Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dietary patterns and cancer risk

Abstract

Over the past decade, the search for dietary factors on which to base cancer prevention guidelines has led to the rapid expansion of the field of dietary patterns and cancer. Multiple systematic reviews and meta-analyses have reported epidemiological associations between specific cancer types and both data-driven dietary patterns determined by empirical analyses and investigator-defined dietary indexes based on a predetermined set of dietary components. New developments, such as the use of metabolomics to identify objective biomarkers of dietary patterns and novel statistical techniques, could provide further insights into the links between diet and cancer risk. Although animal models of dietary patterns are limited, progress in this area could identify the potential mechanisms underlying the disease-specific associations observed in epidemiological studies. In this Review, we summarize the current state of the field, provide a critical appraisal of new developments and identify priority areas for future research. An underlying theme that emerges is that the effectiveness of different dietary pattern recommendations in reducing risk could depend on the type of cancer or on other risk factors such as family history, sex, age and other lifestyle factors or comorbidities as well as on metabolomic signatures or gut microbiota profiles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Radar plot illustrating principal component analyses.
Fig. 2: A posteriori dietary patterns and cancer risk.
Fig. 3: A priori dietary patterns and cancer risk.
Fig. 4: Associations between dietary patterns based on biological processes and cancer risk.
Fig. 5: Emerging statistical techniques for investigating cancer risk associations.
Fig. 6: Potential mechanisms underpinning associations between diet and cancer.

Similar content being viewed by others

References

  1. World Cancer Research Fund & American Institute for Cancer Research. Diet, nutrition, physical activity and cancer: a global perspective (WCRF International, 2018). The 2018 Third Expert Report provides an update and comprehensive review of the literature on diet and cancer.

  2. Krebs-Smith, S. M., Subar, A. F. & Reedy, J. Examining dietary patterns in relation to chronic disease: matching measures and methods to questions of interest. Circulation 132, 790–793 (2015). This paper summarizes the major types of dietary patterns and provides strengths, limitations and examples of each.

    Article  PubMed  Google Scholar 

  3. Kirkpatrick, S. I. et al. Applications of the healthy eating index for surveillance, epidemiology, and intervention research: considerations and caveats. J. Acad. Nutr. Diet. 118, 1603–1621 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hu, F. B. Dietary pattern analysis: a new direction in nutritional epidemiology. Curr. Opin. Lipidol. 13, 3–9 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Reedy, J. & Subar, A. F. 90th anniversary commentary: diet quality indexes in nutritional epidemiology inform dietary guidance and public health. J. Nutr. 148, 1695–1697 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Reedy, J., Subar, A. F., George, S. M. & Krebs-Smith, S. M. Extending methods in dietary patterns research. Nutrients 10, E571 (2018). This paper summarizes a workshop on dietary patterns held at the National Institutes of Health and provides innovative recommendations for future research in the dietary patterns field.

    Article  PubMed  Google Scholar 

  7. US Department of Health and Human Services & US Department of Agriculture. 2015–2020 Dietary guidelines for Americans, 8 edn (USDA, 2015).

  8. Kant, A. K. Dietary patterns and health outcomes. J. Am. Diet. Assoc. 104, 615–635 (2004).

    Article  PubMed  Google Scholar 

  9. McCullough, M. et al. Adherence to the dietary guidelines for Americans and risk of major chronic disease in women. Am. J. Clin. Nutr. 72, 1214–1222 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Kirkpatrick, S. I. et al. Update of the healthy eating index: HEI-2015. J. Acad. Nutr. Diet. 118, 1591–1602 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liese, A. D. et al. The dietary patterns methods project: synthesis of findings across cohorts and relevance to dietary guidance. J. Nutr. 145, 393–402 (2015). Using a consistent methodology, this paper reports associations between four dietary patterns (HEI-2010, aHEI, aMED and DASH) and cancer mortality in three different prospective cohort studies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. George, S. M. et al. Comparing indices of diet quality with chronic disease mortality risk in postmenopausal women in the Women’s Health Initiative observational study: evidence to inform national dietary guidance. Am. J. Epidemiol. 180, 616–625 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Conlin, P. R. et al. The effect of dietary patterns on blood pressure control in hypertensive patients: results from the Dietary Approaches to Stop Hypertension (DASH) trial. Am. J. Hypertens. 13, 949–955 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. McCullough, M. L. et al. Diet quality and major chronic disease risk in men and women: moving toward improved dietary guidance. Am. J. Clin. Nutr. 76, 1261–1271 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Shivappa, N., Steck, S. E., Hurley, T. G., Hussey, J. R. & Hébert, J. R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public. Health Nutr. 17, 1689–1696 (2014).

    Article  PubMed  Google Scholar 

  16. Tabung, F. K. et al. An empirical dietary inflammatory pattern score enhances prediction of circulating inflammatory biomarkers in adults. J. Nutr. 147, 1567–1577 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hernández-Ruiz, Á. et al. A review of a priori defined oxidative balance scores relative to their components and impact on health outcomes. Nutrients 11, 774 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  18. Guinter, M. A., McLain, A. C., Merchant, A. T., Sandler, D. P. & Steck, S. E. A dietary pattern based on estrogen metabolism is associated with breast cancer risk in a prospective cohort of postmenopausal women. Int. J. Cancer 143, 580–590 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fung, T. T., Schulze, M. B., Hu, F. B., Hankinson, S. E. & Holmes, M. D. A dietary pattern derived to correlate with estrogens and risk of postmenopausal breast cancer. Breast Cancer Res. Treat. 132, 1157–1162 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tabung, F. K. et al. Development and validation of empirical indices to assess the insulinaemic potential of diet and lifestyle. Br. J. Nutr. 116, 1787–1798 (2016).

    Article  CAS  Google Scholar 

  21. Hébert, J. R. et al. Considering the value of dietary assessment data in informing nutrition-related health policy. Adv. Nutr. 5, 447–455 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Subar, A. F. et al. Addressing current criticism regarding the value of self-report dietary data. J. Nutr. 145, 2639–2645 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Freedman, L. S. et al. Combining a food frequency questionnaire with 24-hour recalls to increase the precision of estimation of usual dietary intakes-evidence from the validation studies pooling project. Am. J. Epidemiol. 187, 2227–2232 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Subar, A. F., Kushi, L. H., Lerman, J. L. & Freedman, L. S. Invited commentary: the contribution to the field of nutritional epidemiology of the landmark 1985 publication by Willett et al. Am. J. Epidemiol. 185, 1124–1129 (2017).

    Article  PubMed  Google Scholar 

  25. Hu, F. B. et al. Reproducibility and validity of dietary patterns assessed with a food-frequency questionnaire. Am. J. Clin. Nutr. 69, 243–249 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Edefonti, V. et al. Reproducibility and validity of a posteriori dietary patterns: a systematic review. Adv. Nutr. https://doi.org/10.1093/advances/nmz097 (2019).

  27. Tabung, F. K. et al. The association between dietary inflammatory index and risk of colorectal cancer among postmenopausal women: results from the Women’s Health Initiative. Cancer Causes Control 26, 399–408 (2015).

    Article  PubMed  Google Scholar 

  28. Wirth, M. D. et al. Anti-inflammatory Dietary Inflammatory Index scores are associated with healthier scores on other dietary indices ScienceDirect. Nutr. Res. 36, 214–219 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Fung, T. T. et al. Diet-quality scores and plasma concentrations of markers of inflammation and endothelial dysfunction. Am. J. Clin. Nutr. 82, 163–173 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Schneider, L. et al. Dietary patterns based on the Mediterranean diet and DASH diet are inversely associated with high aggressive prostate cancer in PCaP. Ann. Epidemiol. 29, 16–22.e1 (2019).

    Article  PubMed  Google Scholar 

  31. Trichopoulou, A., Costacou, T., Bamia, C. & Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med. 348, 2599–2608 (2003).

    Article  PubMed  Google Scholar 

  32. Sofi, F., Macchi, C., Abbate, R., Gensini, G. F. & Casini, A. Mediterranean diet and health status: an updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr. 17, 2769–2782 (2014).

    Article  PubMed  Google Scholar 

  33. Lever, J., Krzywinski, M. & Altman, N. Principal component analysis. Nat. Methods 14, 641–642 (2017).

    Article  CAS  Google Scholar 

  34. Barchitta, M. et al. The association of dietary patterns with high-risk human papillomavirus infection and cervical cancer: a cross-sectional study in Italy. Nutrients 10, 469 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  35. Albuquerque, R. C. R., Baltar, V. T. & Marchioni, D. M. L. Breast cancer and dietary patterns: a systematic review. Nutr. Rev. 72, 1–17 (2014).

    Article  PubMed  Google Scholar 

  36. Fabiani, R., Minelli, L., Bertarelli, G. & Bacci, S. A Western dietary pattern increases prostate cancer risk: a systematic review and meta-analysis. Nutrients 8, 626 (2016).

    Article  PubMed Central  Google Scholar 

  37. Grosso, G. et al. Possible role of diet in cancer: systematic review and multiple meta-analyses of dietary patterns, lifestyle factors, and cancer risk. Nutr. Rev. 75, 405–419 (2017). A comprehensive review of a posteriori dietary patterns and cancer risk from 93 studies.

    Article  PubMed  Google Scholar 

  38. Guertin, K. A. et al. Metabolomics in nutritional epidemiology: identifying metabolites associated with diet and quantifying their potential to uncover diet-disease relations in populations. Am. J. Clin. Nutr. 100, 208–217 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dandamudi, A., Tommie, J., Nommsen-Rivers, L. & Couch, S. Dietary patterns and breast cancer risk: a systematic review. Anticancer. Res. 38, 3209–3222 (2018).

    Article  PubMed  Google Scholar 

  40. Fardet, A., Druesne-Pecollo, N., Touvier, M. & Latino-Martel, P. Do alcoholic beverages, obesity and other nutritional factors modify the risk of familial colorectal cancer? a systematic review. Crit. Rev. Oncol. Hematol. 119, 94–112 (2017).

    Article  PubMed  Google Scholar 

  41. Garcia-Larsen, V. et al. Dietary patterns derived from principal component analysis (PCA) and risk of colorectal cancer: a systematic review and meta-analysis. Eur. J. Clin. Nutr. 73, 366–386 (2019).

    Article  PubMed  Google Scholar 

  42. Liu, X., Wang, X., Lin, S., Yuan, J. & Yu, I. T. S. Dietary patterns and oesophageal squamous cell carcinoma: a systematic review and meta-analysis. Br. J. Cancer 110, 2785–2795 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun, Y., Li, Z., Li, J., Li, Z. & Han, J. A healthy dietary pattern reduces lung cancer risk: a systematic review and meta-analysis. Nutrients 8, 134 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wang, H.-F., Yao, A.-L., Sun, Y.-Y. & Zhang, A.-H. Empirically derived dietary patterns and ovarian cancer risk: a meta-analysis. Eur. J. Cancer Prev. 27, 493–501 (2018).

    Article  PubMed  Google Scholar 

  45. Zheng, J. et al. Dietary patterns and risk of pancreatic cancer: a systematic review. Nutr. Rev. 75, 883–908 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lu, P. Y., Shu, L., Shen, S. S., Chen, X. J. & Zhang, X. Y. Dietary patterns and pancreatic cancer risk: a meta-analysis. Nutrients 9, 38 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  47. Xiao, Y. et al. Associations between dietary patterns and the risk of breast cancer: a systematic review and meta-analysis of observational studies. Breast Cancer Res. 21, 16 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bella, F., Godos, J., Ippolito, A., Di Prima, A. & Sciacca, S. Differences in the association between empirically derived dietary patterns and cancer: a meta-analysis. Int. J. Food Sci. Nutr. 68, 402–410 (2017).

    Article  PubMed  Google Scholar 

  49. Steck, S. E., Guinter, M., Zheng, J. & Thomson, C. A. Index-based dietary patterns and colorectal cancer risk: a systematic review. Adv. Nutr. 6, 763–773 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bamia, C. Dietary patterns in association to cancer incidence and survival: concept, current evidence, and suggestions for future research. Eur. J. Clin. Nutr. 72, 818–825 (2018).

    Article  PubMed  Google Scholar 

  51. Kim, J. H. & Kim, J. Index-based dietary patterns and the risk of prostate cancer. Clin. Nutr. Res. 6, 229 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Schwingshackl, L. & Hoffmann, G. Diet quality as assessed by the Healthy Eating Index, the Alternate Healthy Eating Index, the Dietary Approaches to Stop Hypertension score, and health outcomes: a systematic review and meta-analysis of cohort studies. J. Acad. Nutr. Diet. 115, 780–800.e5 (2015).

    Article  PubMed  Google Scholar 

  53. Du, M., Liu, S. H., Mitchell, C. & Fung, T. T. Associations between diet quality scores and risk of postmenopausal estrogen receptor-negative breast cancer: a systematic review. J. Nutr. 148, 100–108 (2018).

    Article  PubMed  Google Scholar 

  54. Salem, A. A. & Mackenzie, G. G. Pancreatic cancer: a critical review of dietary risk. Nutr. Res. 52, 1–13 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Tabung, F. K., Brown, L. S. & Fung, T. T. Dietary patterns and colorectal cancer risk: a review of 17 years of evidence (2000-2016). Curr. Colorectal Cancer Rep. 13, 440–454 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Potter, J., Brown, L., Williams, R. L., Byles, J. & Collins, C. E. Diet quality and cancer outcomes in adults: a systematic review of epidemiological studies. Int. J. Mol. Sci. 17, E1052 (2016).

    Article  PubMed  Google Scholar 

  57. Reedy, J. et al. Index-based dietary patterns and risk of colorectal cancer the NIH-AARP Diet and Health Study. Am. J. Epidemiol. 168, 38–48 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kyro, C. et al. Adherence to a healthy Nordic food index is associated with a lower incidence of colorectal cancer in women: the Diet, Cancer and Health Cohort study. Br. J. Nutr. 109, 920–927 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Becker, W. et al. Nordic Nutrition Recommendations 2004 — integrating nutrition and physical activity. Scandinavian J. Nutr. 48, 178–187 (2004).

    Article  Google Scholar 

  60. Berentzen, N. E. et al. Adherence to the WHO’s healthy diet indicator and overall cancer risk in the EPIC-NL cohort. PLOS ONE 8, e70535 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cade, J. E., Taylor, E. F., Burley, V. J. & Greenwood, D. C. Does the Mediterranean dietary pattern or the Healthy Diet Index influence the risk of breast cancer in a large British cohort of women? Eur. J. Clin. Nutr. 65, 920–928 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Nguyen, S. et al. Adherence to dietary recommendations and colorectal cancer risk: results from two prospective cohort studies. Int. J. Epidemiol. https://doi.org/10.1093/ije/dyz118 (2019).

  63. Petimar, J. et al. Recommendation-based dietary indexes and risk of colorectal cancer in the Nurses’ health study and health professionals follow-up study. Am. J. Clin. Nutr. 108, 1092–1103 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Toledo, E. et al. Mediterranean diet and invasive breast cancer risk among women at high cardiovascular risk in the PREDIMED trial: a randomized clinical trial. JAMA Intern. Med. 175, 1752–1760 (2015).

    Article  PubMed  Google Scholar 

  65. Galbete, C., Schwingshackl, L., Schwedhelm, C., Boeing, H. & Schulze, M. B. Evaluating Mediterranean diet and risk of chronic disease in cohort studies: an umbrella review of meta-analyses. Eur. J. Epidemiol. 33, 909–931 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Olmedo-Requena, R. et al. Agreement among Mediterranean diet pattern adherence indexes: MCC-Spain study. Nutrients 11, 488 (2019).

    Article  PubMed Central  Google Scholar 

  67. Donovan, M. G., Selmin, O. I., Doetschman, T. C. & Romagnolo, D. F. Mediterranean diet: prevention of colorectal cancer. Front. Nutr. 4, 59 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Schwingshackl, L., Schwedhelm, C., Galbete, C., & Hoffmann, G. Adherence to Mediterranean diet and risk of cancer: an updated systematic review and meta-analysis. Nutrients 9, E1063 (2017).

    Article  PubMed  CAS  Google Scholar 

  69. Dinu, M., Pagliai, G., Casini, A. & Sofi, F. Mediterranean diet and multiple health outcomes: an umbrella review of meta-analyses of observational studies and randomised trials. Eur. J. Clin. Nutr. 72, 30–43 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Dinu, M., Abbate, R., Gensini, G. F., Casini, A. & Sofi, F. Vegetarian, vegan diets and multiple health outcomes: a systematic review with meta-analysis of observational studies. Crit. Rev. Food Sci. Nutr. 57, 3640–3649 (2017).

    Article  PubMed  Google Scholar 

  71. Godos, J., Bella, F., Sciacca, S., Galvano, F. & Grosso, G. Vegetarianism and breast, colorectal and prostate cancer risk: an overview and meta-analysis of cohort studies. J. Hum. Nutr. Diet. 30, 349–359 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Whalen, K. A. et al. Paleolithic and Mediterranean diet pattern scores and risk of incident, sporadic colorectal adenomas. Am. J. Epidemiol. 180, 1088–1097 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Haridass, V., Ziogas, A., Neuhausen, S. L., Anton-Culver, H. & Odegaard, A. O. Diet quality scores inversely associated with postmenopausal breast cancer risk are not associated with premenopausal breast cancer risk in the california teachers study. J. Nutr. 148, 1830–1837 (2018).

    Article  PubMed  Google Scholar 

  74. Cheng, E., Um, C. Y., Prizment, A. E., Lazovich, D. & Bostick, R. M. Evolutionary-concordance lifestyle and diet and Mediterranean diet pattern scores and risk of incident colorectal cancer in Iowa women. Cancer Epidemiol. Biomark. Prev. 27, 1195–1202 (2018).

    Article  Google Scholar 

  75. Diakos, C. I., Charles, K. A., McMillan, D. C. & Clarke, S. J. Cancer-related inflammation and treatment effectiveness. Lancet Oncol. 15, e493–503 (2014).

    Article  PubMed  Google Scholar 

  76. Shivappa, N. et al. Dietary inflammatory index and colorectal cancer risk — a meta-analysis. Nutrients 9, 1043 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  77. Fan, Y., Jin, X., Man, C., Gao, Z. & Wang, X. Meta-analysis of the association between the inflammatory potential of diet and colorectal cancer risk. Oncotarget 8, 59592–59600 (2017).

    PubMed  PubMed Central  Google Scholar 

  78. Fowler, M. E. & Akinyemiju, T. F. Meta-analysis of the association between dietary inflammatory index (DII) and cancer outcomes. Int. J. Cancer 141, 2215–2227 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Namazi, N., Larijani, B. & Azadbakht, L. Association between the dietary inflammatory index and the incidence of cancer: a systematic review and meta-analysis of prospective studies. Public Health 164, 148–156 (2018).

    Article  CAS  PubMed  Google Scholar 

  80. Zahedi, H. et al. Dietary inflammatory potential score and risk of breast cancer: systematic review and meta-analysis. Clin. Breast Cancer 18, e561–e570 (2018).

    Article  PubMed  Google Scholar 

  81. Moradi, S., Issah, A., Mohammadi, H. & Mirzaei, K. Associations between dietary inflammatory index and incidence of breast and prostate cancer: a systematic review and meta-analysis. Nutrition 55–56, 168–178 (2018).

    Article  PubMed  Google Scholar 

  82. Harmon, B. E. et al. The dietary inflammatory index is associated with colorectal cancer risk in the multiethnic cohort. J. Nutr. 147, 430–438 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wirth, M. D., Shivappa, N., Steck, S. E., Hurley, T. G. & Hébert, J. R. The dietary inflammatory index is associated with colorectal cancer in the National Institutes of Health-American Association of Retired Persons Diet and Health Study. Br. J. Nutr. 113, 1819–1827 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Antwi, S. O. et al. Pancreatic cancer risk is modulated by inflammatory potential of diet and ABO genotype: a consortia-based evaluation and replication study. Carcinogenesis 39, 1056–1067 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zheng, J. et al. Inflammatory potential of diet and risk of pancreatic cancer in the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer screening trial. Int. J. Cancer 142, 2461–2470 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zheng, J. et al. Inflammatory potential of diet, inflammation-related lifestyle factors, and risk of pancreatic cancer: Results from the NIH-AARP Diet and health study. Cancer Epidemiol. Biomark. Prev. 28, 1266–1270 (2019).

    Article  Google Scholar 

  87. Tabung, F. K. et al. Association of dietary inflammatory potential with colorectal cancer risk in men and women. JAMA Oncol. 4, 366–373 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Tabung, F. K. et al. The inflammatory potential of diet and ovarian cancer risk: results from two prospective cohort studies. Br. J. Cancer 117, 907–911 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Cho, Y. A. et al. Inflammatory dietary pattern, IL-17F genetic variant, and the risk of colorectal cancer. Nutrients 10, 724 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  90. Kaluza, J., Harris, H., Melhus, H., Michaëlsson, K. & Wolk, A. Questionnaire-based anti-inflammatory diet index as a predictor of low-grade systemic inflammation. Antioxid. Redox Signal. 28, 78–84 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Kaluza, J. et al. Influence of anti-inflammatory diet and smoking on mortality and survival in men and women: two prospective cohort studies. J. Intern. Med. 285, 75–91 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Halliwell, B. The antioxidant paradox: less paradoxical now? Br. J. Clin. Pharmacol. 75, 637–644 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pollak, M. Insulin and insulin-like growth factor signalling in neoplasia. Nat. Rev. Cancer 8, 915–928 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Cohen, C. W., Fontaine, K. R., Arend, R. C., Soleymani, T. & Gower, B. A. Favorable effects of a ketogenic diet on physical function, perceived energy, and food cravings in women with ovarian or endometrial cancer: a randomized, controlled trial. Nutrients 10, E1187 (2018).

    Article  PubMed  CAS  Google Scholar 

  95. Fung, T. T. et al. A dietary pattern that is associated with C-peptide and risk of colorectal cancer in women. Cancer Causes Control 23, 959–965 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Tabung, F. K. et al. Association of dietary insulinemic potential and colorectal cancer risk in men and women. Am. J. Clin. Nutr. 108, 363–370 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Wang, W. et al. Association of the insulinemic potential of diet and lifestyle with risk of digestive system cancers in men and women. JNCI Cancer Spectr. 2, pky080 (2018).

    Article  PubMed  Google Scholar 

  98. Guinter, M. A., Sandler, D. P., McLain, A. C., Merchant, A. T. & Steck, S. E. An estrogen-related dietary pattern and postmenopausal breast cancer risk in a cohort of women with a family history of breast cancer. Cancer Epidemiol. Biomark. Prev. 27, 1223–1226 (2018).

    Article  CAS  Google Scholar 

  99. Navarro Silvera, S. A. et al. Diet and lifestyle factors and risk of subtypes of esophageal and gastric cancers: classification tree analysis. Ann. Epidemiol. 24, 50–57 (2014).

    Article  PubMed  Google Scholar 

  100. Camp, N. J. & Slattery, M. L. Classification tree analysis: a statistical tool to investigate risk factor interactions with an example for colon cancer (United States). Cancer Causes Control 13, 813–823 (2002).

    Article  PubMed  Google Scholar 

  101. Biesbroek, S. et al. Identifying cardiovascular risk factor-related dietary patterns with reduced rank regression and random forest in the EPIC-NL cohort. Am. J. Clin. Nutr. 102, 146–154 (2015).

    Article  PubMed  CAS  Google Scholar 

  102. Playdon, M. C. et al. Nutritional metabolomics and breast cancer risk in a prospective study. Am. J. Clin. Nutr. 106, 637–649 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Playdon, M. C. et al. Identifying biomarkers of dietary patterns by using metabolomics. Am. J. Clin. Nutr. 105, 450–465 (2017). Using a novel approach, this study identifies metabolites associated with dietary patterns (HEI-2010, aMED, HDI and BSD) in a nested case–control study from the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study cohort.

    Article  CAS  PubMed  Google Scholar 

  104. Guasch-Ferré, M., Bhupathiraju, S. N. & Hu, F. B. Use of metabolomics in improving assessment of dietary intake. Clin. Chem. 64, 82–98 (2018).

    Article  PubMed  CAS  Google Scholar 

  105. Garrett, W. S. Cancer and the microbiota. Science 348, 80–86 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tao, J. et al. Targeting gut microbiota with dietary components on cancer: effects and potential mechanisms of action. Crit. Rev. Food Sci. Nutr. https://doi.org/10.1080/10408398.2018.1555789 (2019).

  107. Bultman, S. J. The microbiome and its potential as a cancer preventive intervention. Semin. Oncol. 43, 97–106 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Bultman, S. J. Molecular pathways: gene-environment interactions regulating dietary fiber induction of proliferation and apoptosis via butyrate for cancer prevention. Clin. Cancer Res. 20, 799–803 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Mehta, R. S. et al. Association of dietary patterns with risk of colorectal cancer subtypes classified by fusobacterium nucleatum in tumor tissue. JAMA Oncol. 3, 921–927 (2017).

    PubMed  PubMed Central  Google Scholar 

  110. Garcia-Mantrana, I., Selma-Royo, M., Alcantara, C. & Collado, M. C. Shifts on gut microbiota associated to Mediterranean diet adherence and specific dietary intakes on general adult population. Front. Microbiol. 9, 890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Chen, H. M. et al. Decreased dietary fiber intake and structural alteration of gut microbiota in patients with advanced colorectal adenoma. Am. J. Clin. Nutr. 97, 1044–1052 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Donohoe, D. R. et al. A gnotobiotic mouse model demonstrates that dietary fiber protects against colorectal tumorigenesis in a microbiota- and butyrate-dependent manner. Cancer Discov. 4, 1387–1397 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nasir, A. et al. Nutrigenomics: epigenetics and cancer prevention: a comprehensive review. Crit. Rev. Food Sci. Nutr. https://doi.org/10.1080/10408398.2019.1571480 (2019).

  114. Vanden Berghe, W. Epigenetic impact of dietary polyphenols in cancer chemoprevention: lifelong remodeling of our epigenomes. Pharmacol. Res. 65, 565–576 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Abbas, A., Patterson 3rd, W. & Georgel, P. T. The epigenetic potentials of dietary polyphenols in prostate cancer management. Biochem. Cell Biol. 91, 361–368 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Del Corno, M., Donninelli, G., Conti, L. & Gessani, S. Linking diet to colorectal cancer: the emerging role of microRNA in the communication between plant and animal kingdoms. Front. Microbiol. 8, 597 (2017).

    PubMed  PubMed Central  Google Scholar 

  117. Zam, W. & Khadour, A. Impact of phytochemicals and dietary patterns on epigenome and cancer. Nutr. Cancer 69, 184–200 (2017).

    Article  CAS  PubMed  Google Scholar 

  118. Todoric, J., Antonucci, L. & Karin, M. Targeting inflammation in cancer prevention and therapy. Cancer Prev. Res. 9, 895–905 (2016).

    Article  CAS  Google Scholar 

  119. Liu, L. et al. Association between inflammatory diet pattern and risk of colorectal carcinoma subtypes classified by immune responses to tumor. Gastroenterology 153, 1517–1530.e14 (2017).

    Article  PubMed  Google Scholar 

  120. Whalen, K. A. et al. Paleolithic and Mediterranean diet pattern scores are inversely associated with biomarkers of inflammation and oxidative balance in adults. J. Nutr. 146, 1217–1226 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Casas, R., Sacanella, E. & Estruch, R. The immune protective effect of the Mediterranean diet against chronic low-grade inflammatory diseases. Endocr. Metab. Immune Disord. Drug. Targets 14, 245–254 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Bonaccio, M. et al. Mediterranean diet, dietary polyphenols and low grade inflammation: results from the MOLI-SANI study. Br. J. Clin. Pharmacol. 83, 107–113 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Bellastella, G., Scappaticcio, L., Esposito, K., Giugliano, D. & Maiorino, M. I. Metabolic syndrome and cancer: ‘the common soil hypothesis’. Diabetes Res. Clin. Pract. 143, 389–397 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Esposito, K., Capuano, A. & Giugliano, D. Metabolic syndrome and cancer: holistic or reductionist? Endocrine 45, 362–364 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Finicelli, M. et al. Metabolic syndrome, Mediterranean diet, and polyphenols: evidence and perspectives. J. Cell Physiol. 234, 5807–5826 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Pimenta, A. M. et al. Dietary indexes, food patterns and incidence of metabolic syndrome in a Mediterranean cohort: the SUN project. Clin. Nutr. 34, 508–514 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Drake, I., Sonestedt, E., Ericson, U., Wallström, P. & Orho-Melander, M. A Western dietary pattern is prospectively associated with cardio-metabolic traits and incidence of the metabolic syndrome. Br. J. Nutr. 119, 1168–1176 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Speakman, J. R. Use of high-fat diets to study rodent obesity as a model of human obesity. Int. J. Obes. 43, 1491–1492 (2019).

    Article  Google Scholar 

  129. Xiu, L. et al. High-fat diets promote colon orthotopic transplantation tumor metastasis in BALB/c mice. Oncol. Lett. 17, 1914–1920 (2019).

    CAS  PubMed  Google Scholar 

  130. Zeng, H., Ishaq, S. L., Liu, Z. & Bukowski, M. R. Colonic aberrant crypt formation accompanies an increase of opportunistic pathogenic bacteria in C57BL/6 mice fed a high-fat diet. J. Nutr. Biochem. 54, 18–27 (2018).

    Article  CAS  PubMed  Google Scholar 

  131. Dermadi, D. et al. Western diet deregulates bile acid homeostasis, cell proliferation, and tumorigenesis in colon. Cancer Res. 77, 3352–3363 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. O’Neill, A. M. et al. High-fat Western diet-induced obesity contributes to increased tumor growth in mouse models of human colon cancer. Nutr. Res. 36, 1325–1334 (2016).

    Article  PubMed  CAS  Google Scholar 

  133. Guffey, C. R., Fan, D., Singh, U. P. & Murphy, E. A. Linking obesity to colorectal cancer: recent insights into plausible biological mechanisms. Curr. Opin. Clin. Nutr. Metab. Care 16, 595–600 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Cranford, T. L. et al. Effects of high fat diet-induced obesity on mammary tumorigenesis in the PyMT/MMTV murine model. Cancer Biol. Ther. 20, 487–496 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Cowen, S. et al. High-fat, high-calorie diet enhances mammary carcinogenesis and local inflammation in MMTV-PyMT mouse model of breast cancer. Cancers 7, 1125–1142 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sundaram, S. & Yan, L. High-fat diet enhances mammary tumorigenesis and pulmonary metastasis and alters inflammatory and angiogenic profiles in MMTV-PyMT mice. Anticancer Res. 36, 6279–6287 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Zhu, Y., Aupperlee, M. D., Haslam, S. Z. & Schwartz, R. C. Pubertally initiated high-fat diet promotes mammary tumorigenesis in obesity-prone FVB mice similarly to obesity-resistant BALB/c mice. Transl. Oncol. 10, 928–935 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Nguyen, N. M. et al. Maternal intake of high n-6 polyunsaturated fatty acid diet during pregnancy causes transgenerational increase in mammary cancer risk in mice. Breast Cancer Res. 19, 77 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Yang, T. et al. Maternal high-fat diet promotes the development and progression of prostate cancer in transgenic adenocarcinoma mouse prostate offspring. Cell Physiol. Biochem. 47, 1862–1870 (2018).

    Article  CAS  PubMed  Google Scholar 

  140. Okeyo-Owuor, T. et al. Exposure to maternal obesogenic diet worsens some but not all pre-cancer phenotypes in a murine genetic model of prostate cancer. PLOS ONE 12, e0175764 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Lambertz, I. U. et al. Early exposure to a high fat/high sugar diet increases the mammary stem cell compartment and mammary tumor risk in female mice. Cancer Prev. Res. 10, 553–562 (2017).

    Article  CAS  Google Scholar 

  142. Jordan, B. F., Gourgue, F. & Cani, P. D. Adipose tissue metabolism and cancer progression: novel insights from gut microbiota? Curr. Pathobiol. Rep. 5, 315–322 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Khadge, S. et al. Immune regulation and anti-cancer activity by lipid inflammatory mediators. Int. Immunopharmacol. 65, 580–592 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Feakins, R. M. Obesity and metabolic syndrome: pathological effects on the gastrointestinal tract. Histopathology 68, 630–640 (2016).

    Article  PubMed  Google Scholar 

  145. Takahashi, H., Hosono, K., Endo, H. & Nakajima, A. Colon epithelial proliferation and carcinogenesis in diet-induced obesity. J. Gastroenterol. Hepatol. 28 (Suppl. 4), 41–47 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Klement, R. J. Beneficial effects of ketogenic diets for cancer patients: a realist review with focus on evidence and confirmation. Med. Oncol. 34, 132 (2017).

    Article  PubMed  Google Scholar 

  147. Weber, D. D. et al. Ketogenic diet in the treatment of cancer — where do we stand? Mol. Metab. https://doi.org/10.1016/j.molmet.2019.06.026 (2019).

  148. Aminzadeh-Gohari, S. et al. A ketogenic diet supplemented with medium-chain triglycerides enhances the anti-tumor and anti-angiogenic efficacy of chemotherapy on neuroblastoma xenografts in a CD1-nu mouse model. Oncotarget 8, 64728–64744 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Allen, B. G. et al. Ketogenic diets enhance oxidative stress and radio-chemo-therapy responses in lung cancer xenografts. Clin. Cancer Res. 19, 3905–3913 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Woolf, E. C. et al. The ketogenic diet alters the hypoxic response and affects expression of proteins associated with angiogenesis, invasive potential and vascular permeability in a mouse glioma model. PLOS ONE 10, e0130357 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Morscher, R. J. et al. Inhibition of neuroblastoma tumor growth by ketogenic diet and/or calorie restriction in a CD1-nu mouse model. PLOS ONE 10, e0129802 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Hao, G. W. et al. Growth of human colon cancer cells in nude mice is delayed by ketogenic diet with or without omega-3 fatty acids and medium-chain triglycerides. Asian Pac. J. Cancer Prev. 16, 2061–2068 (2015).

    Article  PubMed  Google Scholar 

  153. Nakamura, K., Tonouchi, H., Sasayama, A. & Ashida, K. A ketogenic formula prevents tumor progression and cancer cachexia by attenuating systemic inflammation in colon 26 tumor-bearing mice. Nutrients 10, E206 (2018).

    Article  PubMed  CAS  Google Scholar 

  154. Weber, D. D., Aminazdeh-Gohari, S. & Kofler, B. Ketogenic diet in cancer therapy. Aging 10, 164–165 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Piazzi, G. et al. A Mediterranean diet mix has chemopreventive effects in a murine model of colorectal cancer modulating apoptosis and the gut microbiota. Front. Oncol. 9, 140 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Bultman, S. J. The microbiome and its potential as a cancer preventive intervention. Semin. Oncol. 43, 97–106 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Chikara, S. et al. Oxidative stress and dietary phytochemicals: role in cancer chemoprevention and treatment. Cancer Lett. 413, 122–134 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. LoConte, N. K., Brewster, A. M., Kaur, J. S., Merrill, J. K. & Alberg, A. J. Alcohol and cancer: a statement of the American Society of Clinical Oncology. J. Clin. Oncol. 36, 83–93 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Godos, J. et al. Dairy foods and health: an umbrella review of observational studies. Int. J. Food Sci. Nutr. https://doi.org/10.1080/09637486.2019.1625035 (2019).

  160. Wood, A. M. et al. Risk thresholds for alcohol consumption: combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies. Lancet 391, 1513–1523 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.E.S. and E.A.M. are co-principal investigators of a Susan G. Komen Graduate Training in Disparities Research grant (GTDR 17500160). This work was funded by grants from the National Institutes of Health (1R01CA218578) and the American Institute for Cancer Research (359566).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to this manuscript.

Corresponding author

Correspondence to Susan E. Steck.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Healthy eating index

(HEI). An a priori diet quality score based on adherence to the US Dietary Guidelines.

Alternate HEI

(aHEI). An a priori diet quality score based on overall chronic disease prevention guidelines.

Dietary Approaches to Stop Hypertension

(DASH). An a priori dietary pattern based on the dietary recommendations employed in the DASH randomized controlled trial, which demonstrated a significant effect of the diet intervention on blood pressure.

Dietary inflammatory index

(DII). An a priori algorithm for scoring diet quality based on weighted inflammatory effect scores for up to 45 dietary components, as determined by previous literature related to diet, and six inflammatory biomarkers.

Food frequency questionnaire

(FFQ). A closed-ended questionnaire used to obtain information about the usual consumption of foods and beverages (frequency and sometimes portion sizes) over a specific period of time.

Mediterranean diet score

(MDS). An a priori diet quality score based on adherence to dietary components comprising the traditional Mediterranean diet.

Prospective dietary cohort studies

Epidemiological studies in which diet is assessed prior to cancer development and participants are followed prospectively over time to determine cancer endpoints.

Case–control studies

Epidemiological studies in which patients with cancer and healthy control individuals are enrolled and diet is assessed retrospectively.

Reduced rank regression

(RRR). A data-driven outcome-dependent statistical technique that typically employs an intermediate marker to first define a dietary pattern based on its ability to explain variation in the marker and then examine associations with cancer risk.

Metabolomics

A field of research related to measuring small-molecule metabolic products (metabolites) in body cells, fluids or tissues, often with an agnostic approach to discovering relationships between metabolites and disease.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steck, S.E., Murphy, E.A. Dietary patterns and cancer risk. Nat Rev Cancer 20, 125–138 (2020). https://doi.org/10.1038/s41568-019-0227-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-019-0227-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer