate. Oncogene 37, 5175–5190 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Wu, J. B. et al. Monoamine oxidase A mediates prostate tumorigenesis and cancer metastasis. J. Clin. Invest. 124, 2891–2908 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Woodward, W. A. Inflammatory breast cancer: unique biological and therapeutic considerations. Lancet Oncol. 16, e568–e576 (2015).

    CAS  PubMed  Google Scholar 

  119. 119.

    Lim, B., Woodward, W. A., Wang, X., Reuben, J. M. & Ueno, N. T. Inflammatory breast cancer biology: the tumour microenvironment is key. Nat. Rev. Cancer 18, 485–499 (2018).

    CAS  PubMed  Google Scholar 

  120. 120.

    Masuda, H. et al. Long-term treatment efficacy in primary inflammatory breast cancer by hormonal receptor- and HER2-defined subtypes. Ann. Oncol. 25, 384–391 (2014).

    CAS  PubMed  Google Scholar 

  121. 121.

    Riethmuller, G. & Klein, C. A. Early cancer cell dissemination and late metastatic relapse: clinical reflections and biological approaches to the dormancy problem in patients. Semin. Cancer Biol. 11, 307–311 (2001).

    CAS  PubMed  Google Scholar 

  122. 122.

    Buell, J. F. et al. Donor transmitted malignancies. Ann. Transpl. 9, 53–56 (2004).

    Google Scholar 

  123. 123.

    Lipshutz, G. S. et al. Death from donor-transmitted malignancy despite emergency liver retransplantation. Liver Transpl. 9, 1102–1107 (2003).

    PubMed  Google Scholar 

  124. 124.

    Dib, L. L., Soares, A. L., Sandoval, R. L. & Nannmark, U. Breast metastasis around dental implants: a case report. Clin. Implant. Dent. Relat. Res. 9, 112–115 (2007).

    PubMed  Google Scholar 

  125. 125.

    Pfammatter, C., Lindenmuller, I. H., Lugli, A., Filippi, A. & Kuhl, S. Metastases and primary tumors around dental implants: a literature review and case report of peri-implant pulmonary metastasis. Quintessence Int. 43, 563–570 (2012).

    PubMed  Google Scholar 

  126. 126.

    Hirshberg, A., Leibovich, P., Horowitz, I. & Buchner, A. Metastatic tumors to postextraction sites. J. Oral. Maxillofac. Surg. 51, 1334–1337 (1993).

    CAS  PubMed  Google Scholar 

  127. 127.

    El Sharouni, S. Y., Kal, H. B. & Battermann, J. J. Accelerated regrowth of non-small-cell lung tumours after induction chemotherapy. Br. J. Cancer 89, 2184–2189 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Yoo, H. et al. Growth rates of metastatic brain tumors in nonsmall cell lung cancer. Cancer 113, 1043–1047 (2008).

    PubMed  Google Scholar 

  129. 129.

    Behrenbruch, C. et al. Surgical stress response and promotion of metastasis in colorectal cancer: a complex and heterogeneous process. Clin. Exp. Metastasis 35, 333–345 (2018).

    PubMed  Google Scholar 

  130. 130.

    Demicheli, R., Retsky, M. W., Hrushesky, W. J., Baum, M. & Gukas, I. D. The effects of surgery on tumor growth: a century of investigations. Ann. Oncol. 19, 1821–1828 (2008).

    CAS  PubMed  Google Scholar 

  131. 131.

    Gottschalk, A., Sharma, S., Ford, J., Durieux, M. E. & Tiouririne, M. Review article: the role of the perioperative period in recurrence after cancer surgery. Anesth. Analg. 110, 1636–1643 (2010).

    PubMed  Google Scholar 

  132. 132.

    Krall, J. A. et al. The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy. Sci. Transl Med. https://doi.org/10.1126/scitranslmed.aan3464 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Bianchini, F., Kaaks, R. & Vainio, H. Overweight, obesity, and cancer risk. Lancet Oncol. 3, 565–574 (2002).

    PubMed  Google Scholar 

  134. 134.

    Biganzoli, E. et al. Recurrence dynamics of breast cancer according to baseline body mass index. Eur. J. Cancer 87, 10–20 (2017).

    PubMed  Google Scholar 

  135. 135.

    Zhang, M. et al. Time-varying effects of prognostic factors associated with long-term survival in breast cancer. Endocr. Relat. Cancer 25, 509–521 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Olson, O. C., Quail, D. F. & Joyce, J. A. Obesity and the tumor microenvironment. Science 358, 1130–1131 (2017).

    CAS  PubMed  Google Scholar 

  137. 137.

    Quail, D. F. et al. Obesity alters the lung myeloid cell landscape to enhance breast cancer metastasis through IL5 and GM-CSF. Nat. Cell Biol. 19, 974–987 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Diessner, J. et al. Evaluation of clinical parameters influencing the development of bone metastasis in breast cancer. BMC Cancer 16, 307 (2016).

    PubMed  PubMed Central  Google Scholar 

  139. 139.

    Giuliani, N. et al. Serum interleukin-6, soluble interleukin-6 receptor and soluble gp130 exhibit different patterns of age- and menopause-related changes. Exp. Gerontol. 36, 547–557 (2001).

    CAS  PubMed  Google Scholar 

  140. 140.

    Sanoff, H. K. et al. Effect of cytotoxic chemotherapy on markers of molecular age in patients with breast cancer. J. Natl Cancer Inst. 106, dju057 (2014).

    PubMed  PubMed Central  Google Scholar 

  141. 141.

    Davalos, A. R., Coppe, J. P., Campisi, J. & Desprez, P. Y. Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev. 29, 273–283 (2010).

    PubMed  PubMed Central  Google Scholar 

  142. 142.

    Martin, M. et al. Epirubicin plus cyclophosphamide followed by docetaxel versus epirubicin plus docetaxel followed by capecitabine as adjuvant therapy for node-positive early breast cancer: results from the GEICAM/2003-10 study. J. Clin. Oncol. 33, 3788–3795 (2015).

    CAS  PubMed  Google Scholar 

  143. 143.

    Sonnenblick, A. & Piccart, M. Adjuvant systemic therapy in breast cancer: quo vadis? Ann. Oncol. 26, 1629–1634 (2015).

    CAS  PubMed  Google Scholar 

  144. 144.

    Abravanel, D. L. et al. Notch promotes recurrence of dormant tumor cells following HER2/neu-targeted therapy. J. Clin. Invest. 125, 2484–2496 (2015).

    PubMed  PubMed Central  Google Scholar 

  145. 145.

    Havas, K. M. et al. Metabolic shifts in residual breast cancer drive tumor recurrence. J. Clin. Invest. 127, 2091–2105 (2017).

    PubMed  PubMed Central  Google Scholar 

  146. 146.

    Rambow, F. et al. Toward minimal residual disease-directed therapy in melanoma. Cell 174, 843–855 e819 (2018).

    CAS  PubMed  Google Scholar 

  147. 147.

    Davies, C. et al. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet 381, 805–816 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Al-Mubarak, M. et al. Extended adjuvant tamoxifen for early breast cancer: a meta-analysis. PLoS ONE 9, e88238 (2014).

    PubMed  PubMed Central  Google Scholar 

  149. 149.

    Early Breast Cancer Trialists’ Collaborative Group. Adjuvant bisphosphonate treatment in early breast cancer: meta-analyses of individual patient data from randomised trials. Lancet 386, 1353–1361 (2015).

    Google Scholar 

  150. 150.

    Early Breast Cancer Trialists’ Collaborative Group. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365, 1687–1717 (2005).

    Google Scholar 

  151. 151.

    Peto, R. et al. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet 379, 432–444 (2012).

    CAS  PubMed  Google Scholar 

  152. 152.

    Jatoi, I. et al. Time-varying effects of breast cancer adjuvant systemic therapy. J. Natl Cancer Inst. https://doi.org/10.1093/jnci/djv304 (2016).

    Article  PubMed  Google Scholar 

  153. 153.

    Chavez-MacGregor, M., Clarke, C. A., Lichtensztajn, D. Y. & Giordano, S. H. Delayed initiation of adjuvant chemotherapy among patients with breast cancer. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2015.3856 (2015).

    Article  Google Scholar 

  154. 154.

    Gagliato Dde, M. et al. Clinical impact of delaying initiation of adjuvant chemotherapy in patients with breast cancer. J. Clin. Oncol. 32, 735–744 (2014).

    PubMed  Google Scholar 

  155. 155.

    Werner-Klein, M. & Klein, C. A. Therapy resistance beyond cellular dormancy. Nat. Cell Biol. 21, 117–119 (2019).

    CAS  PubMed  Google Scholar 

  156. 156.

    Goldhirsch, A. et al. 2 years versus 1 year of adjuvant trastuzumab for HER2-positive breast cancer (HERA): an open-label, randomised controlled trial. Lancet 382, 1021–1028 (2013).

    CAS  PubMed  Google Scholar 

  157. 157.

    Kramar, A. et al. Trastuzumab duration effects within patient prognostic subgroups in the PHARE trial. Ann. Oncol. 25, 1563–1570 (2014).

    CAS  PubMed  Google Scholar 

  158. 158.

    Mavroudis, D. et al. Six versus 12 months of adjuvant trastuzumab in combination with dose-dense chemotherapy for women with HER2-positive breast cancer: a multicenter randomized study by the Hellenic Oncology Research Group (HORG). Ann. Oncol. 26, 1333–1340 (2015).

    CAS  PubMed  Google Scholar 

  159. 159.

    Di Leo, A. et al. HER2 and TOP2A as predictive markers for anthracycline-containing chemotherapy regimens as adjuvant treatment of breast cancer: a meta-analysis of individual patient data. Lancet Oncol. 12, 1134–1142 (2011).

    PubMed  Google Scholar 

  160. 160.

    Guarneri, V. et al. Loss of HER2 positivity and prognosis after neoadjuvant therapy in HER2-positive breast cancer patients. Ann. Oncol. 24, 2990–2994 (2013).

    CAS  PubMed  Google Scholar 

  161. 161.

    Niikura, N. et al. Loss of human epidermal growth factor receptor 2 (HER2) expression in metastatic sites of HER2-overexpressing primary breast tumors. J. Clin. Oncol. 30, 593–599 (2012).

    PubMed  Google Scholar 

  162. 162.

    Twelves, C. et al. “New” metastases are associated with a poorer prognosis than growth of pre-existing metastases in patients with metastatic breast cancer treated with chemotherapy. Breast Cancer Res. 17, 150 (2015).

    PubMed  PubMed Central  Google Scholar 

  163. 163.

    Mathew, A. & Romond, E. H. Systemic therapy for HER2-positive early-stage breast cancer. Curr. Probl. Cancer 40, 106–116 (2016).

    PubMed  Google Scholar 

  164. 164.

    Naume, B. et al. Clinical outcome with correlation to disseminated tumor cell (DTC) status after DTC-guided secondary adjuvant treatment with docetaxel in early breast cancer. J. Clin. Oncol. 32, 3848–3857 (2014).

    PubMed  Google Scholar 

  165. 165.

    Gimotty, P. A. et al. Biologic and prognostic significance of dermal Ki67 expression, mitoses, and tumorigenicity in thin invasive cutaneous melanoma. J. Clin. Oncol. 23, 8048–8056 (2005).

    PubMed  Google Scholar 

  166. 166.

    Parise, C. A., Bauer, K. R., Brown, M. M. & Caggiano, V. Breast cancer subtypes as defined by the estrogen receptor (ER), progesterone receptor (PR), and the human epidermal growth factor receptor 2 (HER2) among women with invasive breast cancer in California, 1999–2004. Breast J. 15, 593–602 (2009).

    PubMed  Google Scholar 

  167. 167.

    Sundquist, M., Brudin, L. & Tejler, G. Improved survival in metastatic breast cancer 1985–2016. Breast 31, 46–50 (2017).

    PubMed  Google Scholar 

  168. 168.

    Nishimura, R. et al. Ki-67 as a prognostic marker according to breast cancer subtype and a predictor of recurrence time in primary breast cancer. Exp. Ther. Med. 1, 747–754 (2010).

    PubMed  PubMed Central  Google Scholar 

  169. 169.

    Nakashima, K. et al. Does breast cancer growth rate really depend on tumor subtype? Measurement of tumor doubling time using serial ultrasonography between diagnosis and surgery. Breast Cancer 26, 206–214 (2019).

    PubMed  Google Scholar 

  170. 170.

    Jennings, S. G., Winer-Muram, H. T., Tann, M., Ying, J. & Dowdeswell, I. Distribution of stage I lung cancer growth rates determined with serial volumetric CT measurements. Radiology 241, 554–563 (2006).

    PubMed  Google Scholar 

  171. 171.

    Engel, J. et al. The process of metastasisation for breast cancer. Eur. J. Cancer 39, 1794–1806 (2003).

    CAS  PubMed  Google Scholar 

  172. 172.

    Holzel, D., Eckel, R., Emeny, R. T. & Engel, J. Distant metastases do not metastasize. Cancer Metastasis Rev. 29, 737–750 (2010).

    PubMed  Google Scholar 

  173. 173.

    Fidler, I. J. Selection of successive tumour lines for metastasis. Nat. New Biol. 242, 148–149 (1973).

    CAS  PubMed  Google Scholar 

  174. 174.

    Vaage, J. Metastasizing potentials of mouse mammary tumors and their metastases. Int. J. Cancer 41, 855–858 (1988).

    CAS  PubMed  Google Scholar 

  175. 175.

    Riethdorf, S., Wikman, H. & Pantel, K. Review: Biological relevance of disseminated tumor cells in cancer patients. Int. J. Cancer 123, 1991–2006 (2008).

    CAS  PubMed  Google Scholar 

  176. 176.

    Hutchinson, J. N., Jin, J., Cardiff, R. D., Woodgett, J. R. & Muller, W. J. Activation of Akt-1 (PKB-alpha) can accelerate ErbB-2-mediated mammary tumorigenesis but suppresses tumor invasion. Cancer Res. 64, 3171–3178 (2004).

    CAS  PubMed  Google Scholar 

  177. 177.

    Liu, H. et al. MYC suppresses cancer metastasis by direct transcriptional silencing of alphav and beta3 integrin subunits. Nat. Cell Biol. 14, 567–574 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. 178.

    Rack, B. et al. Circulating tumor cells predict survival in early average-to-high risk breast cancer patients. J. Natl Cancer Inst. https://doi.org/10.1093/jnci/dju066 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  179. 179.

    Meng, S. et al. Circulating tumor cells in patients with breast cancer dormancy. Clin. Cancer Res. 10, 8152–8162 (2004).

    PubMed  Google Scholar 

  180. 180.

    Braun, S. et al. Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients. J. Clin. Oncol. 18, 80–86 (2000).

    CAS  PubMed  Google Scholar 

  181. 181.

    Pantel, K. et al. Immunocytological detection of bone marrow micrometastasis in operable non-small cell lung cancer. Cancer Res. 53, 1027–1031 (1993).

    CAS  PubMed  Google Scholar 

  182. 182.

    Klauber-DeMore, N., Van Zee, K. J., Linkov, I., Borgen, P. I. & Gerald, W. L. Biological behavior of human breast cancer micrometastases. Clin. Cancer Res. 7, 2434–2439 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks S. Pausch for help with the figures, T. Perry for critical reading of the manuscript and M. Guzvic for hints about relevant references.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christoph A. Klein.

Ethics declarations

Competing interests

The author is a member of the scientific advisory board of HiberCell.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Klein, C.A. Cancer progression and the invisible phase of metastatic colonization. Nat Rev Cancer 20, 681–694 (2020). https://doi.org/10.1038/s41568-020-00300-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing