The evolving translational potential of small extracellular vesicles in cancer


Cancer-derived extracellular vesicles (EVs) are regarded as having promising potential to be used as therapeutics and disease biomarkers. Mechanistically, EVs have been shown to function in most, if not all, steps of cancer progression. Cancer EVs, including small EVs (sEVs), contain unique biomolecular cargo, consisting of protein, nucleic acid and lipids. Through progress in the identification of this specific cargo, cancer biomarkers have been identified and developed, opening up novel and interesting opportunities for cancer diagnosis and prognosis. Intriguingly, we still lack a comprehensive understanding of the cancer-specific pathways that govern EV biogenesis in cancer cells. Filling this knowledge gap will rapidly improve cancer EV biomarkers, as it will also allow discrimination of the procancer and anticancer actions of those EVs. Even more promising is uncovering therapeutically targetable, tumour-specific EV pathways and content, which will generate novel classes of cancer therapies. This Review highlights the progress the cancer sEV field has made in the areas of biomarker discovery and validation as well as sEV-based therapeutics, highlights the challenges we are facing and identifies gaps in our knowledge, which currently prevent us from developing the full potential of sEVs in cancer diagnostic and therapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Small extracellular vesicle uptake, biogenesis, cargo content and biological effects.
Fig. 2: Cancer-derived sEV heterogeneity is multifaceted.
Fig. 3: Evaluation and development of new sEV-based therapeutics.


  1. 1.

    Galdiero, M. R., Marone, G. & Mantovani, A. Cancer inflammation and cytokines. Cold Spring Harb. Perspect. Biol. (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Thomas, S. K., Lee, J. & Beatty, G. L. Paracrine and cell autonomous signalling in pancreatic cancer progression and metastasis. EBioMedicine (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Kalluri, R. & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Raposo, G. & Stahl, P. D. Extracellular vesicles: a new communication paradigm? Nat. Rev. Mol. Cell Biol. 20, 509–510 (2019).

    CAS  PubMed  Google Scholar 

  5. 5.

    Harding, C., Heuser, J. & Stahl, P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J. Cell Biol. 97, 329–339 (1983).

    CAS  PubMed  Google Scholar 

  6. 6.

    Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Meehan, K. & Vella, L. J. The contribution of tumour-derived exosomes to the hallmarks of cancer. Crit. Rev. Clin. Lab. Sci. 53, 121–131 (2016).

    CAS  PubMed  Google Scholar 

  8. 8.

    Kucharzewska, P. et al. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc. Natl Acad. Sci. USA 110, 7312–7317 (2013).

    CAS  PubMed  Google Scholar 

  9. 9.

    King, H. W., Michael, M. Z. & Gleadle, J. M. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer 12, 421 (2012). This early work shows that hypoxia, at least partly via the transcription factor hypoxia-inducible factor 1α, increases sEV secretion by breast cancer cells, identifying extracellular stress as a regulator of sEV abundance.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Bandari, S. K. et al. Chemotherapy induces secretion of exosomes loaded with heparanase that degrades extracellular matrix and impacts tumor and host cell behavior. Matrix Biol. 65, 104–118 (2018).

    CAS  PubMed  Google Scholar 

  11. 11.

    Keklikoglou, I. et al. Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat. Cell Biol. 21, 190–202 (2019).

    CAS  PubMed  Google Scholar 

  12. 12.

    Wang, X. et al. Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kgamma to promote pancreatic cancer metastasis. Cancer Res. 78, 4586–4598 (2018).

    CAS  PubMed  Google Scholar 

  13. 13.

    Hsu, Y. L. et al. Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene 36, 4929–4942 (2017).

    CAS  PubMed  Google Scholar 

  14. 14.

    Li, L. et al. Exosomes derived from hypoxic oral squamous cell carcinoma cells deliver miR-21 to normoxic cells to elicit a prometastatic phenotype. Cancer Res. 76, 1770–1780 (2016).

    CAS  PubMed  Google Scholar 

  15. 15.

    Thery, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Fordjour, F. K., Daaboul, G. G. & Gould, S. J. A shared pathway of exosome biogenesis operates at plasma and endosome membranes. bioRxiv 10.1101/545228 (2019).

  17. 17.

    Lobb, R. J. et al. Oncogenic transformation of lung cells results in distinct exosome protein profile similar to the cell of origin. Proteomics (2017).

  18. 18.

    Wen, S. W. et al. Breast cancer-derived exosomes reflect the cell-of-origin phenotype. Proteomics 19, e1800180 (2019).

    PubMed  Google Scholar 

  19. 19.

    Kahlert, C. et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J. Biol. Chem. 289, 3869–3875 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Novo, D. et al. Mutant p53s generate pro-invasive niches by influencing exosome podocalyxin levels. Nat. Commun. 9, 5069 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Al-Nedawi, K. et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol. 10, 619–624 (2008). This is one of the initial descriptions that EVs can transfer functional oncogenic proteins, in this case EGFR, to recipient cells.

    CAS  PubMed  Google Scholar 

  22. 22.

    Demory Beckler, M. et al. Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Mol. Cell Proteom. 12, 343–355 (2013).

    Google Scholar 

  23. 23.

    Hurwitz, S. N. et al. Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. Oncotarget 7, 86999–87015 (2016).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Castillo, J. et al. Surfaceome profiling enables isolation of cancer-specific exosomal cargo in liquid biopsies from pancreatic cancer patients. Ann. Oncol. 29, 223–229 (2018).

    CAS  PubMed  Google Scholar 

  25. 25.

    Temoche-Diaz, M. M. et al. Distinct mechanisms of microRNA sorting into cancer cell-derived extracellular vesicle subtypes. eLife (2019). This study identifies selective and non-selective miRNA sorting into two different sEV subpopulations.

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Fang, T. et al. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat. Commun. 9, 191 (2018).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Yan, W. et al. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat. Cell Biol. 20, 597–609 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Cooks, T. et al. Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. Nat. Commun. 9, 771 (2018).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Teng, Y. et al. MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression. Nat. Commun. 8, 14448 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Shen, M. et al. Chemotherapy-induced extracellular vesicle miRNAs promote breast cancer stemness by targeting ONECUT2. Cancer Res. 79, 3608–3621 (2019).

    CAS  PubMed  Google Scholar 

  31. 31.

    Hashimoto, K. et al. Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A. Proc. Natl Acad. Sci. USA 115, 2204–2209 (2018).

    CAS  PubMed  Google Scholar 

  32. 32.

    Au Yeung, C. L. et al. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat. Commun. 7, 11150 (2016).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    O’Brien, K., Breyne, K., Ughetto, S., Laurent, L. C. & Breakefield, X. O. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol. (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    McKenzie, A. J. et al. KRAS-MEK signaling controls Ago2 sorting into exosomes. Cell Rep. 15, 978–987 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Le, M. T. et al. miR-200-containing extracellular vesicles promote breast cancer cell metastasis. J. Clin. Invest. 124, 5109–5128 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Clancy, J. W., Zhang, Y., Sheehan, C. & D’Souza-Schorey, C. An ARF6-exportin-5 axis delivers pre-miRNA cargo to tumour microvesicles. Nat. Cell Biol. 21, 856–866 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Keller, S., Ridinger, J., Rupp, A. K., Janssen, J. W. & Altevogt, P. Body fluid derived exosomes as a novel template for clinical diagnostics. J. Transl Med. 9, 86 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Anfossi, S., Babayan, A., Pantel, K. & Calin, G. A. Clinical utility of circulating non-coding RNAs - an update. Nat. Rev. Clin. Oncol. 15, 541–563 (2018).

    PubMed  Google Scholar 

  39. 39.

    Xu, R. et al. Extracellular vesicles in cancer - implications for future improvements in cancer care. Nat. Rev. Clin. Oncol. 15, 617–638 (2018).

    CAS  PubMed  Google Scholar 

  40. 40.

    Siravegna, G., Marsoni, S., Siena, S. & Bardelli, A. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 14, 531–548 (2017).

    CAS  PubMed  Google Scholar 

  41. 41.

    Maus, R. L. G. et al. Human melanoma-derived extracellular vesicles regulate dendritic cell maturation. Front. Immunol. 8, 358 (2017).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Chen, G. et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560, 382–386 (2018). This study describes PDL1 on melanoma cell-derived EVs which is inducible by IFNγ and could be a mechanism of systemic suppression of anticancer T cell responses.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Theodoraki, M. N., Yerneni, S. S., Hoffmann, T. K., Gooding, W. E. & Whiteside, T. L. Clinical significance of PD-L1+ exosomes in plasma of head and neck cancer patients. Clin. Cancer Res. 24, 896–905 (2018).

    CAS  PubMed  Google Scholar 

  44. 44.

    Poggio, M. et al. Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell 177, 414–427 e413 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Teng, M. W., Ngiow, S. F., Ribas, A. & Smyth, M. J. Classifying cancers based on T-cell Infiltration and PD-L1. Cancer Res. 75, 2139–2145 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Capello, M. et al. Exosomes harbor B cell targets in pancreatic adenocarcinoma and exert decoy function against complement-mediated cytotoxicity. Nat. Commun. 10, 254 (2019).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Aung, T. et al. Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3. Proc. Natl Acad. Sci. USA 108, 15336–15341 (2011).

    CAS  PubMed  Google Scholar 

  48. 48.

    US National Library of Medicine. (2020).

  49. 49.

    Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335 (2015). The authors describe how different integrin compositions of EVs impact their uptake in different organs, and clinical data suggest that integrin profiles could predict organ-specific metastasis.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Sceneay, J., Smyth, M. J. & Moller, A. The pre-metastatic niche: finding common ground. Cancer Metastasis Rev. 32, 449–464 (2013).

    CAS  PubMed  Google Scholar 

  53. 53.

    Costa-Silva, B. et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17, 816–826 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Melo, S. A. et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523, 177–182 (2015). This publication shows that GPC1 on EVs could be used to differentiate patients with pancreatic cancer from healthy individuals, with a suggestion of using these EVs as a cancer biomarker.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Frampton, A. E. et al. Glypican-1 is enriched in circulating-exosomes in pancreatic cancer and correlates with tumor burden. Oncotarget 9, 19006–19013 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Qian, J. Y., Tan, Y. L., Zhang, Y., Yang, Y. F. & Li, X. Q. Prognostic value of glypican-1 for patients with advanced pancreatic cancer following regional intra-arterial chemotherapy. Oncol. Lett. 16, 1253–1258 (2018).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Lucien, F. et al. Glypican-1 and glycoprotein 2 bearing extracellular vesicles do not discern pancreatic cancer from benign pancreatic diseases. Oncotarget 10, 1045–1055 (2019).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Buscail, E. et al. CD63-GPC1-positive exosomes coupled with CA19-9 offer good diagnostic potential for resectable pancreatic ductal adenocarcinoma. Transl Oncol. 12, 1395–1403 (2019).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Yang, K. S. et al. Multiparametric plasma EV profiling facilitates diagnosis of pancreatic malignancy. Sci. Transl Med. (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Keller, L. & Pantel, K. Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells. Nat. Rev. Cancer 19, 553–567 (2019).

    CAS  PubMed  Google Scholar 

  61. 61.

    Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2018).

    CAS  PubMed  Google Scholar 

  62. 62.

    Tutrone, R. et al. Clinical utility of the exosome based ExoDx Prostate(IntelliScore) EPI test in men presenting for initial biopsy with a PSA 2-10 ng/mL. Prostate Cancer Prostatic Dis. (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    McKiernan, J. et al. A prospective adaptive utility trial to validate performance of a novel urine exosome gene expression assay to predict high-grade prostate cancer in patients with prostate-specific antigen 2-10 ng/ml at initial biopsy. Eur. Urol. 74, 731–738 (2018).

    CAS  PubMed  Google Scholar 

  64. 64.

    McKiernan, J. et al. A novel urine exosome gene expression assay to predict high-grade prostate cancer at initial biopsy. JAMA Oncol. 2, 882–889 (2016).

    PubMed  Google Scholar 

  65. 65.

    US National Library of Medicine. (2017).

  66. 66.

    Zhou, R. et al. The decade of exosomal long RNA species: an emerging cancer antagonist. Mol. Cancer 17, 75 (2018).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Hannafon, B. N. et al. Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res. 18, 90 (2016).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Manier, S. et al. Prognostic role of circulating exosomal miRNAs in multiple myeloma. Blood 129, 2429–2436 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Asano, N. et al. A serum microRNA classifier for the diagnosis of sarcomas of various histological subtypes. Nat. Commun. 10, 1299 (2019).

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Worst, T. S. et al. miR-10a-5p and miR-29b-3p as extracellular vesicle-associated prostate cancer detection markers. Cancers (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    US National Library of Medicine. (2019).

  72. 72.

    Li, Z. et al. Tumor-released exosomal circular RNA PDE8A promotes invasive growth via the miR-338/MACC1/MET pathway in pancreatic cancer. Cancer Lett. 432, 237–250 (2018).

    CAS  PubMed  Google Scholar 

  73. 73.

    Yu, S. et al. Plasma extracellular vesicle long RNA profiling identifies a diagnostic signature for the detection of pancreatic ductal adenocarcinoma. Gut 69, 540–550 (2020).

    CAS  PubMed  Google Scholar 

  74. 74.

    Chen, S., Zhu, X. & Huang, S. Clinical applications of extracellular vesicle long RNAs. Crit. Rev. Clin. Lab. Sci. (2020).

    Article  PubMed  Google Scholar 

  75. 75.

    US National Library of Medicine. (2019).

  76. 76.

    Thakur, B. K. et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 24, 766–769 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Allenson, K. et al. High prevalence of mutant KRAS in circulating exosome-derived DNA from early-stage pancreatic cancer patients. Ann. Oncol. 28, 741–747 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Yang, D. et al. Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics. Theranostics 10, 3684–3707 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Xie, X. et al. Eliminating blood oncogenic exosomes into the small intestine with aptamer-functionalized nanoparticles. Nat. Commun. 10, 5476 (2019). In this article, the capacity of selectively ablating cancer-derived EVs by charged mesoporous silica nanoparticles functionalized with EGFR-targeting aptamers is demonstrated in animal models and blood of patients with lung cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Marleau, A. M., Chen, C. S., Joyce, J. A. & Tullis, R. H. Exosome removal as a therapeutic adjuvant in cancer. J. Transl Med. 10, 134 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Andre, F. et al. Tumor-derived exosomes: a new source of tumor rejection antigens. Vaccine 20, A28–A31 (2002).

    CAS  PubMed  Google Scholar 

  82. 82.

    Andre, F. et al. Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360, 295–305 (2002).

    CAS  PubMed  Google Scholar 

  83. 83.

    Wolfers, J. et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat. Med. 7, 297–303 (2001).

    CAS  PubMed  Google Scholar 

  84. 84.

    Chen, W. et al. Efficient induction of antitumor T cell immunity by exosomes derived from heat-shocked lymphoma cells. Eur. J. Immunol. 36, 1598–1607 (2006).

    CAS  PubMed  Google Scholar 

  85. 85.

    Rodrigues, G. et al. Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nat. Cell Biol. 21, 1403–1412 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Wen, S. W. et al. The biodistribution and immune suppressive effects of breast cancer-derived exosomes. Cancer Res. 76, 6816–6827 (2016).

    CAS  PubMed  Google Scholar 

  87. 87.

    Diamond, J. M. et al. Exosomes shuttle TREX1-sensitive IFN-stimulatory dsDNA from irradiated cancer cells to DCs. Cancer Immunol. Res. 6, 910–920 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Kitai, Y. et al. DNA-containing exosomes derived from cancer cells treated with topotecan activate a STING-dependent pathway and reinforce antitumor immunity. J. Immunol. 198, 1649–1659 (2017).

    CAS  PubMed  Google Scholar 

  89. 89.

    Takahashi, A. et al. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat. Commun. 8, 15287 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Raposo, G. et al. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183, 1161–1172 (1996).

    CAS  PubMed  Google Scholar 

  91. 91.

    Zitvogel, L. et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat. Med. 4, 594–600 (1998).

    CAS  PubMed  Google Scholar 

  92. 92.

    Escudier, B. et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of the first phase I clinical trial. J. Transl Med. 3, 10 (2005).

    PubMed  PubMed Central  Google Scholar 

  93. 93.

    Morse, M. A. et al. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J. Transl Med. (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Segura, E., Amigorena, S. & Thery, C. Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cell Mol. Dis. 35, 89–93 (2005).

    CAS  Google Scholar 

  95. 95.

    Segura, E. et al. ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood 106, 216–223 (2005).

    CAS  PubMed  Google Scholar 

  96. 96.

    Viaud, S. et al. Updated technology to produce highly immunogenic dendritic cell-derived exosomes of clinical grade: a critical role of interferon-gamma. J. Immunother. 34, 65–75 (2011).

    PubMed  Google Scholar 

  97. 97.

    Besse, B. et al. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology 5, e1071008 (2016).

    PubMed  Google Scholar 

  98. 98.

    Cheng, L., Wang, Y. & Huang, L. Exosomes from M1-polarized macrophages potentiate the cancer vaccine by creating a pro-inflammatory microenvironment in the lymph node. Mol. Ther. 25, 1665–1675 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Zhu, L. et al. Exosomes derived from natural killer cells exert therapeutic effect in melanoma. Theranostics 7, 2732–2745 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Fu, W. et al. CAR exosomes derived from effector CAR-T cells have potent antitumour effects and low toxicity. Nat. Commun. 10, 4355 (2019). This work in preclinical models shows that EVs derived from CAR T cells contain CAR and have similar anticancer efficacies to CAR T cells but cannot be inhibited by PD1.

    PubMed  PubMed Central  Google Scholar 

  101. 101.

    Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29, 341–345 (2011).

    CAS  PubMed  Google Scholar 

  102. 102.

    Kamerkar, S. et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546, 498–503 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Mendt, M. et al. Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI Insight (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Kooijmans, S. A. A. et al. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J. Control. Rel. 172, 229–238 (2013).

    CAS  Google Scholar 

  105. 105.

    Haney, M. J. et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J. Control. Rel. 207, 18–30 (2015).

    CAS  Google Scholar 

  106. 106.

    Kim, M. S. et al. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations. Nanomedicine 14, 195–204 (2018).

    CAS  PubMed  Google Scholar 

  107. 107.

    Kooijmans, S. A. et al. Display of GPI-anchored anti-EGFR nanobodies on extracellular vesicles promotes tumour cell targeting. J. Extracell. Vesicles 5, 31053 (2016).

    PubMed  Google Scholar 

  108. 108.

    Stickney, Z., Losacco, J., McDevitt, S., Zhang, Z. & Lu, B. Development of exosome surface display technology in living human cells. Biochem. Biophys. Res. Commun. 472, 53–59 (2016).

    CAS  PubMed  Google Scholar 

  109. 109.

    Kanuma, T. et al. CD63-mediated antigen delivery into extracellular vesicles via DNA vaccination results in robust CD8+ T cell responses. J. Immunol. 198, 4707–4715 (2017).

    CAS  PubMed  Google Scholar 

  110. 110.

    Morishita, M., Takahashi, Y., Matsumoto, A., Nishikawa, M. & Takakura, Y. Exosome-based tumor antigens-adjuvant co-delivery utilizing genetically engineered tumor cell-derived exosomes with immunostimulatory CpG DNA. Biomaterials 111, 55–65 (2016).

    CAS  PubMed  Google Scholar 

  111. 111.

    Kowal, J. et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl Acad. Sci. USA 113, E968–E977 (2016).

    CAS  PubMed  Google Scholar 

  112. 112.

    Liang, G. et al. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J. Nanobiotechnol. 18, 10 (2020).

    CAS  Google Scholar 

  113. 113.

    Yim, N. et al. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module. Nat. Commun. 7, 12277 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Shen, B., Wu, N., Yang, J. M. & Gould, S. J. Protein targeting to exosomes/microvesicles by plasma membrane anchors. J. Biol. Chem. 286, 14383–14395 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Fang, Y. et al. Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol. 5, e158 (2007).

    PubMed  PubMed Central  Google Scholar 

  116. 116.

    Sterzenbach, U. et al. Engineered exosomes as vehicles for biologically active proteins. Mol. Ther. 25, 1269–1278 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Baietti, M. F. et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat. Cell Biol. 14, 677–685 (2012). This study provides important mechanistic insights into how syndecans, heparan sulfate proteoglycans, and their cytoplasmic adaptor syntenin are essential mediators of sEV biogenesis.

    CAS  PubMed  Google Scholar 

  118. 118.

    Ridder, K. et al. Extracellular vesicle-mediated transfer of functional RNA in the tumor microenvironment. Oncoimmunology 4, e1008371 (2015). This is an early description of how functional Cre recombinase mRNA can be delivered by EVs to immune cell lineages in the tumour microenvironment, causing recombination events in Cre reporter mice.

    PubMed  PubMed Central  Google Scholar 

  119. 119.

    Li, D. et al. Genetically engineered T cells for cancer immunotherapy. Signal. Transduct. Target. Ther. 4, 35 (2019).

    PubMed  PubMed Central  Google Scholar 

  120. 120.

    Hong, Y. et al. Exosome as a vehicle for delivery of membrane protein therapeutics, PH20, for enhanced tumor penetration and antitumor efficacy. 28, 1703074 (2018).

  121. 121.

    Lai, C. P. et al. Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano 8, 483–494 (2014). This study uses fluorescent and luminescent markers to demonstrate a quick EV uptake by cells and the rapid translation of EV-contained mRNA.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Wiklander, O. P. et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J. Extracell. Vesicles 4, 26316 (2015).

    PubMed  Google Scholar 

  123. 123.

    van der Meel, R. et al. Smart cancer nanomedicine. Nat. Nanotechnol. 14, 1007–1017 (2019).

    PubMed  PubMed Central  Google Scholar 

  124. 124.

    Zipkin, M. Exosome redux. Nat. Biotechnol. 37, 1395–1400 (2019).

    CAS  PubMed  Google Scholar 

  125. 125.

    US National Library of Medicine. (2018).

  126. 126.

    Gorgens, A. et al. Optimisation of imaging flow cytometry for the analysis of single extracellular vesicles by using fluorescence-tagged vesicles as biological reference material. J. Extracell. Vesicles 8, 1587567 (2019).

    PubMed  PubMed Central  Google Scholar 

  127. 127.

    Ricklefs, F. L. et al. Imaging flow cytometry facilitates multiparametric characterization of extracellular vesicles in malignant brain tumours. J. Extracell. Vesicles 8, 1588555 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Jones, P. S. et al. Characterization of plasma-derived protoporphyrin-IX-positive extracellular vesicles following 5-ALA use in patients with malignant glioma. EBioMedicine 48, 23–35 (2019).

    PubMed  PubMed Central  Google Scholar 

  129. 129.

    de Jong, O. G. et al. A CRISPR-Cas9-based reporter system for single-cell detection of extracellular vesicle-mediated functional transfer of RNA. Nat. Commun. 11, 1113 (2020).

    PubMed  PubMed Central  Google Scholar 

  130. 130.

    Liang, K. et al. Nanoplasmonic quantification of tumor-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. Nat. Biomed. Eng. (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Wang, J. et al. Tracking extracellular vesicle phenotypic changes enables treatment monitoring in melanoma. Sci. Adv. 6, eaax3223 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Abusamra, A. J. et al. Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis. Blood Cell Mol. Dis. 35, 169–173 (2005).

    CAS  Google Scholar 

  133. 133.

    Rivoltini, L. et al. TNF-related apoptosis-inducing ligand (TRAIL)-armed exosomes deliver proapoptotic signals to tumor site. Clin. Cancer Res. 22, 3499–3512 (2016).

    CAS  PubMed  Google Scholar 

  134. 134.

    Ghossoub, R. et al. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat. Commun. 5, 3477 (2014).

    PubMed  Google Scholar 

  135. 135.

    Roucourt, B., Meeussen, S., Bao, J., Zimmermann, P. & David, G. Heparanase activates the syndecan-syntenin-ALIX exosome pathway. Cell Res. 25, 412–428 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Ostrowski, M. et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat. Cell Biol. (2010).

  137. 137.

    Bobrie, A. et al. Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Res. 72, 4920–4930 (2012).

    CAS  PubMed  Google Scholar 

  138. 138.

    Zhang, H. & Lyden, D. Asymmetric-flow field-flow fractionation technology for exomere and small extracellular vesicle separation and characterization. Nat. Protoc. 14, 1027–1053 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Zhang, H. et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol. 20, 332–343 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Fedele, C., Singh, A., Zerlanko, B. J., Iozzo, R. V. & Languino, L. R. The alphavbeta6 integrin is transferred intercellularly via exosomes. J. Biol. Chem. 290, 4545–4551 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Bellavia, D. et al. Interleukin 3- receptor targeted exosomes inhibit in vitro and in vivo chronic myelogenous leukemia cell growth. Theranostics 7, 1333–1345 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Yang, Y. et al. Virus-mimetic fusogenic exosomes for direct delivery of integral membrane proteins to target cell membranes. Adv. Mater (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Shtam, T. A. et al. Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun. Signal. 11, 88 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Kim, M. S. et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine 12, 655–664 (2016).

    CAS  PubMed  Google Scholar 

  145. 145.

    Sato, Y. T. et al. Engineering hybrid exosomes by membrane fusion with liposomes. Sci. Rep. 6, 21933 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Fuhrmann, G., Serio, A., Mazo, M., Nair, R. & Stevens, M. M. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J. Control. Rel. 205, 35–44 (2015).

    CAS  Google Scholar 

  147. 147.

    Zhang, H. et al. Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor siRNA. Cancer Sci. 109, 629–641 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Lai, C. P. et al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat. Commun. 6, 7029 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Hung, M. E. & Leonard, J. N. Stabilization of exosome-targeting peptides via engineered glycosylation. J. Biol. Chem. 290, 8166–8172 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150.

    Choi, D. S., Kim, D. K., Kim, Y. K. & Gho, Y. S. Proteomics of extracellular vesicles: Exosomes and ectosomes. Mass. Spectrom. Rev. 34, 474–490 (2015).

    CAS  PubMed  Google Scholar 

  151. 151.

    Van Deun, J. et al. EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat. Methods 14, 228–232 (2017).

    PubMed  Google Scholar 

  152. 152.

    Chevillet, J. R. et al. Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc. Natl Acad. Sci. USA 111, 14888–14893 (2014).

    CAS  PubMed  Google Scholar 

  153. 153.

    Patch, A. M. et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature 521, 489–494 (2015).

    CAS  PubMed  Google Scholar 

  154. 154.

    Plebanek, M. P. et al. Pre-metastatic cancer exosomes induce immune surveillance by patrolling monocytes at the metastatic niche. Nat. Commun. 8, 1319 (2017).

    PubMed  PubMed Central  Google Scholar 

  155. 155.

    Zomer, A. et al. In Vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 161, 1046–1057 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156.

    Ludwig, N. & Whiteside, T. L. Potential roles of tumor-derived exosomes in angiogenesis. Expert Opin. Ther. Targets 22, 409–417 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Webber, J. P. et al. Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene 34, 290–302 (2015).

    CAS  PubMed  Google Scholar 

  158. 158.

    Yokoi, A. et al. Malignant extracellular vesicles carrying MMP1 mRNA facilitate peritoneal dissemination in ovarian cancer. Nat. Commun. 8, 14470 (2017).

    PubMed  PubMed Central  Google Scholar 

  159. 159.

    Luga, V. et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151, 1542–1556 (2012).

    CAS  PubMed  Google Scholar 

  160. 160.

    Zhang, L. et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527, 100–104 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


The authors thank M. Smyth and M. Ernst for their comments and suggestions during the writing process. It is with regret that not all relevant studies could be cited due to space limitations. This Review was supported by Australian National Breast Cancer Foundation (IIRS-18-159) and Australia National Health and Medical Research Council (APP1185907) grants to A.M. R.J.L. is supported by the CSIRO Synthetic Biology Future Science Platform.

Author information




The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Andreas Möller.

Ethics declarations

Competing interests

A.M. and R.J.L. are listed as inventors on patents owned by the QIMR Berghofer Medical Research Institute on the use of extracellular vesicles as a cancer biomarker.

Additional information

Peer review information

Nature Reviews Cancer thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



The in vivo localization at which an extracellular vesicle accumulates as a result of size or surface content.

Recipient cells

Cells that, in the extracellular vesicle context, take up extracellular vesicles by one or several mechanisms, including for example receptor-mediated uptake, phagocytosis, macropinocytosis or various forms of endocytosis.


The term used to classify vesicles that are directly formed by budding of the plasma membrane.

sEV cargo

The content of a small extracellular vesicle (sEV), which includes proteins, nucleic acids and lipids, as well as metabolites, derived from the cell of origin and/or artificially engineered into sEVs.

Liquid biopsy

The use of bodily fluids to provide information on the presence (or absence) of certain conditions, including molecular information (for example, genetic alterations), as an alternative and/or addition to obtaining tissue biopsy samples.


Targeted preferentially and/or specifically to a certain individual organ or tissue in the body.

M1 macrophages

Subset of macrophages with a proinflammatory phenotype, including the secretion of IL-6 and tumour necrosis factor.

Chimeric antigen receptor

(CAR). An engineered, artificial cell surface receptor that bestows a specific function on the cell.


Small proteins that are engineered antibody equivalents to specifically recognize and bind target sequences, with an intentional use in diagnostic and therapeutic applications.

Optogenetic tools

Optogenetic tools utilise light-sensitive proteins for precise spatial and temporal control of protein activity.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Möller, A., Lobb, R.J. The evolving translational potential of small extracellular vesicles in cancer. Nat Rev Cancer 20, 697–709 (2020).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing