Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Brain immunology and immunotherapy in brain tumours

Abstract

Gliomas, the most common malignant primary brain tumours, remain universally lethal. Yet, seminal discoveries in the past 5 years have clarified the anatomy, genetics and function of the immune system within the central nervous system (CNS) and altered the paradigm for successful immunotherapy. The impact of standard therapies on the response to immunotherapy is now better understood, as well. This new knowledge has implications for a broad range of tumours that develop within the CNS. Nevertheless, the requirements for successful therapy remain effective delivery and target specificity, while the dramatic heterogeneity of malignant gliomas at the genetic and immunological levels remains a profound challenge.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immune privilege in the brain.
Fig. 2: Immunosuppressive mediators and therapeutic targets in the brain tumour microenvironment.
Fig. 3: Epigenetic events play a key role in modulating immune responses to brain tumours.
Fig. 4: Chimeric antigen receptor T cell immunotherapy in brain tumours.

Similar content being viewed by others

References

  1. Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Stummer, W. et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 7, 392–401 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Walker, M. D. et al. Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N. Engl. J. Med. 303, 1323–1329 (1980).

    Article  CAS  PubMed  Google Scholar 

  4. Hegi, M. E. et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 352, 997–1003 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Imperato, J. P., Paleologos, N. A. & Vick, N. A. Effects of treatment on long-term survivors with malignant astrocytomas. Ann. Neurol. 28, 818–822 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Gilbert, M. R. et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med. 370, 699–708 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stupp, R. et al. LTBK-01: prospective, multi-center phase III trial Tumor Treating Fields together temozolomide compared temozolomide alone patients newly diagnosed glioblastoma. Neuro Oncol. 18 (Suppl. 6), i1 (2016).

    Article  PubMed Central  Google Scholar 

  8. Stupp, R. et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA 318, 2306–2316 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014). This study provides one of the most thorough documentations to date of glioblastoma heterogeneity at the single-cell level.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Engelhardt, B., Vajkoczy, P. & Weller, R. O. The movers and shapers in immune privilege of the CNS. Nat. Immunol. 18, 123–131 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Medawar, P. B. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br. J. Exp. Pathol. 29, 58–69 (1948). This landmark paper is often credited as the first to suggest the notion of CNS immune privilege.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bradbury, M. W. & Westrop, R. J. Factors influencing exit of substances from cerebrospinal fluid into deep cervical lymph of the rabbit. J. Physiol. 339, 519–534 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cserr, H. F. & Knopf, P. M. Cervical lymphatics, the blood–brain barrier and the immunoreactivity of the brain: a new view. Immunol. Today 13, 507–512 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Goldmann, J. et al. T cells traffic from brain to cervical lymph nodes via the cribroid plate and the nasal mucosa. J. Leukoc. Biol. 80, 797–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Widner, H. et al. Scintigraphic method to quantify the passage from brain parenchyma to the deep cervical lymph nodes in rats. Eur. J. Nucl. Med. 13, 456–461 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. Aspelund, A. et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212, 991–999 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Louveau, A. et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat. Neurosci. 21, 1380–1391 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eide, P. K., Vatnehol, S. A. S., Emblem, K. E. & Ringstad, G. Magnetic resonance imaging provides evidence of glymphatic drainage from human brain to cervical lymph nodes. Sci. Rep. 8, 7194 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci. Transl. Med. 4, 147ra111 (2012). This research was the first to document the existence of the glymphatic pathway.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kipnis, J. Multifaceted interactions between adaptive immunity and the central nervous system. Science 353, 766–771 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bechmann, I., Galea, I. & Perry, V. H. What is the blood–brain barrier (not)? Trends Immunol. 28, 5–11 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Huber, J. D., Egleton, R. D. & Davis, T. P. Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci. 24, 719–725 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Tietz, S. & Engelhardt, B. Brain barriers: crosstalk between complex tight junctions and adherens junctions. J. Cell Biol. 209, 493–506 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Owens, T., Bechmann, I. & Engelhardt, B. Perivascular spaces and the two steps to neuroinflammation. J. Neuropathol. Exp. Neurol. 67, 1113–1121 (2008). Along with Aspelund et al. (2015), this is the first study to characterize CNS lymphatic vessels within the meninges.

    Article  PubMed  Google Scholar 

  27. Andersson, P. B., Perry, V. H. & Gordon, S. The acute inflammatory response to lipopolysaccharide in CNS parenchyma differs from that in other body tissues. Neuroscience 48, 169–186 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Schlager, C. et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 530, 349–353 (2016).

    Article  PubMed  CAS  Google Scholar 

  29. Zamvil, S. S. & Steinman, L. The T lymphocyte in experimental allergic encephalomyelitis. Annu. Rev. Immunol. 8, 579–621 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Long, D. M. Capillary ultrastructure and the blood–brain barrier in human malignant brain tumors. J. Neurosurg. 32, 127–144 (1970).

    Article  CAS  PubMed  Google Scholar 

  31. Vajkoczy, P. & Menger, M. D. Vascular microenvironment in gliomas. J. Neurooncol. 50, 99–108 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Watkins, S. et al. Disruption of astrocyte–vascular coupling and the blood-brain barrier by invading glioma cells. Nat. Commun. 5, 4196 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Li, Q. & Barres, B. A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. 18, 225–242 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ajami, B., Bennett, J. L., Krieger, C., McNagny, K. M. & Rossi, F. M. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci. 14, 1142–1149 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Bennett, F. C. et al. A combination of ontogeny and CNS environment establishes microglial identity. Neuron 98, 1170–1183 e1178 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chongsathidkiet, P. et al. Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat. Med. 24, 1459–1468 (2018). This research uncovers the novel phenomenon of T cell sequestration within the bone marrow. The phenomenon is specific to tumours of the intracranial compartment and suggests a novel mechanism for CNS-imposed limitations to T cell access that tumours can usurp.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fecci, P. E., Heimberger, A. B. & Sampson, J. H. Immunotherapy for primary brain tumors: no longer a matter of privilege. Clin. Cancer Res. 20, 5620–5629 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gajewski, T. F., Schreiber, H. & Fu, Y. X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gajewski, T. F. et al. Cancer immunotherapy targets based on understanding the T cell-inflamed versus non-T cell-inflamed tumor microenvironment. Adv. Exp. Med. Biol. 1036, 19–31 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Keskin, D. B. et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565, 234–239 (2019). This study highlights some issues associated with using the neoantigen vaccine strategy for glioblastoma.

    Article  CAS  PubMed  Google Scholar 

  42. Quail, D. F. & Joyce, J. A. The microenvironmental landscape of brain tumors. Cancer Cell 31, 326–341 (2017). This excellent review article includes an in-depth discussion of the brain tumour microenvironment, relevant cell types, potential tumour-promoting mechanisms and possible therapeutics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Perng, P. & Lim, M. Immunosuppressive mechanisms of malignant gliomas: parallels at non-CNS sites. Front. Oncol. 5, 153 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Vitkovic, L., Maeda, S. & Sternberg, E. Anti-inflammatory cytokines: expression and action in the brain. Neuroimmunomodulation 9, 295–312 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Gong, D. et al. TGFbeta signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol. 13, 31 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wainwright, D. A. et al. IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin. Cancer Res. 18, 6110–6121 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Uyttenhove, C. et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med. 9, 1269–1274 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, I. et al. Characterization of arginase expression in glioma-associated microglia and macrophages. PLOS ONE 11, e0165118 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Hawkins, R. A., O'Kane, R. L., Simpson, I. A. & Vina, J. R. Structure of the blood–brain barrier and its role in the transport of amino acids. J. Nutr. 136, 218S–226S (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Bogdahn, U. et al. Targeted therapy for high-grade glioma with the TGF-beta2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro Oncol. 13, 132–142 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. den Hollander, M. W. et al. TGF-beta antibody uptake in recurrent high-grade glioma imaged with 89Zr-fresolimumab PET. J. Nucl. Med. 56, 1310–1314 (2015).

    Article  CAS  Google Scholar 

  52. Brandes, A. A. et al. A phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma. Neuro Oncol. 18, 1146–1156 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT02502708 (2015).

  54. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT02052648 (2014).

  55. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT02327078 (2014).

  56. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT02752074 (2016).

  57. Long, G. V. et al. Epacadostat (E) plus pembrolizumab (P) versus pembrolizumab alone in patients (pts) with unresectable or metastatic melanoma: results of the phase 3 ECHO-301/KEYNOTE-252 study. J. Clin. Oncol. 36, 108–108 (2018).

    Article  Google Scholar 

  58. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT02903914 (2016).

  59. Graeber, M. B., Scheithauer, B. W. & Kreutzberg, G. W. Microglia in brain tumors. Glia 40, 252–259 (2002).

    Article  PubMed  Google Scholar 

  60. Chen, Z. et al. Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Cancer Res. 77, 2266–2278 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bowman, R. L. et al. Macrophage ontogeny underlies differences in tumor-specific education in brain malignancies. Cell Rep. 17, 2445–2459 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhou, W. et al. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat. Cell Biol. 17, 170–182 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hambardzumyan, D., Gutmann, D. H. & Kettenmann, H. The role of microglia and macrophages in glioma maintenance and progression. Nat. Neurosci. 19, 20–27 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Komohara, Y., Ohnishi, K., Kuratsu, J. & Takeya, M. Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J. Pathol. 216, 15–24 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Majety, M., Runza, V., Lehmann, C., Hoves, S. & Ries, C. H. A drug development perspective on targeting tumor-associated myeloid cells. FEBS J. 285, 763–776 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Hume, D. A. & MacDonald, K. P. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood 119, 1810–1820 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT01349036 (2011).

  70. Butowski, N. et al. Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro Oncol. 18, 557–564 (2016).

    Article  PubMed  Google Scholar 

  71. Germano, G. et al. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell 23, 249–262 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Vakilian, A., Khorramdelazad, H., Heidari, P., Sheikh Rezaei, Z. & Hassanshahi, G. CCL2/CCR2 signaling pathway in glioblastoma multiforme. Neurochem. Int. 103, 1–7 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Vonderheide, R. H. & Glennie, M. J. Agonistic CD40 antibodies and cancer therapy. Clin. Cancer Res. 19, 1035–1043 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kaneda, M. M. et al. PI3Kgamma is a molecular switch that controls immune suppression. Nature 539, 437–442 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Weiskopf, K. Cancer immunotherapy targeting the CD47/SIRPalpha axis. Eur. J. Cancer 76, 100–109 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Kwong, L. S., Brown, M. H., Barclay, A. N. & Hatherley, D. Signal-regulatory protein alpha from the NOD mouse binds human CD47 with an exceptionally high affinity—implications for engraftment of human cells. Immunology 143, 61–67 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hodges, T. R. et al. Mutational burden, immune checkpoint expression, and mismatch repair in glioma: implications for immune checkpoint immunotherapy. Neuro Oncol. 19, 1047–1057 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bouffet, E. et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J. Clin. Oncol. 34, 2206–2211 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Muscat, A. M. et al. The evolutionary pattern of mutations in glioblastoma reveals therapy-mediated selection. Oncotarget 9, 7844–7858 (2018).

    Article  PubMed  Google Scholar 

  80. Johnson, B. E. et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343, 189–193 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Barthel, F. et al. Longitudinal molecular trajectories of diffuse glioma in adults. Nature (in the press).

  82. Kim, H. et al. Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome Res. 25, 316–327 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang, J. et al. Clonal evolution of glioblastoma under therapy. Nat. Genet. 48, 768–776 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Van Allen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207–211 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Goodman, A. M. et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol. Cancer Ther. 16, 2598–2608 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hellmann, M. D. et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med. 378, 2093–2104 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hellmann, M. D. et al. Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell 33, 843–852.e844 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Therkildsen, C. et al. Glioblastomas, astrocytomas and oligodendrogliomas linked to Lynch syndrome. Eur. J. Neurol. 22, 717–724 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Dunn, G. P., Old, L. J. & Schreiber, R. D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 22, 329–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Marty Pyke, R. et al. Evolutionary pressure against MHC class II binding cancer mutations. Cell 175, 416–428.e413 (2018).

    Article  PubMed  CAS  Google Scholar 

  92. McGranahan, N. et al. Allele-Specific HLA loss and immune escape in lung cancer evolution. Cell 171, 1259–1271 e1211 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang, Q. et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32, 42–56 e46 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3, 991–998 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Zhao, J. et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat. Med. 25, 462–469 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT03718767 (2018).

  98. Bigner, S. H. et al. Characterization of the epidermal growth factor receptor in human glioma cell lines and xenografts. Cancer Res. 50, 8017–8022 (1990).

    CAS  PubMed  Google Scholar 

  99. Humphrey, P. A. et al. Anti-synthetic peptide antibody reacting at the fusion junction of deletion-mutant epidermal growth factor receptors in human glioblastoma. Proc. Natl Acad. Sci. USA 87, 4207–4211 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wikstrand, C. J., McLendon, R. E., Friedman, A. H. & Bigner, D. D. Cell surface localization and density of the tumor-associated variant of the epidermal growth factor receptor, EGFRvIII. Cancer Res. 57, 4130–4140 (1997).

    CAS  PubMed  Google Scholar 

  101. Padfield, E., Ellis, H. P. & Kurian, K. M. Current Therapeutic Advances Targeting EGFR and EGFRvIII in Glioblastoma. Front. Oncol. 5, 5 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Migliorini, D. et al. CAR T-Cell Therapies in glioblastoma: a first look. Clin. Cancer Res. 24, 535–540 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. O'Rourke, D. M. et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med. 9, eaaa0984 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Hilf, N. et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565, 240–245 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Cloughesy, T. F. et al. Phase 1 trial of vocimagene amiretrorepvec and 5-fluorocytosine for recurrent high-grade glioma. Sci. Transl. Med. 8, 341ra375 (2016).

    Article  CAS  Google Scholar 

  106. Desjardins, A. et al. Recurrent glioblastoma treated with recombinant poliovirus. N. Engl. J. Med. 379, 150–161 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fountzilas, C., Patel, S. & Mahalingam, D. Review: oncolytic virotherapy, updates and future directions. Oncotarget 8, 102617–102639 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Lang, F. F. et al. Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J. Clin. Oncol. 36, 1419–1427 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Markert, J. M. et al. A phase 1 trial of oncolytic HSV-1, G207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses. Mol. Ther. 22, 1048–1055 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cai, J. et al. Loss of ATRX, associated with DNA methylation pattern of chromosome end, impacted biological behaviors of astrocytic tumors. Oncotarget 6, 18105–18115 (2015).

    PubMed  PubMed Central  Google Scholar 

  111. Gusyatiner, O. & Hegi, M. E. Glioma epigenetics: from subclassification to novel treatment options. Semin. Cancer Biol. 51, 50–58 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Hassan, A., Mosley, J., Singh, S. & Zinn, P. O. A comprehensive review of genomics and noncoding RNA in gliomas. Top. Magn. Reson. Imaging 26, 3–14 (2017).

    PubMed  Google Scholar 

  113. Johann, P. D. et al. Atypical teratoid/rhabdoid tumors are comprised of three epigenetic subgroups with distinct enhancer landscapes. Cancer Cell 29, 379–393 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Mao, C. X. et al. The molecular classification of astrocytic tumors. Oncotarget 8, 96340–96350 (2017).

    PubMed  PubMed Central  Google Scholar 

  115. Loo Yau, H., Ettayebi, I. & De Carvalho, D. D. The cancer epigenome: exploiting its vulnerabilities for immunotherapy. Trends Cell Biol. 29, 31–43 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Pan, D. et al. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 359, 770–775 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Miao, D. et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359, 801–806 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Shu, X. S. et al. The epigenetic modifier PBRM1 restricts the basal activity of the innate immune system by repressing retinoic acid-inducible gene-I-like receptor signalling and is a potential prognostic biomarker for colon cancer. J. Pathol. 244, 36–48 (2018).

    Article  CAS  PubMed  Google Scholar 

  119. Shen, J. et al. ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat. Med. 24, 556–562 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Amankulor, N. M. et al. Mutant IDH1 regulates the tumor-associated immune system in gliomas. Genes Dev. 31, 774–786 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kohanbash, G. et al. Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas. J. Clin. Invest. 127, 1425–1437 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Zhang, X. et al. IDH mutant gliomas escape natural killer cell immune surveillance by downregulation of NKG2D ligand expression. Neuro Oncol. 18, 1402–1412 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Su, Y. B. et al. Selective CD4+ lymphopenia in melanoma patients treated with temozolomide: a toxicity with therapeutic implications. J. Clin. Oncol. 22, 610–616 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Sampson, J. H. et al. Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro Oncol. 13, 324–333 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Fadul, C. E. et al. Immune modulation effects of concomitant temozolomide and radiation therapy on peripheral blood mononuclear cells in patients with glioblastoma multiforme. Neuro Oncol. 13, 393–400 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Grossman, S. A. et al. Survival in patients with severe lymphopenia following treatment with radiation and chemotherapy for newly diagnosed solid tumors. J. Natl Compr. Canc. Netw. 13, 1225–1231 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Batich, K. A. et al. Long-term survival in glioblastoma with cytomegalovirus pp65-targeted vaccination. Clin. Cancer Res. 23, 1898–1909 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Asavaroengchai, W., Kotera, Y. & Mule, J. J. Tumor lysate-pulsed dendritic cells can elicit an effective antitumor immune response during early lymphoid recovery. Proc. Natl Acad. Sci. USA 99, 931–936 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Nistico, P. et al. Chemotherapy enhances vaccine-induced antitumor immunity in melanoma patients. Int. J. Cancer 124, 130–139 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Schaaf, M. B., Garg, A. D. & Agostinis, P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis. 9, 115 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Yang, J., Yan, J. & Liu, B. Targeting VEGF/VEGFR to Modulate Antitumor Immunity. Front. Immunol. 9, 978 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Manzoni, M. et al. Immunological effects of bevacizumab-based treatment in metastatic colorectal cancer. Oncology 79, 187–196 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Martino, E. C. et al. Immune-modulating effects of bevacizumab in metastatic non-small-cell lung cancer patients. Cell Death Discov. 2, 16025 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Larkin, J., Hodi, F. S. & Wolchok, J. D. Combined Nivolumab and Ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 1270–1271 (2015).

    Article  PubMed  CAS  Google Scholar 

  135. Robert, C. et al. Pembrolizumab versus Ipilimumab in advanced melanoma. N. Engl. J. Med. 372, 2521–2532 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Garon, E. B. et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 372, 2018–2028 (2015).

    Article  PubMed  Google Scholar 

  138. Ferris, R. L. et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 375, 1856–1867 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Immunotherapy Timeline of Progress, https://www.cancerresearch.org/immunotherapy/timeline-of-progress (2019).

  140. Agarwalla, P., Barnard, Z., Fecci, P., Dranoff, G. & Curry, W. T. Jr Sequential immunotherapy by vaccination with GM-CSF-expressing glioma cells and CTLA-4 blockade effectively treats established murine intracranial tumors. J. Immunother. 35, 385–389 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Fecci, P. E. et al. Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin. Cancer Res. 13, 2158–2167 (2007). This study is the first to preclinically test immune checkpoint blockade in a brain tumour model.

    Article  CAS  PubMed  Google Scholar 

  142. Antonios, J. P. et al. PD-1 blockade enhances the vaccination-induced immune response in glioma. JCI Insight 1, e87059 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Reardon, D. A. et al. Glioblastoma eradication following immune checkpoint blockade in an orthotopic, immunocompetent model. Cancer Immunol. Res. 4, 124–135 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Wainwright, D. A. et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin. Cancer Res. 20, 5290–5301 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zeng, J. et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int. J. Radiat. Oncol. Biol. Phys. 86, 343–349 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Filley, A. C., Henriquez, M. & Dey, M. Recurrent glioma clinical trial, CheckMate-143: the game is not over yet. Oncotarget 8, 91779–91794 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  147. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT02617589 (2015).

  148. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT02667587 (2016).

  149. Wu, A. et al. Combination anti-CXCR4 and anti-PD-1 immunotherapy provides survival benefit in glioblastoma through immune cell modulation of tumor microenvironment. J. Neurooncol. 143, 241–249 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Woroniecka, K. et al. T-Cell exhaustion signatures vary with tumor type and are severe in glioblastoma. Clin. Cancer Res. 24, 4175–4186 (2018). This study is the first to reveal and characterize the severity of bona fide T cell exhaustion in patients with glioblastoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Tawbi, H. A. et al. Combined nivolumab and ipilimumab in melanoma metastatic to the brain. N. Engl. J. Med. 379, 722–730 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Brooks, W. H., Caldwell, H. D. & Mortara, R. H. Immune responses in patients with gliomas. Surg. Neurol. 2, 419–423 (1974).

    CAS  PubMed  Google Scholar 

  153. Brooks, W. H., Roszman, T. L. & Rogers, A. S. Impairment of rosette-forming T lymphocytes in patients with primary intracranial tumors. Cancer 37, 1869–1873 (1976).

    Article  CAS  PubMed  Google Scholar 

  154. Fecci, P. E. et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res. 66, 3294–3302 (2006). This publication is the first to demonstrate the systemic immune impact of Treg cells in patients with glioblastoma.

    Article  CAS  PubMed  Google Scholar 

  155. Dunn, G. P., Fecci, P. E. & Curry, W. T. Cancer immunoediting in malignant glioma. Neurosurgery 71, 201–222; discussion 222–223 (2012).

    Article  PubMed  Google Scholar 

  156. Woroniecka, K. I., Rhodin, K. E., Chongsathidkiet, P., Keith, K. A. & Fecci, P. E. T-cell dysfunction in glioblastoma: applying a new framework. Clin. Cancer Res. 24, 3792–3802 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Dix, A. R., Brooks, W. H., Roszman, T. L. & Morford, L. A. Immune defects observed in patients with primary malignant brain tumors. J. Neuroimmunol. 100, 216–232 (1999).

    Article  CAS  PubMed  Google Scholar 

  158. Brooks, W. H., Netsky, M. G., Normansell, D. E. & Horwitz, D. A. Depressed cell-mediated immunity in patients with primary intracranial tumors. Characterization of a humoral immunosuppressive factor. J. Exp. Med. 136, 1631–1647 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Roszman, T. L. & Brooks, W. H. Immunobiology of primary intracranial tumours. III. Demonstration of a qualitative lymphocyte abnormality in patients with primary brain tumours. Clin. Exp. Immunol. 39, 395–402 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Koyama, S. et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat. Commun. 7, 10501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Chauvin, J. M. et al. TIGIT and PD-1 impair tumor antigen-specific CD8+ T cells in melanoma patients. J. Clin. Invest. 125, 2046–2058 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Blackburn, S. D. et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol. 10, 29–37 (2009).

    Article  CAS  PubMed  Google Scholar 

  163. Woo, S. R. et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 72, 917–927 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Kurtulus, S. et al. TIGIT predominantly regulates the immune response via regulatory T cells. J. Clin. Invest. 125, 4053–4062 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Angelosanto, J. M., Blackburn, S. D., Crawford, A. & Wherry, E. J. Progressive loss of memory T cell potential and commitment to exhaustion during chronic viral infection. J. Virol. 86, 8161–8170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kim, J. E. et al. Combination therapy with anti-PD-1, anti-TIM-3, and focal radiation results in regression of murine gliomas. Clin. Cancer Res. 23, 124–136 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT02658981 (2016).

  169. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT02817633 (2016).

  170. Cloughesy, T. F. et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat. Med. 25, 477–486 (2019). This report describes the first trial to show the efficacy of immune checkpoint blockade in patients with glioblastoma, which was accomplished via simple neoadjuvant administration prior to resection of recurrent tumours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Schalper, K. A. et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat. Med. 25, 470–476 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. Law, T. M. et al. Phase III randomized trial of interleukin-2 with or without lymphokine-activated killer cells in the treatment of patients with advanced renal cell carcinoma. Cancer 76, 824–832 (1995).

    Article  CAS  PubMed  Google Scholar 

  173. Rosenberg, S. A. & Dudley, M. E. Cancer regression in patients with metastatic melanoma after the transfer of autologous antitumor lymphocytes. Proc. Natl Acad. Sci. USA 101, 14639–14645 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Schuessler, A. et al. Autologous T-cell therapy for cytomegalovirus as a consolidative treatment for recurrent glioblastoma. Cancer Res. 74, 3466–3476 (2014).

    Article  CAS  PubMed  Google Scholar 

  175. Cobbs, C. S. et al. Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res. 62, 3347–3350 (2002).

    CAS  PubMed  Google Scholar 

  176. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT02661282 (2016).

  177. Maus, M. V., Grupp, S. A., Porter, D. L. & June, C. H. Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood 123, 2625–2635 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ahmed, N. et al. HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol. 3, 1094–1101 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Brown, C. E. et al. Bioactivity and safety of IL13R alpha2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin. Cancer Res. 21, 4062–4072 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Brown, C. E. et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N. Engl. J. Med. 375, 2561–2569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Long, K. B. et al. CAR T cell therapy of non-hematopoietic malignancies: detours on the road to clinical success. Front. Immunol. 9, 2740 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Kuhn, N. F. et al. CD40 ligand-modified chimeric antigen receptor T cells enhance antitumor function by eliciting an endogenous antitumor response. Cancer Cell 35, 473–488 e476 (2019). This article describes a preclinical study in which the expression of CD40L on CAR T cells led to the killing of antigen-negative tumour cells and the elimination of tumour immune escape via antigen loss.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Choi, B. D. et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat. Biotechnol. 37, 1049–1058 (2019).

    Article  CAS  PubMed  Google Scholar 

  184. Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018). This study identifies predictors of clinical response to CAR T cell therapy as being exclusively intrinsic properties of the administered cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Fraietta, J. A. et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558, 307–312 (2018). This case report describes how fortuitous deletion of the TET2 gene by CARs led to complete remission of CLL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ichiyama, K. et al. The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells. Immunity 42, 613–626 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Shlush, L. I. Age-related clonal hematopoiesis. Blood 131, 496–504 (2018).

    Article  CAS  PubMed  Google Scholar 

  188. Carty, S. A. et al. The loss of TET2 promotes CD8+ T cell memory differentiation. J. Immunol. 200, 82–91 (2018).

    Article  CAS  PubMed  Google Scholar 

  189. Cull, A. H., Snetsinger, B., Buckstein, R., Wells, R. A. & Rauh, M. J. Tet2 restrains inflammatory gene expression in macrophages. Exp. Hematol. 55, 56–70 e13 (2017).

    Article  CAS  PubMed  Google Scholar 

  190. Zhang, Q. et al. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature 525, 389–393 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Chheda, Z. S. et al. Novel and shared neoantigen derived from histone 3 variant H3.3K27M mutation for glioma T cell therapy. J. Exp. Med. 215, 141–157 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Mount, C. W. et al. Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas. Nat. Med. 24, 572–579 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Sampson, J. H. et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J. Clin. Oncol. 28, 4722–4729 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Weller, M. et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 18, 1373–1385 (2017).

    Article  CAS  PubMed  Google Scholar 

  195. Oji, Y. et al. Association of WT1 IgG antibody against WT1 peptide with prolonged survival in glioblastoma multiforme patients vaccinated with WT1 peptide. Int. J. Cancer 139, 1391–1401 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Rampling, R. et al. A cancer research UK first time in human phase I Trial of IMA950 (novel multipeptide therapeutic vaccine) in patients with newly diagnosed glioblastoma. Clin. Cancer Res. 22, 4776–4785 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Pollack, I. F. et al. Antigen-specific immune responses and clinical outcome after vaccination with glioma-associated antigen peptides and polyinosinic–polycytidylic acid stabilized by lysine and carboxymethylcellulose in children with newly diagnosed malignant brainstem and nonbrainstem gliomas. J. Clin. Oncol. 32, 2050–2058 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Liau, L. M. et al. Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin. Cancer Res. 11, 5515–5525 (2005).

    Article  CAS  PubMed  Google Scholar 

  199. Prins, R. M. et al. Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clin. Cancer Res. 17, 1603–1615 (2011).

    Article  CAS  PubMed  Google Scholar 

  200. Okada, H. et al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with α-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J. Clin. Oncol. 29, 330–336 (2011).

    Article  CAS  PubMed  Google Scholar 

  201. Phuphanich, S. et al. Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol. Immunother. 62, 125–135 (2013).

    Article  CAS  PubMed  Google Scholar 

  202. Wen, P. Y. et al. A randomized, double-blind, placebo-controlled phase 2 trial of dendritic cell (DC) vaccination with ICT-107 in newly diagnosed glioblastoma (GBM) patients. J. Clin. Oncol. 32, 2005–2005 (2014).

    Article  Google Scholar 

  203. Liau, L. M. et al. First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J. Transl. Med. 16, 142 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Van Brussel, I., Berneman, Z. N. & Cools, N. Optimizing dendritic cell-based immunotherapy: tackling the complexity of different arms of the immune system. Mediators Inflamm. 2012, 690643 (2012).

    PubMed  PubMed Central  Google Scholar 

  205. Mailliard, R. B. et al. Alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res. 64, 5934–5937 (2004).

    Article  CAS  PubMed  Google Scholar 

  206. Mitchell, D. A. et al. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature 519, 366–369 (2015). This study demonstrates that the activation of memory T cells prior to DC vaccination leads to increased migration of DCs to lymph nodes and improved clinical responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Garg, A. D., Coulie, P. G., Van den Eynde, B. J. & Agostinis, P. Integrating next-generation dendritic cell vaccines into the current cancer immunotherapy landscape. Trends Immunol. 38, 577–593 (2017).

    Article  CAS  PubMed  Google Scholar 

  208. Nandu, H., Wen, P. Y. & Huang, R. Y. Imaging in neuro-oncology. Ther. Adv. Neurol. Disord. 11, 1756286418759865 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Aquino, D., Gioppo, A., Finocchiaro, G., Bruzzone, M. G. & Cuccarini, V. MRI in glioma immunotherapy: evidence, pitfalls, and perspectives. J. Immunol. Res. 2017, 5813951 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Park, J. et al. Immune checkpoint inhibitor-induced reinvigoration of tumor-infiltrating CD8+ T cells is determined by their differentiation status in glioblastoma. Clin. Cancer Res. 25, 2549–2559 (2019).

    PubMed  Google Scholar 

  211. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT03068832 (2017).

  212. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT04015700 (2019).

  213. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT03422094 (2018).

  214. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT03726515 (2018).

  215. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT03638167 (2018).

  216. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT03500991 (2018).

  217. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT02442297 (2015).

  218. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT02208362 (2014).

  219. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT03299309 (2017).

  220. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT02529072 (2015).

  221. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT02193347 (2014).

  222. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT03223103 (2017).

  223. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT03914768 (2019).

  224. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT03149003 (2017).

  225. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT01204684 (2010).

  226. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT03927222 (2019).

  227. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT03688178 (2018).

  228. Peng, D. et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527, 249–253 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Johnson, L. A., Sanchez-Perez, L., Suryadevara, C. M. & Sampson, J. H. Chimeric antigen receptor engineered T cells can eliminate brain tumors and initiate long-term protection against recurrence. Oncoimmunology 3, e944059 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Farber, S. H. et al. Embracing rejection: immunologic trends in brain metastasis. Oncoimmunology 5, e1172153 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Fischer, G. M. et al. Molecular profiling reveals unique immune and metabolic features of melanoma brain metastases. Cancer Discov. 9, 628–645 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Badie, B. & Schartner, J. M. Flow cytometric characterization of tumor-associated macrophages in experimental gliomas. Neurosurgery 46, 957–961; discussion 961–962 (2000).

    CAS  PubMed  Google Scholar 

  233. Bloch, O. et al. Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clin. Cancer Res. 19, 3165–3175 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Parney, I. F., Waldron, J. S. & Parsa, A. T. Flow cytometry and in vitro analysis of human glioma-associated macrophages: laboratory investigation. J. Neurosurg. 110, 572–582 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Sugihara, A. Q., Rolle, C. E. & Lesniak, M. S. Regulatory T cells actively infiltrate metastatic brain tumors. Int. J. Oncol. 34, 1533–1540 (2009).

    PubMed  Google Scholar 

  236. Berghoff, A. S. et al. Tumour-infiltrating lymphocytes and expression of programmed death ligand 1 (PD-L1) in melanoma brain metastases. Histopathology 66, 289–299 (2015).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health to J.H.S.: R01-NS099463, P50-CA190991, P30-CA14236, P01-CA225622, R01-CA235612, U01-NS090284, R01-NS085412 and R01-CA175517. The funders had no role in the preparation of the manuscript or the decision to publish. The authors acknowledge T. Wright for her assistance with manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

All authors provided substantial contributions to the discussions of the content, made significant contributions to the writing of the article and contributed equally to the review and editing of the manuscript before submission.

Corresponding author

Correspondence to John H. Sampson.

Ethics declarations

Competing interests

J.H.S. has an equity interest in Annias Immunotherapeutics, which has licensed intellectual property from Duke related to the use of the PEP-CMV vaccine in the treatment of glioblastoma. J.H.S. has an equity interest in Istari Oncology, which has licensed intellectual property from Duke related to the use of polio virus and D2C7 in the treatment of glioblastoma. J.H.S. has additional relationships with Celldex (intellectual property, royalties) and Medicenna Therapeutics (consulting). J.H.S. is an inventor on patents related to the PEP-CMV DC vaccine with tetanus, as well as to polio virus vaccine and D2C7 in the treatment of glioblastoma. D.M.A is an inventor on patents related to the use of polio virus. M.D.G is an inventor on patents related to cellular vaccines. Duke and certain Duke investigators could benefit financially if related therapies prove effective and are commercially successful. P.E.F. has no relevant disclosures.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Tumour-treating fields

(TTFields). External application of alternating electrical fields to disrupt the multiplication of tumour cells.

Glial–lymphatic (glymphatic) pathway

A recently characterized functional waste clearance pathway in the central nervous system that connects the brain interstitium to the cerebrospinal fluid spaces via aquaporin channels.

Glia limitans

A thin barrier of astrocyte foot processes associated with the parenchymal basal lamina surrounding the brain and spinal cord. The glia limitans plays a crucial role in regulating the movement of small molecules and cells into the brain parenchyma.

Microglia

The resident self-renewing population of macrophages in the central nervous system.

Lynch syndrome

Also known as hereditary non-polyposis colorectal cancer. A type of inherited cancer syndrome associated with a genetic predisposition to different cancer types, including glioblastoma.

Myelosuppression

A condition in which bone marrow activity is decreased, resulting in fewer red blood cells, white blood cells and platelets.

Lymphopenia

The condition of having an abnormally low level of lymphocytes in the blood.

Lymphokine-activated killer (LAK) cells

Lymphocytes cultured in the presence of interleukin-2 (IL-2) to stimulate their cytotoxic activity.

Pseudoprogression

A new or enlarging area of contrast agent enhancement occurring early after the end of radiotherapy or immunotherapy (for example, within 3–4 months), in the absence of true tumour growth, that subsides or stabilizes without a change in therapy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sampson, J.H., Gunn, M.D., Fecci, P.E. et al. Brain immunology and immunotherapy in brain tumours. Nat Rev Cancer 20, 12–25 (2020). https://doi.org/10.1038/s41568-019-0224-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-019-0224-7

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer