Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Medulloblastomics revisited: biological and clinical insights from thousands of patients

Abstract

Medulloblastoma, a malignant brain tumour primarily diagnosed during childhood, has recently been the focus of intensive molecular profiling efforts, profoundly advancing our understanding of biologically and clinically heterogeneous disease subgroups. Genomic, epigenomic, transcriptomic and proteomic landscapes have now been mapped for an unprecedented number of bulk samples from patients with medulloblastoma and, more recently, for single medulloblastoma cells. These efforts have provided pivotal new insights into the diverse molecular mechanisms presumed to drive tumour initiation, maintenance and recurrence across individual subgroups and subtypes. Translational opportunities stemming from this knowledge are continuing to evolve, providing a framework for improved diagnostic and therapeutic interventions. In this Review, we summarize recent advances derived from this continued molecular characterization of medulloblastoma and contextualize this progress towards the deployment of more effective, molecularly informed treatments for affected patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of MB DNA methylation-derived subtypes described across recent studies.
Fig. 2: Summary of demographic, clinical and molecular features of novel MB subtypes.
Fig. 3: Aberrant signalling pathways implicated in Group 3 and Group 4 MB by proteomics.
Fig. 4: MB subgroup cellular hierarchies deduced from single-cell RNA sequencing.

Similar content being viewed by others

References

  1. Ostrom, Q. T. et al. CBTRUS Statistical Report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro-Oncology 20, iv1–iv86 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Curtin, S. C., Minino, A. M. & Anderson, R. N. Declines in cancer death rates among children and adolescents in the United States, 1999-2014. NCHS Data Brief, 1–8 (2016).

  3. Ezzat, S. et al. Pediatric brain tumors in a low/middle income country: does it differ from that in developed world? J. Neurooncol. 126, 371–376 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Makino, K., Nakamura, H., Yano, S., Kuratsu, J. & Kumamoto Brain Tumor Group. Population-based epidemiological study of primary intracranial tumors in childhood. Childs Nerv. Syst. 26, 1029–1034 (2010).

    Article  PubMed  Google Scholar 

  5. Taylor, M. D. et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 123, 465–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Northcott, P. A. et al. Medulloblastomics: the end of the beginning. Nat. Rev. Cancer 12, 818–834 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rausch, T. et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148, 59–71 (2012). This first whole-genome sequencing study of MB identifies the association between TP53 mutations and chromothripsis in SHH MB.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pugh, T. J. et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 488, 106–110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Northcott, P. A. et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 488, 49–56 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jones, D. T. et al. Dissecting the genomic complexity underlying medulloblastoma. Nature 488, 100–105 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Northcott, P. A. et al. Medulloblastoma. Nat. Rev. Dis. Primers 5, 11 (2019).

    Article  PubMed  Google Scholar 

  12. Pomeroy, S. L. et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415, 436–442 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Lee, Y. et al. A molecular fingerprint for medulloblastoma. Cancer Res. 63, 5428–5437 (2003).

    CAS  PubMed  Google Scholar 

  14. Cho, Y. J. et al. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J. Clin. Oncol. 29, 1424–1430 (2011).

    Article  PubMed  Google Scholar 

  15. Kool, M. et al. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLOS ONE 3, e3088 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Northcott, P. A. et al. Medulloblastoma comprises four distinct molecular variants. J. Clin. Oncol. 29, 1408–1414 (2011).

    Article  PubMed  Google Scholar 

  17. Thompson, M. C. et al. Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J. Clin. Oncol. 24, 1924–1931 (2006). Cho et al. (2011), Kool et al. (2008), Northcott et al. (2011) and Thompson et al. (2006) report the first separation of MB into distinct molecular subgroups using array-based gene expression profiling and unsupervised clustering.

    Article  CAS  PubMed  Google Scholar 

  18. Louis, D. N. et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131, 803–820 (2016).

    Article  PubMed  Google Scholar 

  19. Min, H. S., Lee, J. Y., Kim, S. K. & Park, S. H. Genetic grouping of medulloblastomas by representative markers in pathologic diagnosis. Transl Oncol. 6, 265–272 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ellison, D. W. et al. Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol. 121, 381–396 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Northcott, P. A. et al. Rapid, reliable, and reproducible molecular sub-grouping of clinical medulloblastoma samples. Acta Neuropathol. 123, 615–626 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Leal, L. F. et al. Reproducibility of the NanoString 22-gene molecular subgroup assay for improved prognostic prediction of medulloblastoma. Neuropathology 38, 475–483 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Schwalbe, E. C. et al. Rapid diagnosis of medulloblastoma molecular subgroups. Clin. Cancer Res. 17, 1883–1894 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Capper, D. et al. DNA methylation-based classification of central nervous system tumours. Nature 555, 469–474 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hovestadt, V. et al. Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays. Acta Neuropathol. 125, 913–916 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schwalbe, E. C. et al. DNA methylation profiling of medulloblastoma allows robust subclassification and improved outcome prediction using formalin-fixed biopsies. Acta Neuropathol. 125, 359–371 (2013). Hovestadt et al. (2013) and Schwalbe et al. (2013) establish the use of genome-wide DNA methylation arrays for molecular subgrouping of MB.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schwalbe, E. C. et al. Minimal methylation classifier (MIMIC): a novel method for derivation and rapid diagnostic detection of disease-associated DNA methylation signatures. Sci. Rep. 7, 13421 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Korshunov, A. et al. DNA-methylation profiling discloses significant advantages over NanoString method for molecular classification of medulloblastoma. Acta Neuropathol. 134, 965–967 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Cavalli, F. M. G. et al. Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell 31, 737–754.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Northcott, P. A. et al. The whole-genome landscape of medulloblastoma subtypes. Nature 547, 311–317 (2017). This study has integrated and expanded earlier next-generation sequencing studies, for the most exhaustive genomic characterization of MB to date.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schwalbe, E. C. et al. Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study. Lancet Oncol. 18, 958–971 (2017). Cavalli et al. (2017), Northcott et al. (2017) and Schwalbe et al. (2017) have described further subdivisions of molecular subgroups of MB into subtypes through molecular profiling of increasingly larger patient cohorts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kool, M. et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol. 123, 473–484 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gajjar, A. et al. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol. 7, 813–820 (2006).

    Article  PubMed  Google Scholar 

  34. Ellison, D. W. et al. beta-Catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children’s Cancer Study Group Brain Tumour Committee. J. Clin. Oncol. 23, 7951–7957 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Shih, D. J. et al. Cytogenetic prognostication within medulloblastoma subgroups. J. Clin. Oncol. 32, 886–896 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Waszak, S. M. et al. Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncol. 19, 785–798 (2018). This study describes germline predisposition to MB, concluding that pathogenic germline mutations account for at least 6% of MB diagnoses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Remke, M. et al. Adult medulloblastoma comprises three major molecular variants. J. Clin. Oncol. 29, 2717–2723 (2011).

    Article  PubMed  Google Scholar 

  38. Kool, M. et al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell 25, 393–405 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Northcott, P. A. et al. Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathol. 122, 231–240 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Remke, M. et al. TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. Acta Neuropathol. 126, 917–929 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Koelsche, C. et al. Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system. Acta Neuropathol. 126, 907–915 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Lindsey, J. C. et al. TERT promoter mutation and aberrant hypermethylation are associated with elevated expression in medulloblastoma and characterise the majority of non-infant SHH subgroup tumours. Acta Neuropathol. 127, 307–309 (2014).

    Article  PubMed  Google Scholar 

  43. Poschl, J. et al. Genomic and transcriptomic analyses match medulloblastoma mouse models to their human counterparts. Acta Neuropathol. 128, 123–136 (2014).

    Article  PubMed  CAS  Google Scholar 

  44. Robinson, G. W. et al. Risk-adapted therapy for young children with medulloblastoma (SJYC07): therapeutic and molecular outcomes from a multicentre, phase 2 trial. Lancet Oncol. 19, 768–784 (2018). This study defines the molecular landscape of infant MB and integrates molecular findings with a prospective clinical trial cohort, concluding that infant SHH MB can be discriminated into two molecularly distinct subtypes with disparate survival outcomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, J., Garancher, A., Ramaswamy, V. & Wechsler-Reya, R. J. Medulloblastoma: from molecular subgroups to molecular targeted therapies. Annu. Rev. Neurosci. 41, 207–232 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Ramaswamy, V. & Taylor, M. D. Medulloblastoma: from myth to molecular. J. Clin. Oncol. 35, 2355–2363 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Ramaswamy, V. et al. Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathol. 131, 821–831 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sharma, T. et al. Second-generation molecular subgrouping of medulloblastoma: an international meta-analysis of Group 3 and Group 4 subtypes. Acta Neuropathol. 138, 309–326 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Robinson, G. et al. Novel mutations target distinct subgroups of medulloblastoma. Nature 488, 43–48 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Parsons, D. W. et al. The genetic landscape of the childhood cancer medulloblastoma. Science 331, 435–439 (2011). This is the first exome-level sequencing study of MB, identifying novel recurrent mutations in the chromatin-modifying genes MLL2 and MLL3.

    Article  CAS  PubMed  Google Scholar 

  51. Canning, P. et al. Structural basis for Cul3 protein assembly with the BTB–Kelch family of E3 ubiquitin ligases. J. Biol. Chem. 288, 7803–7814 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee, J. C. et al. Recurrent KBTBD4 small in-frame insertions and absence of DROSHA deletion or DICER1 mutation differentiate pineal parenchymal tumor of intermediate differentiation (PPTID) from pineoblastoma. Acta Neuropathol. 137, 851–854 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Northcott, P. A. et al. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature 511, 428–434 (2014). This study identifies recurrent structural variations leading to the activation of GFI1 and GFI1B in Group 3 MB, without affecting the protein sequence of these oncoproteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Moroy, T., Vassen, L., Wilkes, B. & Khandanpour, C. From cytopenia to leukemia: the role of Gfi1 and Gfi1b in blood formation. Blood 126, 2561–2569 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Erikson, J. et al. Translocation of an immunoglobulin kappa locus to a region 3′ of an unrearranged c-myc oncogene enhances c-myc transcription. Proc. Natl Acad. Sci. USA 80, 7581–7585 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Croce, C. M. et al. Transcriptional activation of an unrearranged and untranslocated c-myc oncogene by translocation of a C lambda locus in Burkitt. Proc. Natl Acad. Sci. USA 80, 6922–6926 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Haller, F. et al. Enhancer hijacking activates oncogenic transcription factor NR4A3 in acinic cell carcinomas of the salivary glands. Nat. Commun. 10, 368 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Martin-Garcia, D. et al. CCND2 and CCND3 hijack immunoglobulin light-chain enhancers in cyclin D1(-) mantle cell lymphoma. Blood 133, 940–951 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zimmerman, M. W. et al. MYC drives a subset of high-risk pediatric neuroblastomas and is activated through mechanisms including enhancer hijacking and focal enhancer amplification. Cancer Discov. 8, 320–335 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Weischenfeldt, J. et al. Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking. Nat. Genet. 49, 65–74 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Ryan, R. J. et al. Detection of enhancer-associated rearrangements reveals mechanisms of oncogene dysregulation in B-cell lymphoma. Cancer Discov. 5, 1058–1071 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu, Y. et al. PRDM6 is enriched in vascular precursors during development and inhibits endothelial cell proliferation, survival, and differentiation. J. Mol. Cell. Cardiol. 44, 47–58 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Davis, C. A. et al. PRISM/PRDM6, a transcriptional repressor that promotes the proliferative gene program in smooth muscle cells. Mol. Cell. Biol. 26, 2626–2636 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hunger, S. P. & Mullighan, C. G. Acute lymphoblastic leukemia in children. N. Engl. J. Med. 373, 1541–1552 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Parker, M. et al. C11orf95-RELA fusions drive oncogenic NF-κB signalling in ependymoma. Nature 506, 451–455 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jones, D. T. et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 68, 8673–8677 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. He, F. et al. Long noncoding RNA PVT1-214 promotes proliferation and invasion of colorectal cancer by stabilizing Lin28 and interacting with miR-128. Oncogene 38, 164–179 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Liu, Z. & Zhang, H. LncRNA plasmacytoma variant translocation 1 is an oncogene in bladder urothelial carcinoma. Oncotarget 8, 64273–64282 (2017).

    PubMed  PubMed Central  Google Scholar 

  69. Tian, Z. et al. LncRNA PVT1 regulates growth, migration, and invasion of bladder cancer by miR-31/ CDK1. J. Cell. Physiol. 234, 4799–4811 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Tseng, Y. Y. et al. PVT1 dependence in cancer with MYC copy-number increase. Nature 512, 82–86 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, Z., Su, M., Xiang, B., Zhao, K. & Qin, B. Circular RNA PVT1 promotes metastasis via miR-145 sponging in CRC. Biochem. Biophys. Res. Commun. 512, 716–722 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Yang, T. et al. lncRNA PVT1 and its splicing variant function as competing endogenous RNA to regulate clear cell renal cell carcinoma progression. Oncotarget 8, 85353–85367 (2017).

    PubMed  PubMed Central  Google Scholar 

  73. Zhao, J. et al. LncRNA PVT1 promotes angiogenesis via activating the STAT3/VEGFA axis in gastric cancer. Oncogene 37, 4094–4109 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Cho, S. W. et al. Promoter of lncRNA gene PVT1 is a tumor-suppressor DNA boundary element. Cell 173, 1398–1412.e22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hovestadt, V. et al. Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature 510, 537–541 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Balzeau, J., Menezes, M. R., Cao, S. & Hagan, J. P. The LIN28/let-7 pathway in cancer. Front. Genet. 8, 31 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Northcott, P. A. et al. The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors. Cancer Res. 69, 3249–3255 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ferretti, E. et al. MicroRNA profiling in human medulloblastoma. Int. J. Cancer 124, 568–577 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Uziel, T. et al. The miR-17~92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proc. Natl Acad. Sci. USA 106, 2812–2817 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zindy, F. et al. Role of the miR-17 approximately 92 cluster family in cerebellar and medulloblastoma development. Biol. Open 3, 597–605 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Murphy, B. L. et al. Silencing of the miR-17~92 cluster family inhibits medulloblastoma progression. Cancer Res. 73, 7068–7078 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Bai, A. H. et al. MicroRNA-182 promotes leptomeningeal spread of non-sonic hedgehog-medulloblastoma. Acta Neuropathol. 123, 529–538 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Weeraratne, S. D. et al. Pleiotropic effects of miR-183~96~182 converge to regulate cell survival, proliferation and migration in medulloblastoma. Acta Neuropathol. 123, 539–552 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang, Z., Li, S. & Cheng, S. Y. The miR-183 approximately 96 approximately 182 cluster promotes tumorigenesis in a mouse model of medulloblastoma. J. Biomed. Res. 27, 486–494 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ferretti, E. et al. Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J. 27, 2616–2627 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Su, X. et al. Abnormal expression of REST/NRSF and Myc in neural stem/progenitor cells causes cerebellar tumors by blocking neuronal differentiation. Mol. Cell. Biol. 26, 1666–1678 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wu, J. & Xie, X. Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome Biol. 7, R85 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Pierson, J., Hostager, B., Fan, R. & Vibhakar, R. Regulation of cyclin dependent kinase 6 by microRNA 124 in medulloblastoma. J. Neurooncol. 90, 1–7 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Silber, J. et al. Expression of miR-124 inhibits growth of medulloblastoma cells. Neuro-Oncology 15, 83–90 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Wang, X. et al. miR miR on the wall, who’s the most malignant medulloblastoma miR of them all? Neuro-Oncology 20, 313–323 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Hansen, K. D. et al. Increased methylation variation in epigenetic domains across cancer types. Nat. Genet. 43, 768–775 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Berman, B. P. et al. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat. Genet. 44, 40–46 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Hon, G. C. et al. Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res. 22, 246–258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lin, C. Y. et al. Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature 530, 57–62 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  96. Thurman, R. E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    Article  PubMed Central  CAS  Google Scholar 

  98. Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 537, 347–355 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Archer, T. C. et al. Proteomics, post-translational modifications, and integrative analyses reveal molecular heterogeneity within medulloblastoma subgroups. Cancer Cell 34, 396–410 e398 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Forget, A. et al. Aberrant ERBB4-SRC signaling as a hallmark of group 4 medulloblastoma revealed by integrative phosphoproteomic profiling. Cancer Cell 34, 379–395.e377 (2018). Archer et al. (2018) and Forget et al. (2018) first describe quantification of the global proteome and phospho-proteome landscape in primary patient samples through mass spectrometry.

    Article  CAS  PubMed  Google Scholar 

  101. Rivero-Hinojosa, S. et al. Proteomic analysis of medulloblastoma reveals functional biology with translational potential. Acta Neuropathol. Commun. 6, 48 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Vogel, C. & Marcotte, E. M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 13, 227–232 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Staal, J. A. et al. Proteomic profiling of high risk medulloblastoma reveals functional biology. Oncotarget 6, 14584–14595 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Zomerman, W. W. et al. Identification of two protein-signaling states delineating transcriptionally heterogeneous human medulloblastoma. Cell Rep. 22, 3206–3216 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Canettieri, G. et al. Histone deacetylase and Cullin3-REN(KCTD11) ubiquitin ligase interplay regulates Hedgehog signalling through Gli acetylation. Nat. Cell Biol. 12, 132–142 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Klisch, T. J., Vainshtein, A., Patel, A. J. & Zoghbi, H. Y. Jak2-mediated phosphorylation of Atoh1 is critical for medulloblastoma growth. eLife 6, 31181 (2017).

    Article  Google Scholar 

  107. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994).

    Article  CAS  PubMed  Google Scholar 

  109. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730–737 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Singh, S. K. et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828 (2003).

    CAS  PubMed  Google Scholar 

  111. Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004). This study first reports the discovery of a CD133+ stem-like tumour cell population in MB that can efficiently initiate tumours in vivo, whereas the remaining CD133 tumour cells cannot.

    Article  CAS  PubMed  Google Scholar 

  112. Garg, N. et al. CD133+ brain tumor-initiating cells are dependent on STAT3 signaling to drive medulloblastoma recurrence. Oncogene 36, 606–617 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Read, T. A. et al. Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma. Cancer Cell 15, 135–147 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ward, R. J. et al. Multipotent CD15 + cancer stem cells in patched-1-deficient mouse medulloblastoma. Cancer Res. 69, 4682–4690 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Vanner, R. J. et al. Quiescent sox2+ cells drive hierarchical growth and relapse in sonic hedgehog subgroup medulloblastoma. Cancer Cell 26, 33–47 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Weng, Q. et al. Single-cell transcriptomics uncovers glial progenitor diversity and cell fate determinants during development and gliomagenesis. Cell Stem Cell 24, 707–723.e708 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Filbin, M. G. et al. Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science 360, 331–335 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Venteicher, A. S. et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science 355, eaai8478 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Tirosh, I. et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 539, 309–313 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Vladoiu, M. C. et al. Childhood cerebellar tumours mirror conserved fetal transcriptional programs. Nature 572, 67–73 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hovestadt, V. et al. Resolving medulloblastoma cellular architecture by single-cell genomics. Nature 572, 74–79 (2019). Vladoiu et al. (2019) and Hovestadt et al. (2019) first apply single-cell transcriptome profiling to characterizing cellular heterogeneity within individual patients with MB and identifying developmental correlates from the developing mouse cerebellum.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Oliver, T. G. et al. Loss of patched and disruption of granule cell development in a pre-neoplastic stage of medulloblastoma. Development 132, 2425–2439 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Morrissy, A. S. et al. Spatial heterogeneity in medulloblastoma. Nat. Genet. 49, 780–788 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fults, D. W., Taylor, M. D. & Garzia, L. Leptomeningeal dissemination: a sinister pattern of medulloblastoma growth. J. Neurosurg. https://doi.org/10.3171/2018.11.PEDS18506 (2019).

    Google Scholar 

  126. Ramaswamy, V. et al. Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis. Lancet Oncol. 14, 1200–1207 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hill, R. M. et al. Combined MYC and P53 defects emerge at medulloblastoma relapse and define rapidly progressive, therapeutically targetable disease. Cancer Cell 27, 72–84 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Morrissy, A. S. et al. Divergent clonal selection dominates medulloblastoma at recurrence. Nature 529, 351–357 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zapotocky, M. et al. Differential patterns of metastatic dissemination across medulloblastoma subgroups. J. Neurosurg. 21, 145–152 (2018).

    Google Scholar 

  130. Garzia, L. et al. A hematogenous route for medulloblastoma leptomeningeal metastases. Cell 173, 1549 (2018). This study describes the presence of circulating tumour cells in the blood of patients that can spread to form leptomeningeal metastases.

    Article  CAS  PubMed  Google Scholar 

  131. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01878617 (2013).

  132. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02066220 (2014).

  133. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02724579 (2016).

  134. Sharma, T. et al. Second-generation molecular subgrouping of medulloblastoma: an international meta-analysis of Group 3 and Group 4 subtypes. Acta Neuropathol. 138, 309–326 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Druker, H. et al. Genetic counselor recommendations for cancer predisposition evaluation and surveillance in the pediatric oncology patient. Clin. Cancer Res. 23, e91–e97 (2017).

    Article  PubMed  Google Scholar 

  136. Romer, J. T. et al. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1+/–p53–/– mice. Cancer Cell 6, 229–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Lee, Y. et al. Loss of suppressor-of-fused function promotes tumorigenesis. Oncogene 26, 6442–6447 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Robinson, G. W. et al. Vismodegib exerts targeted efficacy against recurrent sonic hedgehog-subgroup medulloblastoma: results from phase II Pediatric Brain Tumor Consortium studies PBTC-025B and PBTC-032. J. Clin. Oncol. 33, 2646–2654 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Robinson, G. W. et al. Irreversible growth plate fusions in children with medulloblastoma treated with a targeted hedgehog pathway inhibitor. Oncotarget 8, 69295–69302 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Kimura, H., Ng, J. M. & Curran, T. Transient inhibition of the Hedgehog pathway in young mice causes permanent defects in bone structure. Cancer Cell 13, 249–260 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Lee, C. et al. Lsd1 as a therapeutic target in Gfi1-activated medulloblastoma. Nat. Commun. 10, 332 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Morabito, M. et al. An autocrine ActivinB mechanism drives TGFβ/activin signaling in Group 3 medulloblastoma. EMBO Mol. Med. 11, e9830 (2019).

    PubMed  PubMed Central  Google Scholar 

  143. Gilbertson, R. J. & Ellison, D. W. The origins of medulloblastoma subtypes. Annu. Rev. Pathol. 3, 341–365 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Gibson, P. et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 468, 1095–1099 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Swartling, F. J. et al. Distinct neural stem cell populations give rise to disparate brain tumors in response to N-MYC. Cancer Cell 21, 601–613 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pei, Y. et al. An animal model of MYC-driven medulloblastoma. Cancer Cell 21, 155–167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kawauchi, D. et al. Novel MYC-driven medulloblastoma models from multiple embryonic cerebellar cells. Oncogene 36, 5231–5242 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kawauchi, D. et al. A mouse model of the most aggressive subgroup of human medulloblastoma. Cancer Cell 21, 168–180 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Swartling, F. J. et al. Pleiotropic role for MYCN in medulloblastoma. Genes Dev. 24, 1059–1072 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Chizhikov, V. V. et al. Lmx1a regulates fates and location of cells originating from the cerebellar rhombic lip and telencephalic cortical hem. Proc. Natl Acad. Sci. USA 107, 10725–10730 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Englund, C. et al. Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. J. Neurosci. 26, 9184–9195 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

P.A.N. is a Pew–Stewart Scholar for Cancer Research (Margaret and Alexander Stewart Trust) and recipient of the Sontag Foundation Distinguished Scientist Award. P.A.N. was also supported by the National Cancer Institute (R01CA232143-01), the American Association for Cancer Research (NextGen Grant for Transformative Cancer Research), The Brain Tumour Charity (Quest for Cures and Clinical Biomarkers), the American Lebanese Syrian Associated Charities (ALSAC) and St. Jude. V.H. is supported by a Human Frontier Science Program long-term fellowship (LT000596/2016-L). We acknowledge K. Smith, L. Bihannic and T. Sharma for assistance with data organization and figure design. We thank B. Stelter for assistance with the artwork.

Author information

Authors and Affiliations

Authors

Contributions

V.H. and P.A.N researched data for the article, contributed substantially to discussion of the content, wrote the article and reviewed/edited the manuscript before submission. O.A., F.J.S., G.W.R. and S.M.P. researched data for the article, wrote the article and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Paul A. Northcott.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cancer thanks T. Curran, E. Ferretti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Next-generation sequencing

(NGS). Technologies enabling massively parallel reading of amplified short nucleotide sequences (typically yielding hundreds of millions of reads, 100–500 bp in length). In contrast, emerging third-generation sequencing technologies read sequences without prior amplification, yielding much longer reads, albeit with reduced accuracy and throughput.

Molecular classification

Classification of patient tumour samples based on molecular markers, as opposed to classification based on histomorphological appearance.

Intratumoural heterogeneity

The observation that tumours comprise distinct malignant and non-malignant (cells of the microenvironment) cell types. The heterogeneity of malignant cells encompasses genetic heterogeneity (for example, different genetic subclones) and transcriptional heterogeneity (for example, malignant cell states resembling normal development).

Primitive neuroectodermal tumour

(PNET). A class of histologically defined, poorly differentiated childhood brain tumours. More recently, PNET has been reclassified into a number of both novel and previously known brain tumour entities by molecular profiling.

Atypical teratoid rhabdoid tumour

A rare and highly malignant type of childhood brain tumour that is characterized by mutations in the SMARCB1 gene.

Classic histology

The most common histological variant found in all medulloblastoma subgroups, characterized by densely packed small round or oval cells and a high nuclear:cytoplasmic ratio.

Desmoplastic/nodular histology

A histological variant mostly restricted to Sonic hedgehog medulloblastoma, characterized by a varying number of islands of neurocytic differentiation and internodular desmoplasia.

Large-cell/anaplastic (LCA) histology

A histological variant associated with both Group 3 medulloblastoma and a more aggressive phenotype, characterized by the co-occurrence of groups of large cells with round nuclei and cells exhibiting cytological pleomorphism (anaplasia).

Isochromosome

An abnormal chromosome in which both chromosome arms are identical. Isochromosome 17q is one of the most frequent somatic copy-number alterations in Group 3 and Group 4 medulloblastoma. In most cases a second q-arm is fused to the p-arm proximal to the centromere.

Craniospinal axis irradiation

(CSI). Standard therapy for patients with medulloblastoma following surgery, to reduce risk of tumour regrowth and metastatic dissemination. The application of CSI is also associated with neurological impairments and secondary malignancies.

Non-synonymous mutations

Genetic alterations that alter the amino acid sequence of an affected protein, possibly altering protein function. Most described recurrent mutations in medulloblastoma are non-synonymous mutations.

BTB–Kelch protein family

Family of proteins characterized by the presence of an N-terminal BTB domain and C-terminal Kelch motifs. The BTB domain facilitates protein binding, and the Kelch motifs associate to form a β-propeller facilitating protein–protein interactions. This family function as adaptor proteins that link cullin–RING ligases to substrates for ubiquitylation.

Pineal parenchymal tumours of intermediate differentiation

(PPTID). A very rare tumour type of intermediate grade arising from the pineal parenchyma.

Chromothripsis

Clustered occurrence of a large number of structural variants restricted to a single chromosome or chromosomal arm, emerging through a single catastrophic event.

Ptch1+/– mouse MB model

Transgenic mouse model that is heterozygous for the Ptch1 gene. Sporadic Sonic hedgehog medulloblastoma develops in ~15% of Ptch1+/– mice.

Single-cell RNA sequencing

Emerging technology that enables unsupervised characterization of transcriptional profiles in individual cells of healthy and diseased tissues. The throughput of this technology has steadily increased over recent years, now enabling profiling of tens of thousands of individual cells in a single experiment.

Granule neuron progenitor

(GNP). A progenitor cell type that gives rise to granule cells, the most common type of neuron in the mature cerebellum; the presumed developmental origin of Sonic hedgehog medulloblastoma.

Unipolar brush cells

(UBCs). Rare glutamatergic interneurons found in the cerebellar cortex and in the dorsal cochlear nucleus. Recent studies have identified transcriptional similarities between UBCs in mouse and human Group 4 medulloblastoma.

Glutamatergic cerebellar nuclei

(GluCN). Also referred to as deep cerebellar nuclei. Cells that function (along with GABAergic interneurons) as the main output centres of the cerebellum.

Sleeping Beauty transposon system

A synthetic DNA transposon system used for random mutagenesis screening and in a recent Sonic hedgehog-medulloblastoma mouse model. Genes affected by genomic insertion of the transposon can be identified through sequencing.

Bone age

Degree of skeletal maturity, an important parameter for determining the clinical use of SMO inhibitors in patients with Sonic hedgehog medulloblastoma. Prolonged exposure to the targeted inhibitor vismodegib has been associated with growth defects in children that have not reached skeletal maturity.

Patient-derived xenograft

(PDX). A model of cancer in which tumour cells from a patient are implanted and maintained in a non-human carrier, most commonly immunodeficient or humanized laboratory mice. PDX models are thought to resemble patient tumours more closely than cell cultures do.

Blood–brain barrier

A semipermeable border formed by endothelial cells lining the cerebral microvasculature that separates the brain from the circulating blood and protects the brain from fluctuations in plasma composition and from circulating agents such as neurotransmitters and pathogens. The blood–brain barrier also presents a challenge for drug delivery when treating brain tumours.

Blood–tumour barrier

Tumour-associated compromise of the blood–brain barrier, resulting in a highly heterogeneous vasculature characterized by non-uniform permeability to small and large molecules.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hovestadt, V., Ayrault, O., Swartling, F.J. et al. Medulloblastomics revisited: biological and clinical insights from thousands of patients. Nat Rev Cancer 20, 42–56 (2020). https://doi.org/10.1038/s41568-019-0223-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-019-0223-8

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer