Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The leukaemia stem cell: similarities, differences and clinical prospects in CML and AML

Abstract

For two decades, leukaemia stem cells (LSCs) in chronic myeloid leukaemia (CML) and acute myeloid leukaemia (AML) have been advanced paradigms for the cancer stem cell field. In CML, the acquisition of the fusion tyrosine kinase BCR–ABL1 in a haematopoietic stem cell drives its transformation to become a LSC. In AML, LSCs can arise from multiple cell types through the activity of a number of oncogenic drivers and pre-leukaemic events, adding further layers of context and genetic and cellular heterogeneity to AML LSCs not observed in most cases of CML. Furthermore, LSCs from both AML and CML can be refractory to standard-of-care therapies and persist in patients, diversify clonally and serve as reservoirs to drive relapse, recurrence or progression to more aggressive forms. Despite these complexities, LSCs in both diseases share biological features, making them distinct from other CML or AML progenitor cells and from normal haematopoietic stem cells. These features may represent Achilles’ heels against which novel therapies can be developed. Here, we review many of the similarities and differences that exist between LSCs in CML and AML and examine the therapeutic strategies that could be used to eradicate them.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scientific and clinical milestones relevant to CML and AML LSCs.
Fig. 2: The evolving LSC.
Fig. 3: The epigenetic and metabolic axis in LSCs.

Similar content being viewed by others

References

  1. Nowell, P. C. & Hungerford, D. A. Chromosome studies in human leukemia. II. Chronic granulocytic leukemia. J. Natl Cancer Inst. 27, 1013–1035 (1961).

    CAS  PubMed  Google Scholar 

  2. Rowley, J. D. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243, 290–293 (1973).

    CAS  PubMed  Google Scholar 

  3. Heisterkamp, N. et al. Localization of the c-ab1 oncogene adjacent to a translocation break point in chronic myelocytic leukaemia. Nature 306, 239–242 (1983).

    CAS  PubMed  Google Scholar 

  4. Hehlmann, R. How I treat CML blast crisis. Blood 120, 737–747 (2012).

    CAS  PubMed  Google Scholar 

  5. Cortes, J. E. et al. Final 5-year study results of DASISION: the Dasatinib versus Imatinib Study in Treatment-Naive Chronic Myeloid Leukemia Patients Trial. J. Clin. Oncol. 34, 2333–2340 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hochhaus, A. et al. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia 30, 1044–1054 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hochhaus, A. et al. Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N. Engl. J. Med. 376, 917–927 (2017). This study highlights the safety and clinical benefit of long-term imatinib treatment for patients with CML based on more than 10 years of follow-up.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mahon, F. X. et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 11, 1029–1035 (2010). This was the first study to demonstrate that a minority of patients with CML can safely discontinue long-term TKI therapy and achieve TFR.

    CAS  PubMed  Google Scholar 

  9. Ross, D. M. et al. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood 122, 515–522 (2013).

    CAS  PubMed  Google Scholar 

  10. Huang, X., Cortes, J. & Kantarjian, H. Estimations of the increasing prevalence and plateau prevalence of chronic myeloid leukemia in the era of tyrosine kinase inhibitor therapy. Cancer 118, 3123–3127 (2012).

    PubMed  Google Scholar 

  11. Papaemmanuil, E. et al. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 374, 2209–2221 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Arber, D. A. et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127, 2391–2405 (2016).

    CAS  PubMed  Google Scholar 

  13. Short, N.J., Kantarjian, H., Ravandi, F. & Daver, N. Emerging treatment paradigms with FLT3 inhibitors in acute myeloid leukemia. Ther. Adv. Hematol. 10, 2040620719827310 (2019).

  14. Wei, A. H. & Tiong, I. S. Midostaurin, enasidenib, CPX-351, gemtuzumab ozogamicin, and venetoclax bring new hope to AML. Blood 130, 2469–2474 (2017).

    CAS  PubMed  Google Scholar 

  15. Daver, N., Schlenk, R. F., Russell, N. H. & Levis, M. J. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia 33, 299–312 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Medeiros, B. C., Chan, S. M., Daver, N. G., Jonas, B. A. & Pollyea, D. A. Optimizing survival outcomes with post-remission therapy in acute myeloid leukemia. Am. J. Hematol. 94, 803–811 (2019).

    PubMed  PubMed Central  Google Scholar 

  17. Levin, R. H. et al. Persistent mitosis of transfused homologous leukocytes in children receiving antileukemic therapy. Science 142, 1305–1311 (1963).

    CAS  PubMed  Google Scholar 

  18. Clarkson, B., Ohkita, T., Ota, K. & Fried, J. Studies of cellular proliferation in human leukemia. I. Estimation of growth rates of leukemic and normal hematopoietic cells in two adults with acute leukemia given single injections of tritiated thymidine. J. Clin. Invest. 46, 506–529 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fialkow, P. J. The origin and development of human tumors studied with cell markers. N. Engl. J. Med. 291, 26–35 (1974).

    CAS  PubMed  Google Scholar 

  20. Griffin, J. D. & Lowenberg, B. Clonogenic cells in acute myeloblastic leukemia. Blood 68, 1185–1195 (1986).

    CAS  PubMed  Google Scholar 

  21. Lapidot, T. et al. A cell initiating human acute myeloid leukemia after transplantation into SCID mice. Nature 367, 645–648 (1994).

    CAS  PubMed  Google Scholar 

  22. Holyoake, T., Jiang, X., Eaves, C. & Eaves, A. Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood 94, 2056–2064 (1999).

    CAS  PubMed  Google Scholar 

  23. Ishikawa, F. et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat. Biotechnol. 25, 1315–1321 (2007).

    CAS  PubMed  Google Scholar 

  24. Chu, S. et al. Persistence of leukemia stem cells in chronic myelogenous leukemia patients in prolonged remission with imatinib treatment. Blood 118, 5565–5572 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chomel, J. C. et al. Leukemic stem cell persistence in chronic myeloid leukemia patients with sustained undetectable molecular residual disease. Blood 118, 3657–3660 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bhatia, R. et al. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 101, 4701–4707 (2003).

    CAS  PubMed  Google Scholar 

  27. Jordan, C. T., Guzman, M. L. & Noble, M. Cancer stem cells. N. Engl. J. Med. 355, 1253–1261 (2006).

    CAS  PubMed  Google Scholar 

  28. Farge, T. et al. Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov. 7, 716–735 (2017). This paper describes the metabolic state of the leukaemic cells that survive chemotherapy in mouse models and challenges the long-held view that chemotherapy does not target LSCs.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Boyd, A. L. et al. Identification of chemotherapy-induced leukemic-regenerating cells reveals a transient vulnerability of human AML recurrence. Cancer Cell 34, 483–498 (2018). This paper describes how the leukaemic cells that survive chemotherapy in mouse models and in patients are different from LSCs and have transient molecular features that are targetable.

    CAS  PubMed  Google Scholar 

  30. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730–737 (1997).

    CAS  PubMed  Google Scholar 

  31. Lemoli, R. M. et al. Molecular and functional analysis of the stem cell compartment of chronic myelogenous leukemia reveals the presence of a CD34 cell population with intrinsic resistance to imatinib. Blood 114, 5191–5200 (2009).

    CAS  PubMed  Google Scholar 

  32. Jamieson, C. H. M. et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med. 351, 657–667 (2004).

    CAS  PubMed  Google Scholar 

  33. Kinstrie, R. et al. Heterogeneous leukemia stem cells in myeloid blast phase chronic myeloid leukemia. Blood Adv. 1, 160–169 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tanizaki, R. et al. Irrespective of CD34 expression, lineage-committed cell fraction reconstitutes and re-establishes transformed Philadelphia chromosome-positive leukemia in NOD/SCID/IL-2Rγc-/- mice. Cancer Sci. 101, 631–638 (2010).

    CAS  PubMed  Google Scholar 

  35. Eppert, K. et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat. Med. 17, 1086–1093 (2011). This paper describes how LSC functional assays, when combined with global transcriptome profiling, can be used to identify stem cell mRNA signatures that are linked to prognosis.

    CAS  PubMed  Google Scholar 

  36. Goardon, N. et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 19, 138–152 (2011).

    CAS  PubMed  Google Scholar 

  37. Quek, L. et al. Genetically distinct leukemic stem cells in human CD34 acute myeloid leukemia are arrested at a hemopoietic precursor-like stage. J. Exper. Med. 213, 1513–1535 (2016).

    CAS  Google Scholar 

  38. Somervaille, T. C. P. & Cleary, M. L. Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell 10, 257–268 (2006).

    CAS  PubMed  Google Scholar 

  39. Kirstetter, P. et al. Modeling of C/EBPα mutant acute myeloid leukemia reveals a common expression signature of committed myeloid leukemia-initiating cells. Cancer Cell 13, 299–310 (2008).

    CAS  PubMed  Google Scholar 

  40. Somervaille, T. C. P. et al. Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. Cell Stem Cell 4, 129–140 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ailles, L. E., Gerhard, B. & Hogge, D. E. Detection and characterization of primitive malignant and normal progenitors in patients with acute myelogenous leukemia using long-term coculture with supportive feeder layers and cytokines. Blood 90, 2555–2564 (1997).

    CAS  PubMed  Google Scholar 

  42. Udomsakdi, C. et al. Rapid decline of chronic myeloid leukemic cells in long-term culture due to a defect at the leukemic stem cell level. Proc. Natl Acad. Sci. USA 89, 6192–6196 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Dick, J. E. Stem cell concepts renew cancer research. Blood 112, 4793–4807 (2008).

    CAS  PubMed  Google Scholar 

  44. Reinisch, A. et al. A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nat. Med. 22, 812–821 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Griessinger, E. et al. Acute myeloid leukemia xenograft success prediction: saving time. Exp. Hematol. 59, 66–71 (2018).

    PubMed  PubMed Central  Google Scholar 

  46. Pearce, D. J. et al. AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML. Blood 107, 1166–1173 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ran, D. et al. Aldehyde dehydrogenase activity among primary leukemia cells is associated with stem cell features and correlates with adverse clinical outcomes. Exp. Hematol. 37, 1423–1434 (2009).

    CAS  PubMed  Google Scholar 

  48. Hope, K. J., Jin, L. Q. & Dick, J. E. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat. Immunol. 5, 738–743 (2004).

    CAS  PubMed  Google Scholar 

  49. Vargaftig, J. et al. Frequency of leukemic initiating cells does not depend on the xenotransplantation model used. Leukemia 26, 858–860 (2012).

    CAS  PubMed  Google Scholar 

  50. Wunderlich, M. et al. AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia 24, 1785–1788 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Cosgun, K. N. et al. Kit regulates HSC engraftment across the human-mouse species barrier. Cell Stem Cell 15, 227–238 (2014).

    CAS  PubMed  Google Scholar 

  52. McIntosh, B. E. et al. Nonirradiated NOD,B6.SCID Il2rγ -/- Kit W41/W41 (NBSGW) mice support multilineage engraftment of human hematopoietic cells. Stem Cell Rep. 4, 171–180 (2015).

    CAS  Google Scholar 

  53. Miller, P. H. et al. Analysis of parameters that affect human hematopoietic cell outputs in mutant c-kit-immunodeficient mice. Exp. Hematol. 48, 41–49 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Krevvata, M. et al. Cytokines increase engraftment of human acute myeloid leukemia cells in immunocompromised mice but not engraftment of human myelodysplastic syndrome cells. Haematologica 103, 959–971 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Klco, J. M. et al. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell 25, 379–392 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Nakamichi, N. et al. Enhanced and accelerated repopulation of mutant c-kit immunodeficient mice by transplants of primary chronic and acute myeloid leukemic human cells. Blood 128, 4537–4537 (2016).

    Google Scholar 

  57. Gerber, J. M. et al. Characterization of chronic myeloid leukemia stem cells. Am. J. Hematol. 86, 31–37 (2011).

    PubMed  PubMed Central  Google Scholar 

  58. Koschmieder, S. et al. Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR-ABL leukemogenesis. Blood 105, 324–334 (2005).

    CAS  PubMed  Google Scholar 

  59. Zhang, B. et al. Heterogeneity of leukemia-initiating capacity of chronic myelogenous leukemia stem cells. J. Clin. Invest. 126, 975–991 (2016).

    PubMed  PubMed Central  Google Scholar 

  60. Guan, Y., Gerhard, B. & Hogge, D. E. Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood 101, 3142–3149 (2003).

    CAS  PubMed  Google Scholar 

  61. Terpstra, W. et al. Fluorouracil selectively spares acute myeloid leukemia cells with long-term growth abilities in immunodeficient mice and in culture. Blood 88, 1944–1950 (1996).

    CAS  PubMed  Google Scholar 

  62. Lechman, E. R. et al. miR-126 regulates distinct self-renewal outcomes in normal and malignant hematopoietic stem cells. Cancer Cell 29, 214–228 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Prost, S. et al. Erosion of the chronic myeloid leukaemia stem cell pool by PPARγ agonists. Nature 525, 380–383 (2015). This study describes how the re-purposed clinical agent pioglitazone, when combined with TKIs, eradicates quiescent CML LSCs by targeting the PPARγ–STAT5–HIF2α–CITED2 pathway.

    CAS  PubMed  Google Scholar 

  64. Iwasaki, M., Liedtke, M., Gentles, A. J. & Cleary, M. L. CD93 marks a non-quiescent human leukemia stem cell population and is required for development of MLL-rearranged acute myeloid leukemia. Cell Stem Cell 17, 412–421 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Saito, Y. et al. Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nat. Biotechnol. 28, 275–280 (2010).

    CAS  PubMed  Google Scholar 

  66. Baquero, P. et al. Targeting quiescent leukemic stem cells using second generation autophagy inhibitors. Leukemia 33, 981–994 (2019).

    CAS  PubMed  Google Scholar 

  67. Nieborowska-Skorska, M. et al. Rac2-MRC-cIII-generated ROS cause genomic instability in chronic myeloid leukemia stem cells and primitive progenitors. Blood 119, 4253–4263 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Sallmyr, A. et al. Internal tandem duplication of FLT3 (FLT3/ITD) induces increased ROS production, DNA damage, and misrepair: implications for poor prognosis in AML. Blood 111, 3173–3182 (2008).

    CAS  PubMed  Google Scholar 

  69. Adane, B. et al. The hematopoietic oxidase NOX2 regulates self-renewal of leukemic stem cells. Cell Rep. 27, 238–254 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Moloney, J. N., Stanicka, J. & Cotter, T. G. Subcellular localization of the FLT3-ITD oncogene plays a significant role in the production of NOX- and p22(phox)-derived reactive oxygen species in acute myeloid leukemia. Leuk. Res. 52, 34–42 (2017).

    CAS  PubMed  Google Scholar 

  71. Kuntz, E. M. et al. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat. Med. 23, 1234–1240 (2017). This paper demonstrates that CML LSCs are metabolically distinct from normal HSCs and rely on upregulated OXPHOS for their survival.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Skrtic, M. et al. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 20, 674–688 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ito, K. et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat. Med. 12, 446–451 (2006).

    CAS  PubMed  Google Scholar 

  74. Bolton-Gillespie, E. et al. Genomic instability may originate from imatinib-refractory chronic myeloid leukemia stem cells. Blood 121, 4175–4183 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lagadinou, E. D. et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12, 329–341 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Pei, S. et al. AMPK/FIS1-mediated mitophagy is required for self-renewal of human AML stem cells. Cell Stem Cell 23, 86–100 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hao, X. X. et al. Metabolic imaging reveals a unique preference of symmetric cell division and homing of leukemia-initiating cells in an endosteal niche. Cell Metab. 29, 950–965 (2019). This study describes a new method using in vivo imaging, which defines the molecular features and localization of AML LSCs in the bone marrow niche.

    CAS  PubMed  Google Scholar 

  78. Grossmann, V. et al. A deep-sequencing study of chronic myeloid leukemia patients in blast crisis (BC-CML) detects mutations in 76.9% of cases. Leukemia 25, 557–560 (2011).

    CAS  PubMed  Google Scholar 

  79. Rebechi, M. T. & Pratz, K. W. Genomic instability is a principle pathologic feature of FLT3 ITD kinase activity in acute myeloid leukemia leading to clonal evolution and disease progression. Leuk. Lymphoma 58, 2040–2050 (2017).

    CAS  PubMed Central  Google Scholar 

  80. Cramer, K. et al. BCR/ABL and other kinases from chronic myeloproliferative disorders stimulate single-strand annealing, an unfaithful DNA double-strand break repair. Cancer Res. 68, 6884–6888 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Stoklosa, T. et al. BCR/ABL inhibits mismatch repair to protect from apoptosis and induce point mutations. Cancer Res. 68, 2576–2580 (2008).

    CAS  PubMed  Google Scholar 

  82. Cramer-Morales, K. et al. Personalized synthetic lethality induced by targeting RAD52 in leukemias identified by gene mutation and expression profile. Blood 122, 1293–1304 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Holyoake, T. L. & Vetrie, D. The chronic myeloid leukemia stem cell: stemming the tide of persistence. Blood 129, 1595–1606 (2017).

    CAS  PubMed  Google Scholar 

  84. Pearsall, E. A., Lincz, L. F. & Skelding, K. A. The role of DNA repair pathways in AML chemosensitivity. Curr. Drug Targets 19, 1205–1219 (2018).

    CAS  PubMed  Google Scholar 

  85. Ho, T. C. et al. Evolution of acute myelogenous leukemia stem cell properties after treatment and progression. Blood 128, 1671–1678 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kumari, A., Brendel, C., Hochhaus, A., Neubauer, A. & Burchert, A. Low BCR-ABL expression levels in hematopoietic precursor cells enable persistence of chronic myeloid leukemia under imatinib. Blood 119, 530–539 (2012).

    CAS  PubMed  Google Scholar 

  87. Ng, S. W. K. et al. A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature 540, 433–437 (2016).

    CAS  PubMed  Google Scholar 

  88. Jung, N., Dai, B., Gentles, A. J., Majeti, R. & Feinberg, A. P. An LSC epigenetic signature is largely mutation independent and implicates the HOXA cluster in AML pathogenesis. Nat. Commun. 6, 8489 (2015).

    CAS  PubMed  Google Scholar 

  89. Krivtsov, A. V. et al. Cell of origin determines clinically relevant subtypes of MLL-rearranged AML. Leukemia 27, 852–860 (2013).

    CAS  PubMed  Google Scholar 

  90. Laverdiere, I. et al. Leukemic stem cell signatures identify novel therapeutics targeting acute myeloid leukemia. Blood Cancer J. 8, 52 (2018).

    PubMed  PubMed Central  Google Scholar 

  91. Graham, S. M., Vass, J. K., Holyoake, T. L. & Graham, G. J. Transcriptional analysis of quiescent and proliferating CD34+ human hemopoietic cells from normal and chronic myeloid leukemia sources. Stem Cells 25, 3111–3120 (2007).

    CAS  PubMed  Google Scholar 

  92. Abraham, S. A. et al. Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells. Nature 534, 341–346 (2016). Using an unbiased systems biology approach, this paper describes the identification of p53 and MYC as critical regulators of CML LSC survival.

    PubMed  PubMed Central  Google Scholar 

  93. Scott, M. T. et al. Epigenetic reprogramming sensitizes CML stem cells to combined EZH2 and tyrosine kinase inhibition. Cancer Discov. 6, 1248–1257 (2016). This study demonstrates that EZH2 and the histone modification H3K27me3 are dysregulated in CP-CML, thus making LSCs sensitive to EZH2 inhibition.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lu, C. et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483, 474–478 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Corces, M. R. et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat. Genet. 48, 1193–1203 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Jan, M. et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci. Transl. Med. 4, 149ra118 (2012).

    PubMed  PubMed Central  Google Scholar 

  97. Shlush, L. I. et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506, 328–333 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Gilliland, D. G. & Griffin, J. D. The roles of FLT3 in hematopoiesis and leukemia. Blood 100, 1532–1542 (2002).

    CAS  PubMed  Google Scholar 

  99. Zheng, R. & Small, D. Mutant FLT3 signaling contributes to a block in myeloid differentiation. Leuk. Lymphoma 46, 1679–1687 (2005).

    CAS  PubMed  Google Scholar 

  100. Lal, R. et al. Somatic TP53 mutations characterize preleukemic stem cells in acute myeloid leukemia. Blood 129, 2587–2591 (2017).

    CAS  PubMed  Google Scholar 

  101. Cancer Genome Atlas Research Network. et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013).

    Google Scholar 

  102. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

    PubMed  PubMed Central  Google Scholar 

  103. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    PubMed  PubMed Central  Google Scholar 

  104. Schmidt, M. et al. Molecular-defined clonal evolution in patients with chronic myeloid leukemia independent of the BCR-ABL status. Leukemia 28, 2292–2299 (2014).

    CAS  PubMed  Google Scholar 

  105. Kim, T. et al. Spectrum of somatic mutation dynamics in chronic myeloid leukemia following tyrosine kinase inhibitor therapy. Blood 129, 38–47 (2017).

    CAS  PubMed  Google Scholar 

  106. Branford, S. et al. Integrative genomic analysis reveals cancer-associated mutations at diagnosis of CML in patients with high-risk disease. Blood 132, 948–961 (2018).

    CAS  PubMed  Google Scholar 

  107. Huntly, B. J. et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6, 587–596 (2004).

    CAS  PubMed  Google Scholar 

  108. George, J. et al. Leukaemia cell of origin identified by chromatin landscape of bulk tumour cells. Nat. Commun. 7, 12166 (2016).

    PubMed  PubMed Central  Google Scholar 

  109. Gunsilius, E. et al. Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet 355, 1688–1691 (2000).

    CAS  PubMed  Google Scholar 

  110. Foley, S. B. et al. Expression of BCR/ABL p210 from a knockin allele enhances bone marrow engraftment without inducing neoplasia. Cell Rep. 5, 51–60 (2013).

    CAS  PubMed  Google Scholar 

  111. Cheung, A. M. et al. Analysis of the clonal growth and differentiation dynamics of primitive barcoded human cord blood cells in NSG mice. Blood 122, 3129–3137 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Biernaux, C., Loos, M., Sels, A., Huez, G. & Stryckmans, P. Detection of major Bcr-Abl gene expression at a very low level in blood cells of some healthy individuals. Blood 86, 3118–3122 (1995).

    CAS  PubMed  Google Scholar 

  113. Easwaran, H., Tsai, H. C. & Baylin, S. B. Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol. Cell 54, 716–727 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Flavahan, W. A., Gaskell, E. & Bernstein, B. E. Epigenetic plasticity and the hallmarks of cancer. Science 357, eaal2380 (2017).

    PubMed  PubMed Central  Google Scholar 

  115. Corces-Zimmerman, M. R., Hong, W. J., Weissman, I. L., Medeiros, B. C. & Majeti, R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc. Natl Acad. Sci. USA 111, 2548–2553 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Rothenberg-Thurley, M. et al. Persistence of pre-leukemic clones during first remission and risk of relapse in acute myeloid leukemia. Leukemia 32, 1598–1608 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Graham, S. M. et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99, 319–325 (2002).

    CAS  PubMed  Google Scholar 

  118. Jorgensen, H. G., Allan, E. K., Jordanides, N. E., Mountford, J. C. & Holyoake, T. L. Nilotinib exerts equipotent antiproliferative effects to imatinib and does not induce apoptosis in CD34+ CML cells. Blood 109, 4016–4019 (2007).

    CAS  PubMed  Google Scholar 

  119. Warfvinge, R. et al. Single-cell molecular analysis defines therapy response and immunophenotype of stem cell subpopulations in CML. Blood 129, 2384–2394 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Giustacchini, A. et al. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia. Nat. Med. 23, 692–702 (2017). This study utilizes single-cell transcriptomics to characterize LSCs in patients with CML and identifies the mRNA signatures of LSCs that persist during TKI therapy.

    CAS  PubMed  Google Scholar 

  121. Corbin, A. S. et al. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J. Clin. Invest. 121, 396–409 (2011). This paper details how CML LSCs are not oncogene addicted, thus allowing them to survive in the absence of BCR–ABL1 kinase activity.

    CAS  PubMed  Google Scholar 

  122. Hamilton, A. et al. Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood 119, 1501–1510 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Shlush, L. I. et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature 547, 104–108 (2017). This paper describes the genetic and functional approaches used to determine the clonal evolution of chemotherapy-resistant LSCs that drive relapse in AML.

    CAS  PubMed  Google Scholar 

  124. Ding, L. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481, 506–510 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Yilmaz, M. et al. Late relapse in acute myeloid leukemia (AML): clonal evolution or therapy-related leukemia? Blood Cancer J. 9, 7 (2019).

    PubMed  PubMed Central  Google Scholar 

  126. Soverini, S., de Benedittis, C., Mancini, M. & Martinelli, G. Mutations in the BCR-ABL1 kinase domain and elsewhere in chronic myeloid leukemia. Clin. Lymphoma Myeloma Leuk. 15(Suppl.), S120–S128 (2015).

    PubMed  Google Scholar 

  127. Shah, N. P. et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2, 117–125 (2002).

    CAS  PubMed  Google Scholar 

  128. Franke, G.N. et al. Incidence of low level mutations in newly diagnosed CML patients: a substudy of the German Tiger Trial. Blood 130, 252 (2017).

    Google Scholar 

  129. Bumm, T. et al. Emergence of clonal cytogenetic abnormalities in Ph cells in some CML patients in cytogenetic remission to imatinib but restoration of polyclonal hematopoiesis in the majority. Blood 101, 1941–1949 (2003).

    CAS  PubMed  Google Scholar 

  130. De Melo, V. A. S. et al. Philadelphia-negative clonal hematopoiesis is a significant feature of dasatinib therapy for chronic myeloid leukemia. Blood 110, 3086–3087 (2007).

    PubMed  Google Scholar 

  131. Shih, A. H. et al. Mutational cooperativity linked to combinatorial epigenetic gain of function in acute myeloid leukemia. Cancer Cell 27, 502–515 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Wong, S. H. K. et al. The H3K4-methyl epigenome regulates leukemia stem cell oncogenic potential. Cancer Cell 28, 198–209 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Bernt, K. M. et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 20, 66–78 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Li, S. et al. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nat. Med. 22, 792–799 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Figueroa, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Glass, J. L. et al. Epigenetic identity in AML depends on disruption of nonpromoter regulatory elements and is affected by antagonistic effects of mutations in epigenetic modifiers. Cancer Discov. 7, 868–883 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Figueroa, M. E. et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 17, 13–27 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Will, B. et al. Minimal PU.1 reduction induces a preleukemic state and promotes development of acute myeloid leukemia. Nat. Med. 21, 1172–1181 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Assi, S. A. et al. Subtype-specific regulatory network rewiring in acute myeloid leukemia. Nat. Genet. 51, 151–162 (2019). This paper demonstrates how global chromatin and transcriptional profiling can be used to assemble gene regulatory networks in AML subtypes.

    CAS  PubMed  Google Scholar 

  140. Harris, W. J. et al. The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell 21, 473–487 (2012).

    CAS  PubMed  Google Scholar 

  141. Basheer, F. et al. Contrasting requirements during disease evolution identify EZH2 as a therapeutic target in AML. J. Exp. Med. 216, 966–981 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Li, L. et al. Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib. Cancer Cell 21, 266–281 (2012). This study describes how the deacetylase SIRT1 plays a critical role in regulating p53 activity in CML LSCs to promote their survival.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478, 524–528 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Koschmieder, S. & Vetrie, D. Epigenetic dysregulation in chronic myeloid leukaemia: a myriad of mechanisms and therapeutic options. Semin. Cancer Biol. 51, 180–197 (2018).

    CAS  PubMed  Google Scholar 

  145. Deshpande, A. J. et al. AF10 regulates progressive H3K79 methylation and HOX gene expression in diverse AML subtypes. Cancer Cell 26, 896–908 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Riether, C. et al. Tyrosine kinase inhibitor-induced CD70 expression mediates drug resistance in leukemia stem cells by activating Wnt signaling. Sci. Transl. Med. 7, 298ra119 (2015).

    PubMed  Google Scholar 

  147. Jin, Y. et al. Targeting methyltransferase PRMT5 eliminates leukemia stem cells in chronic myelogenous leukemia. J. Clin. Invest. 126, 3961–3980 (2016).

    PubMed  PubMed Central  Google Scholar 

  148. Abraham, A. et al. SIRT1 regulates metabolism and leukemogenic potential in CML stem cells. J. Clin. Invest. 129, 2685–2701 (2019).

    PubMed  PubMed Central  Google Scholar 

  149. Fong, C. Y. et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature 525, 538–542 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Reid, M. A., Dai, Z. W. & Locasale, J. W. The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat. Cell Biol. 19, 1298–1306 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Ye, H. et al. Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell Stem Cell 19, 23–37 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Hattori, A. et al. Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia. Nature 545, 500–504 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Ward, P. S. et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17, 225–234 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Losman, J. A. et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 339, 1621–1625 (2013).

    CAS  PubMed  Google Scholar 

  156. Wang, F. et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 340, 622–626 (2013).

    CAS  PubMed  Google Scholar 

  157. Warburg, O., Wind, F. & Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 8, 519–530 (1927).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Simsek, T. et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7, 380–390 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang, Y. H. et al. Cell-state-specific metabolic dependency in hematopoiesis and leukemogenesis. Cell 158, 1309–1323 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Molina, J. R. et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat. Med. 24, 1036–1046 (2018).

    CAS  PubMed  Google Scholar 

  161. Konopleva, M. et al. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. 6, 1106–1117 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Jones, C. L. et al. Inhibition of amino acid metabolism selectively targets human leukemia stem cells. Cancer Cell 35, 333–335 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Pollyea, D. A. et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Nat. Med. 24, 1859–1866 (2018). This study shows that venetoclax and azacitidine synergize to disrupt the TCA cycle and eradicate AML LSCs.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Sriskanthadevan, S. et al. AML cells have low spare reserve capacity in their respiratory chain that renders them susceptible to oxidative metabolic stress. Blood 125, 2120–2130 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Chen, Y., Hu, Y., Zhang, H., Peng, C. & Li, S. Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia. Nat. Genet. 41, 783–792 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Chen, Y. et al. Arachidonate 15-lipoxygenase is required for chronic myeloid leukemia stem cell survival. J. Clin. Invest. 124, 3847–3862 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Saussele, S. et al. Discontinuation of tyrosine kinase inhibitor therapy in chronic myeloid leukaemia (EURO-SKI): a prespecified interim analysis of a prospective, multicentre, non-randomised, trial. Lancet Oncol. 19, 747–757 (2018).

    CAS  PubMed  Google Scholar 

  168. Clark, R. E. et al. De-escalation of tyrosine kinase inhibitor therapy before complete treatment discontinuation in patients with chronic myeloid leukaemia (DESTINY): a non-randomised, phase 2 trial. Lancet Haematol. 6, E375–E383 (2019).

    PubMed  Google Scholar 

  169. O’Hare, T. et al. AP24534, a Pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell 16, 401–412 (2009).

    PubMed  PubMed Central  Google Scholar 

  170. Cortes, J. E. et al. Ponatinib in refractory philadelphia chromosome-positive leukemias. N. Engl. J. Med. 367, 2075–2088 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Mian, A. A. et al. PF-114, a potent and selective inhibitor of native and mutated BCR/ABL is active against Philadelphia chromosome-positive (Ph+) leukemias harboring the T315I mutation. Leukemia 29, 1104–1114 (2015).

    CAS  PubMed  Google Scholar 

  172. Wylie, A. A. et al. The allosteric inhibitor ABL001 enables dual targeting of BCR-ABL1. Nature 543, 733–737 (2017).

    CAS  PubMed  Google Scholar 

  173. Dierks, C. et al. Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 14, 238–249 (2008).

    CAS  PubMed  Google Scholar 

  174. Irvine, D. A. et al. Deregulated Hedgehog pathway signaling is inhibited by the smoothened antagonist LDE225 (Sonidegib) in chronic phase chronic myeloid leukaemia. Sci. Rep. 6, 25476 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Shah, N. P. et al. Dasatinib plus Smoothened (SMO) inhibitor BMS-833923 in chronic myeloid leukemia (CML) with resistance or suboptimal response to a prior tyrosine kinase inhibitor (TKI): phase I study CA180323. Blood 124, 4539–4539 (2014).

    Google Scholar 

  176. Ottmann, O. et al. Smoothened (Smo) inhibitor Lde225 combined with nilotinib in patients with chronic myeloid leukemia (CML) resistant/intolerant (R/I) to at least 1 prior tyrosine kinase inhibitor: a phase 1b study. Haematologica 100, 62–63 (2015).

    Google Scholar 

  177. Cortes, J. E. et al. Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Leukemia 33, 379–389 (2019).

    CAS  PubMed  Google Scholar 

  178. Savona, M. R. et al. Phase Ib study of glasdegib, a Hedgehog pathway inhibitor, in combination with standard chemotherapy in patients with AML or high-risk MDS. Clin. Cancer Res. 24, 2294–2303 (2018).

    CAS  PubMed  Google Scholar 

  179. Druker, B. J. et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. 2, 561–566 (1996).

    CAS  PubMed  Google Scholar 

  180. Jorgensen, H. G. et al. Intermittent exposure of primitive quiescent chronic myeloid leukemia cells to granulocyte-colony stimulating factor in vitro promotes their elimination by imatinib mesylate. Clin. Cancer Res. 12, 626–633 (2006).

    CAS  PubMed  Google Scholar 

  181. Gallipoli, P. et al. Safety and efficacy of pulsed imatinib with or without G-CSF versus continuous imatinib in chronic phase chronic myeloid leukaemia patients at 5 years follow-up. Br. J. Haematol. 163, 674–676 (2013).

    CAS  PubMed  Google Scholar 

  182. Milligan, D. W. et al. Fludarabine and cytosine are less effective than standard ADE chemotherapy in high-risk acute myeloid leukemia, and addition of G-CSF and ATRA are not beneficial: results of the MRC AML-HR randomized trial. Blood 107, 4614–4622 (2006).

    CAS  PubMed  Google Scholar 

  183. Ossenkoppele, G. J. et al. The value of fludarabine in addition to ARA-C and G-CSF in the treatment of patients with high-risk myelodysplastic syndromes and AML in elderly patients. Blood 103, 2908–2913 (2004).

    CAS  PubMed  Google Scholar 

  184. Bhatia, R., Wayner, E. A., McGlave, P. B. & Verfaillie, C. M. Interferon-alpha restores normal adhesion of chronic myelogenous leukemia hematopoietic progenitors to bone marrow stroma by correcting impaired beta 1 integrin receptor function. J. Clin. Invest. 94, 384–391 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Hjorth-Hansen, H. et al. Safety and efficacy of the combination of pegylated interferon-alpha2b and dasatinib in newly diagnosed chronic-phase chronic myeloid leukemia patients. Leukemia 30, 1853–1860 (2016).

    CAS  PubMed  Google Scholar 

  186. Rousselot, P. et al. Pioglitazone together with imatinib in chronic myeloid leukemia: a proof of concept study. Cancer 123, 1791–1799 (2017).

    CAS  PubMed  Google Scholar 

  187. EU Clinical Trials Register. Clinicaltrialsregister.eu https://www.clinicaltrialsregister.eu/ctr-search/search?query=eudract_number:2009-011675-79 (2009).

  188. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02889003?term=NCT02889003&rank=1 (2016).

  189. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02852486?term=NCT02852486&rank=1 (2016).

  190. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02767063?term=NCT02767063&rank=1 (2016).

  191. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/study/NCT02730195?term=NCT02730195&rank=1 (2016).

  192. Faber, K. et al. CDX2-driven leukemogenesis involves KLF4 repression and deregulated PPARγ signaling. J. Clin. Invest. 123, 299–314 (2013).

    CAS  PubMed  Google Scholar 

  193. Yen, K. et al. AG-221, a first-in-class therapy targeting acute myeloid leukemia harboring oncogenic IDH2 mutations. Cancer Discov. 7, 478–493 (2017).

    CAS  PubMed  Google Scholar 

  194. Shih, A. H. et al. Combination targeted therapy to disrupt aberrant oncogenic signaling and reverse epigenetic dysfunction in IDH2- and TET2-mutant acute myeloid leukemia. Cancer Discov. 7, 494–505 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. DiNardo, C. D. et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N. Engl. J. Med. 378, 2386–2398 (2018). This paper reports on the findings of a phase I clinical trial in which the IDH1 inhibitor ivosidenib was evaluated in patients with AML with relapsed or refractory disease.

    CAS  PubMed  Google Scholar 

  196. Stein, E. M. et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 130, 722–731 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Amatangelo, M. D. et al. Enasidenib induces acute myeloid leukemia cell differentiation to promote clinical response. Blood 130, 732–741 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Quek, L. et al. Clonal heterogeneity of acute myeloid leukemia treated with the IDH2 inhibitor enasidenib. Nat. Med. 24, 1167–1177 (2018). This paper describes the genetic evolution of AML clones in patients treated with the IDH2 inhibitor enasidenib.

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Intlekofer, A. M. et al. Acquired resistance to IDH inhibition through trans or cis dimer-interface mutations. Nature 559, 125–129 (2018). This paper describes specific IDH1 and IDH2 mutations that drive resistance to ivosidenib and enasidenib in patients with AML.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Tsapogas, P., Mooney, C. J., Brown, G. & Rolink, A. The cytokine Flt3-ligand in normal and malignant hematopoiesis. Int. J. Mol. Sci. 18, E1115 (2017).

    PubMed  Google Scholar 

  201. Stone, R. M. et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N. Engl. J. Med. 377, 454–464 (2017). This paper reports on the findings of a phase III clinical trial in which the FLT3 inhibitor midostaurin in combination with standard chemotherapy was evaluated in patients with AML with FLT3 mutations.

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Swaminathan, M. et al. The combination of quizartinib with azacitidine or low dose cytarabine is highly active in patients (Pts) with FLT3-ITD mutated myeloid leukemias: interim report of a phase I/II trial. Blood 130, 723–723 (2017).

    Google Scholar 

  203. Zhang, W. G. et al. Reversal of acquired drug resistance in FLT3-mutated acute myeloid leukemia cells via distinct drug combination strategies. Clin. Cancer Res. 20, 2363–2374 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Stolzel, F. et al. Mechanisms of resistance against PKC412 in resistant FLT3-ITD positive human acute myeloid leukemia cells. Ann. Hematol. 89, 653–662 (2010).

    PubMed  Google Scholar 

  205. Sung, P. J., Sugita, M., Koblish, H., Perl, A. E. & Carroll, M. Hematopoietic cytokines mediate resistance to targeted therapy in FLT3-ITD acute myeloid leukemia. Blood Adv. 3, 1061–1072 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Sato, T. et al. FLT3 ligand impedes the efficacy of FLT3 inhibitors in vitro and in vivo. Blood 117, 3286–3293 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Wei, A. H. et al. Venetoclax combined with low-dose cytarabine for previously untreated patients with acute myeloid leukemia: results from a phase Ib/II study. J. Clin. Oncol. 37, 1277–1284 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. DiNardo, C. D. et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood 133, 7–17 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Goff, D. J. et al. A pan-BCL2 inhibitor renders bone-marrow-resident human leukemia stem cells sensitive to tyrosine kinase inhibition. Cell Stem Cell 12, 316–328 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Ko, T. K., Chuah, C. T. H., Huang, J. W. J., Ng, K. P. & Ong, S. T. The BCL2 inhibitor ABT-199 significantly enhances imatinib-induced cell death in chronic myeloid leukemia progenitors. Oncotarget 5, 9033–9038 (2014).

    PubMed  PubMed Central  Google Scholar 

  211. Carter, B. Z. et al. Combined targeting of BCL-2 and BCR-ABL tyrosine kinase eradicates chronic myeloid leukemia stem cells. Sci. Transl. Med. 8, 355ra117 (2016).

    PubMed  PubMed Central  Google Scholar 

  212. Baryawno, N. et al. A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell 177, 1915–1932.e16 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Nguyen, L. V. et al. Barcoding reveals complex clonal dynamics of de novo transformed human mammary cells. Nature 528, 267–271 (2015).

    CAS  PubMed  Google Scholar 

  214. Roeder, I. et al. Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications. Nat. Med. 12, 1181–1184 (2006).

    CAS  PubMed  Google Scholar 

  215. Schepers, K., Campbell, T. B. & Passegue, E. Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell 16, 254–267 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Medyouf, H. The microenvironment in human myeloid malignancies: emerging concepts and therapeutic implications. Blood 129, 1617–1626 (2017).

    CAS  PubMed  Google Scholar 

  217. Pittet, M. J. & Weissleder, R. Intravital imaging. Cell 147, 983–991 (2011).

    CAS  PubMed  Google Scholar 

  218. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Godwin, C. D., Gale, R. P. & Walter, R. B. Gemtuzumab ozogamicin in acute myeloid leukemia. Leukemia 31, 1855–1868 (2017).

    CAS  PubMed  Google Scholar 

  220. Pizzitola, I. et al. Chimeric antigen receptors against CD33/CD123 antigens efficiently target primary acute myeloid leukemia cells in vivo. Leukemia 28, 1596–1605 (2014).

    CAS  PubMed  Google Scholar 

  221. Kenderian, S. S. et al. CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia. Leukemia 29, 1637–1647 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Lo-Coco, F. et al. Gemtuzumab ozogamicin (Mylotarg) as a single agent for molecularly relapsed acute promyelocytic leukemia. Blood 104, 1995–1999 (2004).

    CAS  PubMed  Google Scholar 

  223. Walter, R. B., Appelbaum, F. R., Estey, E. H. & Bernstein, I. D. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood 119, 6198–6208 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Borot, F. et al. Gene-edited stem cells enable CD33-directed immune therapy for myeloid malignancies. Proc. Natl Acad. Sci. USA 116, 11978–11987 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Herrmann, H. et al. CD34+/CD38 stem cells in chronic myeloid leukemia express Siglec-3 (CD33) and are responsive to the CD33-targeting drug gemtuzumab/ozogamicin. Haematologica 97, 219–226 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Jabbour, E. et al. Twice-daily fludarabine and cytarabine combination with or without gentuzumab ozogamicin is effective in patients with relapsed/refractory acute myeloid leukemia, high-risk myelodysplastic syndrome, and blast-phase chronic myeloid leukemia. Clin. Lymphoma Myeloma Leuk. 12, 244–251 (2012).

    CAS  PubMed  Google Scholar 

  227. Sadovnik, I. et al. Expression of CD25 on leukemic stem cells in BCR-ABL1+ CML: potential diagnostic value and functional implications. Exp. Hematol. 51, 17–24 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Touzet, L. et al. CD9 in acute myeloid leukemia: prognostic role and usefulness to target leukemic stem cells. Cancer. Med. 8, 1279–1288 (2019).

    CAS  Google Scholar 

  229. Sadovnik, I. et al. Identification of CD25 as STAT5-dependent growth regulator of leukemic stem cells in Ph+ CML. Clin. Cancer Res. 22, 2051–2061 (2016).

    CAS  PubMed  Google Scholar 

  230. Saito, Y. et al. Identification of therapeutic targets for quiescent, chemotherapy-resistant human leukemia stem cells. Sci.Transl. Med. 2, 17ra9 (2010).

    PubMed  PubMed Central  Google Scholar 

  231. Valent, P. et al. DPPIV (CD26) as a novel stem cell marker in Ph+ chronic myeloid leukaemia. Eur. J. Clin. Invest. 44, 1239–1245 (2014).

    CAS  PubMed  Google Scholar 

  232. Jilani, I. et al. Differences in CD33 intensity between various myeloid neoplasms. Am. J. Clin. Pathol. 118, 560–566 (2002).

    PubMed  Google Scholar 

  233. Chao, M. P., Weissman, I. L. & Majeti, R. The CD47-SIRPα pathway in cancer immune evasion and potential therapeutic implications. Curr. Opin. Immunol. 24, 225–232 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Jaiswal, S. et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138, 271–285 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Oehler, V. G. et al. CD52 expression in leukemic stem/progenitor cells. Blood 116, 2743 (2010).

    Google Scholar 

  236. de Boer, B. et al. Prospective isolation and characterization of genetically and functionally distinct AML subclones. Cancer Cell 34, 674–689.e8 (2018).

    PubMed  Google Scholar 

  237. Greenlee-Wacker, M. C., Galvan, M. D. & Bohlson, S. S. CD93: recent advances and implications in disease. Curr. Drug Targets 13, 411–420 (2012).

    CAS  PubMed  Google Scholar 

  238. Kinstrie, R. et al. CD93 is a novel biomarker of leukemia stem cells in chronic myeloid leukemia. Blood 126, 49–49 (2015).

    Google Scholar 

  239. Hosen, N. et al. CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc. Natl Acad. Sci. USA 104, 11008–11013 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Chung, S. S. et al. CD99 is a therapeutic target on disease stem cells in myeloid malignancies. Sci. Transl. Med. 9, eaaj2025 (2017).

    PubMed  PubMed Central  Google Scholar 

  241. Celik, H. et al. Discovery of first-in-class small molecule CD99 inhibitors for targeted therapy of Ewing sarcoma. Cancer Res. 77 (13 Suppl.), Abstract nr 1933 (2017).

  242. van Rhenen, A. et al. The novel AML stem cell-associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood 110, 2659–2666 (2007).

    PubMed  Google Scholar 

  243. Jaras, M. et al. Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein. Proc. Natl Acad. Sci. USA 107, 16280–16285 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Askmyr, M. et al. Selective killing of candidate AML stem cells by antibody targeting of IL1RAP. Blood 121, 3709–3713 (2013).

    CAS  PubMed  Google Scholar 

  245. Kikushige, Y. et al. TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell 7, 708–717 (2010).

    CAS  PubMed  Google Scholar 

  246. Galton, D. A. G. Myleran in chronic myeloid leukaemia — results of treatment. Lancet 264, 208–213 (1953).

    CAS  PubMed  Google Scholar 

  247. Fishbein, W. N., Carbone, P. P., Freireich, E., Misra, D. & Frei, E. Clinical trials of hydroxyurea in patients with cancer and leukemia. Clin. Pharmacol. Ther. 5, 574–580 (1964).

    CAS  PubMed  Google Scholar 

  248. Doney, K. et al. Treatment of chronic granulocytic leukemia by chemotherapy, total-body irradiation and allogeneic bone-marrow transplantation. Exp. Hematol. 6, 738–747 (1978).

    CAS  PubMed  Google Scholar 

  249. Talpaz, M., Mccredie, K. B., Mavligit, G. M. & Gutterman, J. U. Leukocyte interferon-induced myeloid cytoreduction in chronic myelogenous leukemia. Blood 62, 689–692 (1983).

    CAS  PubMed  Google Scholar 

  250. Shah, N. P. et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305, 399–401 (2004).

    CAS  PubMed  Google Scholar 

  251. Weisberg, E. et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7, 129–141 (2005).

    CAS  PubMed  Google Scholar 

  252. Puttini, M. et al. In vitro and in vivo activity of SKI-606, a novel Src-Abl inhibitor, against imatinib-resistant Bcr-Abl+ neoplastic cells. Cancer Res. 66, 11314–11322 (2006).

    CAS  PubMed  Google Scholar 

  253. Rodriguez, V. et al. Pomp combination chemotherapy of adult acute leukemia. Cancer 32, 69–75 (1973).

    CAS  PubMed  Google Scholar 

  254. Lichtman, M. A. A historical perspective on the development of the cytarabine (7 days) and daunorubicin (3 days) treatment regimen for acute myelogenous leukemia: 2013 the 40th anniversary of 7+3. Blood Cells Mol. Dis. 50, 119–130 (2013).

    CAS  PubMed  Google Scholar 

  255. Thomas, E. D. et al. One hundred patients with acute-leukemia treated by chemotherapy, total-body irradiation, and allogeneic marrow transplantation. Blood 49, 511–533 (1977).

    CAS  PubMed  Google Scholar 

  256. Weisberg, E. et al. Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell 1, 433–443 (2002).

    CAS  PubMed  Google Scholar 

  257. Lu, C. & Thompson, C. B. Metabolic regulation of epigenetics. Cell Metab. 16, 9–17 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Maddocks, O. D. K., Labuschagne, C. F., Adams, P. D. & Vousden, K. H. Serine metabolism supports the methionine cycle and DNA/RNA methylation through de novo ATP synthesis in cancer cells. Mol. Cell 61, 210–221 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Gallipoli, P., Giotopoulos, G. & Huntly, B. J. P. Epigenetic regulators as promising therapeutic targets in acute myeloid leukemia. Ther. Adv. Hematol. 6, 103–119 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Gross, S. et al. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J. Exp. Med. 207, 339–344 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Eide, C. A. et al. Combining the allosteric inhibitor asciminib with ponatinib suppresses emergence of and restores efficacy against highly resistant BCR-ABL1 mutants. Cancer Cell 36, 431–443.e5 (2019). This study provides a rationale for using asciminib in combination with ponatinib to treat patients with CML that are resistant to current TKI therapy due to BCR–ABL1 compound mutations.

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Gallipoli, P. et al. JAK2/STAT5 inhibition by nilotinib with ruxolitinib contributes to the elimination of CML CD34+ cells in vitro and in vivo. Blood 124, 1492–1501 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Lim, S. et al. Targeting of the MNK-eIF4E axis in blast crisis chronic myeloid leukemia inhibits leukemia stem cell function. Proc. Natl Acad. Sci. USA 110, E2298–E2307 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Essers, M. A. G. et al. IFNα activates dormant haematopoietic stem cells in vivo. Nature 458, 904–908 (2009).

    CAS  PubMed  Google Scholar 

  265. Chen, M. et al. Targeting BCR-ABL+ stem/progenitor cells and BCR-ABL-T315I mutant cells by effective inhibition of the BCR-ABL-Tyr177-GRB2 complex. Oncotarget 8, 43662–43677 (2017).

    PubMed  PubMed Central  Google Scholar 

  266. Pemovska, T. et al. Axitinib effectively inhibits BCR-ABL1(T315I) with a distinct binding conformation. Nature 519, 102–105 (2015).

    CAS  PubMed  Google Scholar 

  267. Riether, C., Gschwend, T., Huguenin, A. L., Schurch, C. M. & Ochsenbein, A. F. Blocking programmed cell death 1 in combination with adoptive cytotoxic T-cell transfer eradicates chronic myelogenous leukemia stem cells. Leukemia 29, 1781–1785 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Turhan, A. G. et al. Vitamin D3 analog inecalcitol synergizes with tyrosine kinase inhibitors (TKI) and selectively inhibit the growth of chronic myeloid leukemia (CML) progenitors: development of a clinically applicable leukemic stem cell targeting strategy. Cancer Res. 75, 3981–3981 (2015).

    Google Scholar 

Download references

Acknowledgements

D.V. and M.C. are jointly funded by Bloodwise (Ref. 14033) and the Stand Up To Cancer campaign for Cancer Research UK (Ref. C55731/A24896). G.V.H. is funded by the Kay Kendall Research Fund (Ref. KKL1069), the Howat Foundation and Bloodwise (Ref. 18006).

Author information

Authors and Affiliations

Authors

Contributions

D.V., G.V.H. and M.C. researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to David Vetrie or Mhairi Copland.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Dedication: The authors dedicate this Review to our absent colleague Tessa Laurie Holyoake, whose untimely passing in 2017 cut short the life of a brilliant clinician and scientist. Her discovery of the quiescent CML LSC in 1999, her dedication to the preclinical study of LSCs in the years that followed and her commitment to cure CML, paved the way for many of the scientific discoveries discussed here.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Cancer Research UK: https://www.cancerresearchuk.org/

ClinicalTrials.gov: https://clinicaltrials.gov/

Surveillance, Epidemiology, and End Results Program: https://seer.cancer.gov/

Glossary

Philadelphia chromosome

(Ph). The chromosomal abnormality characteristic of CML cells that arises from a reciprocal translocation between chromosomes 9 and 22.

Relative survival

The percentage survival of individuals with leukaemia after taking into account death rates of individuals without leukaemia.

Immunophenotype

A population of cells characterized by markers expressed on the cell surface as determined by flow cytometry.

Chimerism

The relative proportions of human to mouse cells that result when human cells are engrafted into the bone marrow of immunocompromised mice.

Clonal haematopoiesis of indeterminant potential

(CHIP). A process that occurs in some older individuals whereby DNA mutations in haematopoietic stem cells result in the accumulation of clonally expanded populations of haematopoietic cells.

Haemangioblasts

Multipotent precursor cells that can give rise to both haematopoietic stem cells and enthothelial cells.

Oxidative phosphorylation

(OXPHOS). The mitochondrial process in which electrons are transferred from NADH or FADH2 to oxygen (O2) through a series of carriers and protein complexes to produce ATP from ADP and phosphate.

BH3 mimetic

One of a class of compounds that bind to a hydrophobic groove found in antiapoptotic proteins and prevents them from binding to the BH3 domain of the BCL-2 family of proteins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vetrie, D., Helgason, G.V. & Copland, M. The leukaemia stem cell: similarities, differences and clinical prospects in CML and AML. Nat Rev Cancer 20, 158–173 (2020). https://doi.org/10.1038/s41568-019-0230-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-019-0230-9

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer