Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How the ageing microenvironment influences tumour progression

Abstract

Most cancers arise in individuals over the age of 60. As the world population is living longer and reaching older ages, cancer is becoming a substantial public health problem. It is estimated that, by 2050, more than 20% of the world’s population will be over the age of 60 — the economic, healthcare and financial burdens this may place on society are far from trivial. In this Review, we address the role of the ageing microenvironment in the promotion of tumour progression. Specifically, we discuss the cellular and molecular changes in non-cancerous cells during ageing, and how these may contribute towards a tumour permissive microenvironment; these changes encompass biophysical alterations in the extracellular matrix, changes in secreted factors and changes in the immune system. We also discuss the contribution of these changes to responses to cancer therapy as ageing predicts outcomes of therapy, including survival. Yet, in preclinical studies, the contribution of the aged microenvironment to therapy response is largely ignored, with most studies designed in 8-week-old mice rather than older mice that reflect an age appropriate to the disease being modelled. This may explain, in part, the failure of many successful preclinical therapies upon their translation to the clinic. Overall, the intention of this Review is to provide an overview of the interplay that occurs between ageing cell types in the microenvironment and cancer cells and how this is likely to impact tumour metastasis and therapy response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stromal deregulation in the aged microenvironment drives tumorigenesis and progression.
Fig. 2: Age-induced contextual changes in extracellular matrix structure and function in the tumour microenvironment.
Fig. 3: Immune cell switching, inflammaging and immunosenescence as drivers of age-induced tumour progression.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics. CA Cancer J. Clin. 68, 7–30 (2018).

    Article  PubMed  Google Scholar 

  2. Aunan, J. R., Cho, W. C. & Soreide, K. The biology of aging and cancer: a brief overview of shared and divergent molecular hallmarks. Aging Dis. 8, 628–642 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hsu, T. Educational initiatives in geriatric oncology — who, why, and how? J. Geriatr. Oncol. 7, 390–396 (2016).

    Article  PubMed  Google Scholar 

  4. Zinger, A., Cho, W. C. & Ben-Yehuda, A. Cancer and aging — the inflammatory connection. Aging Dis. 8, 611–627 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Rozhok, A. & DeGregori, J. A generalized theory of age-dependent carcinogenesis. eLife 8, e39950 (2019).This paper shows that the multistage model of carcinogenesis (tumour initiation, promotion and progression) requires incorporation of ageing-dependent somatic selection to ensure this model is capable of generalizing cancer incidence across tissues and species.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rozhok, A. I., Salstrom, J. L. & DeGregori, J. Stochastic modeling indicates that aging and somatic evolution in the hematopoietic system are driven by non-cell-autonomous processes. Aging 6, 1033–1048 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kalluri, R. & Zeisberg, M. Fibroblasts in cancer. Nat. Rev. Cancer 6, 392 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ruchti, C., Haller, D., Nuber, M. & Cottier, H. Regional differences in renewal rates of fibroblasts in young adult female mice. Cell Tissue Res. 232, 625–636 (1983).

    Article  CAS  PubMed  Google Scholar 

  11. Faragher, R. G., McArdle, A., Willows, A. & Ostler, E. L. Senescence in the aging process. F1000Res. 6, 1219 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. McHugh, D. & Gil, J. Senescence and aging: causes, consequences, and therapeutic avenues. J. Cell Biol. 217, 65–77 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Calcinotto, A. et al. Cellular senescence: aging, cancer, and injury. Physiol. Rev. 99, 1047–1078 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Campisi, J. & Robert, L. Cell senescence: role in aging and age-related diseases. Interdiscip. Top Gerontol. 39, 45–61 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ozcan, S. et al. Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses. Aging 8, 1316–1329 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nelson, D. M., McBryan, T., Jeyapalan, J. C., Sedivy, J. M. & Adams, P. D. A comparison of oncogene-induced senescence and replicative senescence: implications for tumor suppression and aging. Age 36, 9637 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Salama, R., Sadaie, M., Hoare, M. & Narita, M. Cellular senescence and its effector programs. Genes Dev. 28, 99–114 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burton, D. G. A. & Stolzing, A. Cellular senescence: immunosurveillance and future immunotherapy. Ageing Res. Rev. 43, 17–25 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Waaijer, M. E. C. et al. Are skin senescence and immunosenescence linked within individuals? Aging Cell 18, e12956 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. He, S. & Sharpless, N. E. Senescence in health and disease. Cell 169, 1000–1011 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, J. Y. et al. Cells exhibiting strong p16INK4a promoter activation in vivo display features of senescence. Proc. Natl Acad. Sci. USA 116, 2603–2611 (2019). This study highlights p16 INK4A as a key driver of senescence while showing that p16 INK4A-expressing cells accumulate with age and exhibit clinically targetable features.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pazolli, E. et al. Chromatin remodeling underlies the senescence-associated secretory phenotype of tumor stromal fibroblasts that supports cancer progression. Cancer Res. 72, 2251–2261 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. De Cecco, M. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73–78 (2019). This paper shows that L1 retrotransposable elements become transcriptionally derepressed during ageing, which promotes type 1 IFN activation and age-associated inflammaging.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Lee, S. & Schmitt, C. A. The dynamic nature of senescence in cancer. Nat. Cell Biol. 21, 94–101 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Kaur, A., Webster, M. R. & Weeraratna, A. T. In the Wnt-er of life: Wnt signalling in melanoma and ageing. Br. J. Cancer 115, 1273–1279 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Webster, M. R. et al. Wnt5A promotes an adaptive, senescent-like stress response, while continuing to drive invasion in melanoma cells. Pigment Cell Melanoma Res. 28, 184–195 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Varani, J. et al. Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am. J. Pathol. 168, 1861–1868 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gunin, A. G., Kornilova, N. K., Petrov, V. V. & Vasil'eva, O. V. Age-related changes in the number and proliferation of fibroblasts in the human skin [Russian]. Adv. Gerontol. 24, 43–47 (2011).

    CAS  PubMed  Google Scholar 

  29. Kim, E. et al. Senescent fibroblasts in melanoma initiation and progression: an integrated theoretical, experimental, and clinical approach. Cancer Res. 73, 6874–6885 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lawrenson, K. et al. Senescent fibroblasts promote neoplastic transformation of partially transformed ovarian epithelial cells in a three-dimensional model of early stage ovarian cancer. Neoplasia 12, 317–325 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Krtolica, A., Parrinello, S., Lockett, S., Desprez, P. Y. & Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl Acad. Sci. USA 98, 12072–12077 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, D. & Hornsby, P. J. Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. Cancer Res. 67, 3117–3126 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. West, M. D., Pereira-Smith, O. M. & Smith, J. R. Replicative senescence of human skin fibroblasts correlates with a loss of regulation and overexpression of collagenase activity. Exp. Cell Res. 184, 138–147 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Millis, A. J., Hoyle, M., McCue, H. M. & Martini, H. Differential expression of metalloproteinase and tissue inhibitor of metalloproteinase genes in aged human fibroblasts. Exp. Cell Res. 201, 373–379 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Zeng, G. & Millis, A. J. Differential regulation of collagenase and stromelysin mRNA in late passage cultures of human fibroblasts. Exp. Cell Res. 222, 150–156 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Gialeli, C., Theocharis, A. D. & Karamanos, N. K. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 278, 16–27 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Lesina, M. et al. RelA regulates CXCL1/CXCR2-dependent oncogene-induced senescence in murine Kras-driven pancreatic carcinogenesis. J. Clin. Invest. 126, 2919–2932 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Coppe, J. P. et al. A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLOS ONE 5, 245 (2010).

    Article  CAS  Google Scholar 

  39. Sanada, F. et al. IGF binding protein-5 induces cell senescence. Front. Endocrinol. 9, 53 (2018).

    Article  Google Scholar 

  40. Severino, V. et al. Insulin-like growth factor binding proteins 4 and 7 released by senescent cells promote premature senescence in mesenchymal stem cells. Cell Death Dis. 4, e911 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Coppe, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLOS Biol. 6, 2853–2868 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Elzi, D. J. et al. Plasminogen activator inhibitor 1–insulin-like growth factor binding protein 3 cascade regulates stress-induced senescence. Proc. Natl Acad. Sci. USA 109, 12052–12057 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rodier, F. & Campisi, J. Four faces of cellular senescence. J. Cell Biol. 192, 547–556 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Moriya, J. & Minamino, T. Angiogenesis, cancer, and vascular aging. Front. Cardiovasc. Med. 4, 65 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Coppe, J. P., Kauser, K., Campisi, J. & Beausejour, C. M. Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J. Biol. Chem. 281, 29568–29574 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Acosta, J. C. et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133, 1006–1018 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Wajapeyee, N., Serra, R. W., Zhu, X., Mahalingam, M. & Green, M. R. Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 132, 363–374 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kuilman, T. et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 1019–1031 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Kortlever, R. M., Higgins, P. J. & Bernards, R. Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat. Cell Biol. 8, 877–884 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rielland, M. et al. Senescence-associated SIN3B promotes inflammation and pancreatic cancer progression. J. Clin. Invest. 124, 2125–2135 (2014). The study shows that the histone deacetylase-associated protein SIN3B drives oncogene-induced senescence and promotes PDAC progression by increasing inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lau, L., Porciuncula, A., Yu, A., Iwakura, Y. & David, G. Uncoupling the senescence-associated secretory phenotype from cell cycle exit via IL-1 inactivation unveils its pro-tumorigenic role. Mol. Cell Biol. 39, e00586-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Elkhattouti, A., Hassan, M. & Gomez, C. R. Stromal fibroblast in age-related cancer: role in tumorigenesis and potential as novel therapeutic target. Front. Oncol. 5, 158 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pavlides, S. et al. The autophagic tumor stroma model of cancer: role of oxidative stress and ketone production in fueling tumor cell metabolism. Cell Cycle 9, 3485–3505 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Martinez-Outschoorn, U. E. et al. Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment. Int. J. Biochem. Cell Biol. 43, 1045–1051 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Balliet, R. M. et al. Mitochondrial oxidative stress in cancer-associated fibroblasts drives lactate production, promoting breast cancer tumor growth: understanding the aging and cancer connection. Cell Cycle 10, 4065–4073 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Martinez-Outschoorn, U. E. et al. Autophagy in cancer associated fibroblasts promotes tumor cell survival: role of hypoxia, HIF1 induction and NFκB activation in the tumor stromal microenvironment. Cell Cycle 9, 3515–3533 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L. & Karsenty, G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89, 747–754 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Ducy, P. et al. Increased bone formation in osteocalcin-deficient mice. Nature 382, 448–452 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Ducy, P., Schinke, T. & Karsenty, G. The osteoblast: a sophisticated fibroblast under central surveillance. Science 289, 1501–1504 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Luo, X. et al. Stromal-initiated changes in the bone promote metastatic niche development. Cell Rep. 14, 82–92 (2016). This paper demonstrates that senescent osteoblasts increase osteoclastogenesis via IL-6, which promotes a permissive microenvironment for the outgrowth of metastatic breast cancer.

    Article  CAS  PubMed  Google Scholar 

  61. Hameed, A., Brady, J. J., Dowling, P., Clynes, M. & O'Gorman, P. Bone disease in multiple myeloma: pathophysiology and management. Cancer Growth Metastasis 7, 33–42 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Faget, D. V., Ren, Q. & Stewart, S. A. Unmasking senescence: context-dependent effects of SASP in cancer. Nat. Rev. Cancer 19, 439–453 (2019). An in-depth review highlighting the context specificity of SASP induction in cancer progession.

    Article  CAS  PubMed  Google Scholar 

  63. Liedtke, C. et al. The prognostic impact of age in different molecular subtypes of breast cancer. Breast Cancer Res. Treat. 152, 667–673 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Burton, D. G. & Faragher, R. G. Cellular senescence: from growth arrest to immunogenic conversion. Age 37, 27 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Klapper, W. et al. Longevity of lobsters is linked to ubiquitous telomerase expression. FEBS Lett. 439, 143–146 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Klapper, W., Heidorn, K., Kuhne, K., Parwaresch, R. & Krupp, G. Telomerase activity in 'immortal' fish. FEBS Lett. 434, 409–412 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Lasry, A. & Ben-Neriah, Y. Senescence-associated inflammatory responses: aging and cancer perspectives. Trends Immunol. 36, 217–228 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Andrew, W., Behnke, R. H. & Sato, T. Changes with advancing age in the cell population of human dermis. Gerontologia 10, 1–19 (1964).

    Article  PubMed  Google Scholar 

  69. Marsh, E., Gonzalez, D. G., Lathrop, E. A., Boucher, J. & Greco, V. Positional stability and membrane occupancy define skin fibroblast homeostasis in vivo. Cell 175, 1620–1633.e13 (2018). This paper shows that aged skin results in a decrease in fibroblast number and proliferation; however, these fibroblasts extend their protrusions to ensure membrane occupancy of skin volume.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Salzer, M. C. et al. Identity noise and adipogenic traits characterize dermal fibroblast aging. Cell 175, 1575–1590.e22 (2018). This study reveals that healthy aged fibroblasts in the skin undergo a genetic switch and decrease expression of genes involved in ECM production but gain adipogenic traits, which is highly influenced by systemic metabolism.

    Article  CAS  PubMed  Google Scholar 

  71. Kaur, A. et al. sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature 532, 250–254 (2016). This study shows that healthy human aged fibroblasts undergo dramatic reprogramming of their secretome and secrete SFRP2 to drive increased metastasis and resistance to targeted therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kaur, A. et al. Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discov. 9, 64–81 (2019). This study shows that healthy human aged fibroblasts lose expression of HAPLN1, which leads to remodelling of the ECM within the skin to drive invasion, metastasis and immune cell motility.

    Article  CAS  PubMed  Google Scholar 

  73. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011). An in-depth review of the many hallmarks associated with cancer progression; it discusses stromal, ECM, immune and other components implicated in cancer progression with age.

    Article  CAS  PubMed  Google Scholar 

  74. Walker, C., Mojares, E. & Del Rio Hernandez, A. Role of extracellular matrix in development and cancer progression. Int. J. Mol. Sci. 19, 3028 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  75. Poltavets, V., Kochetkova, M., Pitson, S. M. & Samuel, M. S. The role of the extracellular matrix and its molecular and cellular regulators in cancer cell plasticity. Front. Oncol. 8, 431 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pickup, M. W., Mouw, J. K. & Weaver, V. M. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 15, 1243–1253 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Huang-Lee, L. L. & Nimni, M. E. Crosslinked CNBr-activated hyaluronan-collagen matrices: effects on fibroblast contraction. Matrix Biol. 14, 147–157 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. Karjalainen, J. M. et al. Reduced level of CD44 and hyaluronan associated with unfavorable prognosis in clinical stage I cutaneous melanoma. Am. J. Pathol. 157, 957–965 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tian, X. et al. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature 499, 346–349 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cox, T. R. & Erler, J. T. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis. Model. Mech. 4, 165–178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ahmadzadeh, H. et al. Modeling the two-way feedback between contractility and matrix realignment reveals a nonlinear mode of cancer cell invasion. Proc. Natl Acad. Sci. USA 114, E1617–E1626 (2017). This paper shows that ECM realignment and contractility fit a biphasic model for cancer cell invasion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang, H., Abhilash, A. S., Chen, C. S., Wells, R. G. & Shenoy, V. B. Long-range force transmission in fibrous matrices enabled by tension-driven alignment of fibers. Biophys. J. 107, 2592–2603 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Diridollou, S. et al. Skin ageing: changes of physical properties of human skin in vivo. Int. J. Cosmet. Sci. 23, 353–362 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Panwar, P. et al. Changes in structural-mechanical properties and degradability of collagen during aging-associated modifications. J. Biol. Chem. 290, 23291–23306 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fisher, G. J. et al. Mechanisms of photoaging and chronological skin aging. Arch. Dermatol. 138, 1462–1470 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Lee, H. O. et al. FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells. BMC Cancer 11, 245 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Oh, J. H. et al. Intrinsic aging- and photoaging-dependent level changes of glycosaminoglycans and their correlation with water content in human skin. J. Dermatol. Sci. 62, 192–201 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Marcos-Garces, V. et al. Age-related dermal collagen changes during development, maturation and ageing — a morphometric and comparative study. J. Anat. 225, 98–108 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Roark, E. F. et al. The association of human fibulin-1 with elastic fibers: an immunohistological, ultrastructural, and RNA study. J. Histochem. Cytochem. 43, 401–411 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Sephel, G. C. & Davidson, J. M. Elastin production in human skin fibroblast cultures and its decline with age. J. Invest. Dermatol. 86, 279–285 (1986).

    Article  CAS  PubMed  Google Scholar 

  92. Martin, H. & Dean, M. An N-terminal peptide from link protein is rapidly degraded by chondrocytes, monocytes and B cells. Eur. J. Biochem. 212, 87–94 (1993).

    Article  CAS  PubMed  Google Scholar 

  93. Naba, A. et al. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol. Cell. Proteom. 11, M111.014647 (2012).

    Article  CAS  Google Scholar 

  94. Northey, J. J., Przybyla, L. & Weaver, V. M. Tissue force programs cell fate and tumor aggression. Cancer Discov. 7, 1224–1237 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ecker, B. L. et al. Age-related changes in HAPLN1 increase lymphatic permeability and affect routes of melanoma metastasis. Cancer Discov. 8, 82–95 (2019). This study demonstrates that HAPLN1 loss with age increases lymphatic permeability and allows efficient metastatic spread of melanoma cells.

    Article  Google Scholar 

  96. Page, A. J. et al. Increasing age is associated with worse prognostic factors and increased distant recurrences despite fewer sentinel lymph node positives in melanoma. Int. J. Surg. Oncol. 2012, 456987 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Leong, S. P. et al. Clinical patterns of metastasis. Cancer Metastasis Rev. 25, 221–232 (2006).

    Article  PubMed  Google Scholar 

  98. Mavrogonatou, E., Pratsinis, H., Papadopoulou, A., Karamanos, N. K. & Kletsas, D. Extracellular matrix alterations in senescent cells and their significance in tissue homeostasis. Matrix Biol. 75-76, 27–42 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Calhoun, C. et al. Senescent cells contribute to the physiological remodeling of aged lungs. J. Gerontol. A Biol. Sci. Med. Sci. 71, 153–160 (2016). This paper shows that aged accumulation of senescent stroma induces dramatic changes in ECM structure and function within the lung.

    Article  CAS  PubMed  Google Scholar 

  100. Burgstaller, G. et al. The instructive extracellular matrix of the lung: basic composition and alterations in chronic lung disease. Eur. Respir. J. 50, 1601805 (2017).

    Article  PubMed  CAS  Google Scholar 

  101. Bissell, M. J. & Hines, W. C. Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat. Med. 17, 320–329 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bissell, M. J., Radisky, D. C., Rizki, A., Weaver, V. M. & Petersen, O. W. The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation 70, 537–546 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Martens, J. W. et al. Aging of stromal-derived human breast fibroblasts might contribute to breast cancer progression. Thromb. Haemost. 89, 393–404 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Jiang, D. & Lim, S. Y. Influence of immune myeloid cells on the extracellular matrix during cancer metastasis. Cancer Microenviron. 9, 45–61 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Acerbi, I. et al. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr. Biol. 7, 1120–1134 (2015).

    Article  CAS  Google Scholar 

  106. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Leonardi, G. C., Accardi, G., Monastero, R., Nicoletti, F. & Libra, M. Ageing: from inflammation to cancer. Immun. Ageing 15, 1 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Olivieri, F., Prattichizzo, F., Grillari, J. & Balistreri, C. R. Cellular senescence and inflammaging in age-related diseases. Mediators Inflamm. 2018, 9076485 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Greene, M. A. & Loeser, R. F. Aging-related inflammation in osteoarthritis. Osteoarthritis Cartilage 23, 1966–1971 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Veglia, F., Perego, M. & Gabrilovich, D. Myeloid-derived suppressor cells coming of age. Nat. Immunol. 19, 108–119 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Meyer, C. et al. Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. Proc. Natl Acad. Sci. USA 108, 17111–17116 (2011). This study shows that inflammaging induces MDSC infiltration and activation and drives tumour progression in the Ret transgenic melanoma model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ameri, A. H. et al. IL-33/regulatory T cell axis triggers the development of a tumor-promoting immune environment in chronic inflammation. Proc. Natl Acad. Sci. USA 116, 2646–2651 (2019). This paper demonstrates that chronic inflammatory factor IL-33 drives an increased T reg cell response and progression of melanoma and colorectal cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Shevach, E. M. Foxp3+ T regulatory cells: still many unanswered questions-a perspective after 20 years of study. Front. Immunol. 9, 1048 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Garbern, J. C. et al. Dysregulation of IL-33/ST2 signaling and myocardial periarteriolar fibrosis. J. Mol. Cell Cardiol. 128, 179–186 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kim, D. W. et al. Age-related increase of IL-33 in non-eosinophilic nasal polyps. J Allergy Clin. Immunol. 141, AB67 (2018).

    Article  Google Scholar 

  116. Knupfer, H. & Preiss, R. Significance of interleukin-6 (IL-6) in breast cancer (review). Breast Cancer Res. Treat 102, 129–135 (2007).

    Article  PubMed  CAS  Google Scholar 

  117. Maggio, M., Guralnik, J. M., Longo, D. L. & Ferrucci, L. Interleukin-6 in aging and chronic disease: a magnificent pathway. J. Gerontol. A Biol. Sci. Med. Sci. 61, 575–584 (2006).

    Article  PubMed  Google Scholar 

  118. Olivieri, F. et al. MicroRNAs linking inflamm-aging, cellular senescence and cancer. Ageing Res. Rev. 12, 1056–1068 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Olivieri, F. et al. Age-related differences in the expression of circulating microRNAs: miR-21 as a new circulating marker of inflammaging. Mech. Ageing Dev. 133, 675–685 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Merline, R. et al. Signaling by the matrix proteoglycan decorin controls inflammation and cancer through PDCD4 and microRNA-21. Sci. Signal. 4, ra75 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Fabbri, M. et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc. Natl Acad. Sci. USA 109, E2110–E2116 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Palmer, D. B. The effect of age on thymic function. Front. Immunol. 4, 316 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Haynes, L., Eaton, S. M., Burns, E. M., Randall, T. D. & Swain, S. L. CD4 T cell memory derived from young naive cells functions well into old age, but memory generated from aged naive cells functions poorly. Proc. Natl Acad. Sci. USA 100, 15053–15058 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Saule, P. et al. Accumulation of memory T cells from childhood to old age: central and effector memory cells in CD4+ versus effector memory and terminally differentiated memory cells in CD8+ compartment. Mech. Ageing Dev. 127, 274–281 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Yager, E. J. et al. Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J. Exp. Med. 205, 711–723 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fulop, T. et al. Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front. Immunol. 8, 1960 (2017).

    Article  PubMed  CAS  Google Scholar 

  127. Gayoso, I. et al. Immunosenescence of human natural killer cells. J. Innate Immun. 3, 337–343 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Colonna-Romano, G. et al. Impairment of gamma/delta T lymphocytes in elderly: implications for immunosenescence. Exp. Gerontol. 39, 1439–1446 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Linton, P. J. & Thoman, M. L. Immunosenescence in monocytes, macrophages, and dendritic cells: lessons learned from the lung and heart. Immunol. Lett. 162, 290–297 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Linehan, E. & Fitzgerald, D. C. Ageing and the immune system: focus on macrophages. Eur. J. Microbiol. Immunol. 5, 14–24 (2015).

    Article  CAS  Google Scholar 

  131. Golomb, L. et al. Age-associated inflammation connects RAS-induced senescence to stem cell dysfunction and epidermal malignancy. Cell Death Differ. 22, 1764–1774 (2015). This study shows that age induces immunosenescence of effector immune cells and drives a T helper 2-type anti-inflammatory immune response, promoting SCC progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hurez, V., Padron, A., Svatek, R. S. & Curiel, T. J. Considerations for successful cancer immunotherapy in aged hosts. Exp. Gerontol. 107, 27–36 (2018).

    Article  PubMed  Google Scholar 

  133. Jackaman, C. et al. Targeting macrophages rescues age-related immune deficiencies in C57BL/6J geriatric mice. Aging Cell 12, 345–357 (2013). This paper shows that aged mice have substantially more M2 macrophages and targeting these with an IL-2 agonist–CD40 antibody combination immunotherapy promotes a switch towards an antitumour macrophage phenotype.

    Article  CAS  PubMed  Google Scholar 

  134. Jackaman, C. & Nelson, D. J. Intratumoral interleukin-2/agonist CD40 antibody drives CD4+-independent resolution of treated-tumors and CD4+-dependent systemic and memory responses. Cancer Immunol. Immunother. 61, 549–560 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Aras, S. & Zaidi, M. R. TAMeless traitors: macrophages in cancer progression and metastasis. Br. J. Cancer 117, 1583–1591 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wang, D. Z., Sun, H. Y. & DuBois, R. N. CXCL1 is critical for pre-metastatic niche formation and metastasis in colorectal cancer. Cancer Res. 77, 3655–3665 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gomez, C. R., Nomellini, V., Faunce, D. E. & Kovacs, E. J. Innate immunity and aging. Exp. Gerontol. 43, 718–728 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Schroder, A. K. & Rink, L. Neutrophil immunity of the elderly. Mech. Ageing Dev. 124, 419–425 (2003).

    Article  PubMed  CAS  Google Scholar 

  139. Grecian, R., Whyte, M. K. B. & Walmsley, S. R. The role of neutrophils in cancer. Br. Med. Bull 128, 5–14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Fridlender, Z. G. & Albelda, S. M. Tumor-associated neutrophils: friend or foe? Carcinogenesis 33, 949–955 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Zhao, L. et al. Changes of CD4+CD25+Foxp3+ regulatory T cells in aged BALB/c mice. J. Leukoc. Biol. 81, 1386–1394 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Kryczek, I. et al. FOXP3 defines regulatory T cells in human tumor and autoimmune disease. Cancer Res. 69, 3995–4000 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Rosenkranz, D. et al. Higher frequency of regulatory T cells in the elderly and increased suppressive activity in neurodegeneration. J. Neuroimmunol. 188, 117–127 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Sharma, S., Dominguez, A. L. & Lustgarten, J. High accumulation of T regulatory cells prevents the activation of immune responses in aged animals. J. Immunol. 177, 8348–8355 (2006). This study shows that aged animals have increased numbers of T reg cells in the spleen and lymph nodes, which increase progression of pre-B-ALL tumours.

    Article  CAS  PubMed  Google Scholar 

  145. Thomas, D. C., Mellanby, R. J., Phillips, J. M. & Cooke, A. An early age-related increase in the frequency of CD4+ Foxp3+ cells in BDC2.5NOD mice. Immunology 121, 565–576 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kozlowska, E., Biernacka, M., Ciechomska, M. & Drela, N. Age-related changes in the occurrence and characteristics of thymic CD4+ CD25+ T cells in mice. Immunology 122, 445–453 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kugel, C. H. 3rd et al. Age correlates with response to anti-PD1, reflecting age-related differences in intratumoral effector and regulatory T-cell populations. Clin. Cancer Res. 24, 5347–5356 (2018). This study demonstrates that aged patients and preclinical animal models of melanoma respond better to anti-PD1 compared with younger counterparts owing to a decrease in T reg to CD8 + T cell ratio.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Aguado, B. A., Bushnell, G. G., Rao, S. S., Jeruss, J. S. & Shea, L. D. Engineering the pre-metastatic niche. Nat. Biomed Eng. 1, 0077 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Verschoor, C. P. et al. Blood CD33+HLA-DR myeloid-derived suppressor cells are increased with age and a history of cancer. J. Leukoc. Biol. 93, 633–637 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hurez, V. et al. Mitigating age-related immune dysfunction heightens the efficacy of tumor immunotherapy in aged mice. Cancer Res. 72, 2089–2099 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Enioutina, E. Y., Bareyan, D. & Daynes, R. A. A role for immature myeloid cells in immune senescence. J. Immunol. 186, 697–707 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Grizzle, W. E. et al. Age-related increase of tumor susceptibility is associated with myeloid-derived suppressor cell mediated suppression of T cell cytotoxicity in recombinant inbred BXD12 mice. Mech. Ageing Dev. 128, 672–680 (2007). This paper shows that increases in systemic MDSCs in aged mice increase progression of mammary adenocarcinoma tumours.

    Article  CAS  PubMed  Google Scholar 

  153. Wang, Y., Ding, Y., Guo, N. & Wang, S. MDSCs: key criminals of tumor pre-metastatic niche formation. Front. Immunol. 10, 172 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ruhland, M. K. et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat. Commun. 7, 11762 (2016). This paper shows that induced stromal senescence in the FASST mouse model significantly increases numbers of immunosuppressive MDSCs and T reg cells in healthy mice and enables a permissive niche for tumour growth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Begley, L. A., Kasina, S., MacDonald, J. & Macoska, J. A. The inflammatory microenvironment of the aging prostate facilitates cellular proliferation and hypertrophy. Cytokine 43, 194–199 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Strasner, A. & Karin, M. Immune infiltration and prostate cancer. Front. Oncol. 5, 128 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Daste, A. et al. Targeted therapy and elderly people: a review. Eur. J. Cancer 69, 199–215 (2016).

    Article  PubMed  Google Scholar 

  159. Singh, H. et al. FDA analysis of enrollment of older adults in clinical trials for cancer drug registration: a 10-year experience by the US Food and Drug Administration. J. Clin. Oncol. 35 (Suppl. 15), 10009 (2017).

    Article  Google Scholar 

  160. Bavik, C. et al. The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res. 66, 794–802 (2006).

    Article  CAS  PubMed  Google Scholar 

  161. Schosserer, M., Grillari, J. & Breitenbach, M. The dual role of cellular senescence in developing tumors and their response to cancer therapy. Front. Oncol. 7, 278 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Canino, C. et al. SASP mediates chemoresistance and tumor-initiating-activity of mesothelioma cells. Oncogene 31, 3148–3163 (2012).

    Article  CAS  PubMed  Google Scholar 

  163. Hazlehurst, L. A. & Dalton, W. S. Mechanisms associated with cell adhesion mediated drug resistance (CAM-DR) in hematopoietic malignancies. Cancer Metastasis Rev. 20, 43–50 (2001).

    Article  CAS  PubMed  Google Scholar 

  164. Meads, M. B., Gatenby, R. A. & Dalton, W. S. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat. Rev. Cancer 9, 665–674 (2009).

    Article  CAS  PubMed  Google Scholar 

  165. Sethi, T. et al. Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat. Med. 5, 662–668 (1999).

    Article  CAS  PubMed  Google Scholar 

  166. Sherman-Baust, C. A. et al. Remodeling of the extracellular matrix through overexpression of collagen VI contributes to cisplatin resistance in ovarian cancer cells. Cancer Cell 3, 377–386 (2003).

    Article  CAS  PubMed  Google Scholar 

  167. Sidi, R. et al. Induction of senescence markers after neo-adjuvant chemotherapy of malignant pleural mesothelioma and association with clinical outcome: an exploratory analysis. Eur. J. Cancer 47, 326–332 (2011).

    Article  CAS  PubMed  Google Scholar 

  168. Demaria, M. et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 7, 165–176 (2017). This study shows that targeting senescent fibroblasts using the p16-3MR mouse model decreases the short-term and long-term side effects associated with chemotherapeutic cytotoxicity, decreases cancer recurrence and reduces metastasis post therapy.

    Article  CAS  PubMed  Google Scholar 

  169. Onyema, O. O. et al. Chemotherapy-induced changes and immunosenescence of CD8+ T-cells in patients with breast cancer. Anticancer Res. 35, 1481–1489 (2015).

    CAS  PubMed  Google Scholar 

  170. Onyema, O. O. et al. Shifts in subsets of CD8+ T-cells as evidence of immunosenescence in patients with cancers affecting the lungs: an observational case-control study. BMC Cancer 15, 1016 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Sanoff, H. K. et al. Effect of cytotoxic chemotherapy on markers of molecular age in patients with breast cancer. J. Natl Cancer Inst. 106, dju057 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Bourlon, M. T. et al. Immunosenescence in testicular cancer survivors treated with chemotherapy. J. Clin. Oncol. 35 (Suppl. 15), e16037 (2017).

    Article  Google Scholar 

  173. Morre, M. & Beq, S. Interleukin-7 and immune reconstitution in cancer patients: a new paradigm for dramatically increasing overall survival. Target Oncol. 7, 55–68 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Bashiri Dezfouli, A. et al. Evaluation of age effects on doxorubicin-induced toxicity in mesenchymal stem cells. Med. J. Islam. Repub. Iran 31, 98 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Zhang, C. L., Huang, T., Wu, B. L., He, W. X. & Liu, D. Stem cells in cancer therapy: opportunities and challenges. Oncotarget 8, 75756–75766 (2017).

    PubMed  PubMed Central  Google Scholar 

  176. Wood, W. A. et al. Chemotherapy and stem cell transplantation increase p16INK4a expression, a biomarker of T-cell aging. EBioMedicine 11, 227–238 (2016). This study shows that chemotherapy and stem cell transplantation accelerate immunosenescence of T cells.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Grigorescu, A. C. Chemotherapy for elderly patients with advanced cancer: a pilot study in institute of oncology bucharest. J. Transl. Intern. Med. 3, 24–28 (2015).

    Article  Google Scholar 

  178. Sabnis, A. J. & Bivona, T. G. Principles of resistance to targeted cancer therapy: lessons from basic and translational cancer biology. Trends Mol. Med. 25, 185–197 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Holohan, C., Van Schaeybroeck, S., Longley, D. B. & Johnston, P. G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714–726 (2013).

    Article  CAS  PubMed  Google Scholar 

  180. Somasundaram, R. et al. Tumor-associated B-cells induce tumor heterogeneity and therapy resistance. Nat. Commun. 8, 607 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Riley, R. L., Khomtchouk, K. & Blomberg, B. B. Age-associated B cells (ABC) inhibit B lymphopoiesis and alter antibody repertoires in old age. Cell Immunol. 321, 61–67 (2017).

    Article  CAS  PubMed  Google Scholar 

  182. Shojaei, F. et al. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat. Biotechnol. 25, 911–920 (2007).

    Article  CAS  PubMed  Google Scholar 

  183. Shojaei, F. et al. G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc. Natl Acad. Sci. USA 106, 6742–6747 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Romano, A. et al. PMN-MDSC and arginase are increased in myeloma and may contribute to resistance to therapy. Expert Rev. Mol. Diagn. 18, 675–683 (2018).

    Article  CAS  PubMed  Google Scholar 

  185. Calcinotto, A. et al. IL-23 secreted by myeloid cells drives castration-resistant prostate cancer. Nature 559, 363–369 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Chen, Y. et al. Differential effects of sorafenib on liver versus tumor fibrosis mediated by stromal-derived factor 1 alpha/C-X-C receptor type 4 axis and myeloid differentiation antigen-positive myeloid cell infiltration in mice. Hepatology 59, 1435–1447 (2014).

    Article  CAS  PubMed  Google Scholar 

  187. Steinberg, S. M. et al. Myeloid cells that impair immunotherapy are restored in melanomas with acquired resistance to BRAF inhibitors. Cancer Res. 77, 1599–1610 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Roma-Rodrigues, C., Mendes, R., Baptista, P. V. & Fernandes, A. R. Targeting tumor microenvironment for cancer therapy. Int. J. Mol. Sci. 20, 840 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  189. Almeida, F. V., Douglass, S. M., Fane, M. E. & Weeraratna, A. T. Bad company: microenvironmentally mediated resistance to targeted therapy in melanoma. Pigment Cell Melanoma Res. 32, 237–247 (2019).

    Article  PubMed  Google Scholar 

  190. Fang, H. & Declerck, Y. A. Targeting the tumor microenvironment: from understanding pathways to effective clinical trials. Cancer Res. 73, 4965–4977 (2013).

    Article  CAS  PubMed  Google Scholar 

  191. Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Shimada, Y., Hayashi, M., Nagasaka, Y., Ohno-Iwashita, Y. & Inomata, M. Age-associated up-regulation of a negative co-stimulatory receptor PD-1 in mouse CD4+ T cells. Exp. Gerontol. 44, 517–522 (2009).

    Article  CAS  PubMed  Google Scholar 

  193. Lages, C. S., Lewkowich, I., Sproles, A., Wills-Karp, M. & Chougnet, C. Partial restoration of T-cell function in aged mice by in vitro blockade of the PD-1/ PD-L1 pathway. Aging Cell 9, 785–798 (2010).

    Article  CAS  PubMed  Google Scholar 

  194. Hurez, V. et al. Chronic mTOR inhibition in mice with rapamycin alters T, B, myeloid, and innate lymphoid cells and gut flora and prolongs life of immune-deficient mice. Aging Cell 14, 945–956 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Mirza, N. et al. B7-H1 expression on old CD8+ T cells negatively regulates the activation of immune responses in aged animals. J. Immunol. 184, 5466–5474 (2010).

    Article  CAS  PubMed  Google Scholar 

  196. Ladomersky, E. et al. The coincidence between increasing age, immunosuppression, and the incidence of patients with glioblastoma. Front. Pharmacol. 10, 200 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Sceneay, J. et al. Interferon signaling is diminished with age and is associated with immune checkpoint blockade efficacy in triple-negative breast cancer. Cancer Discov. 9, 1208–1227 (2019). This paper demonstrates that aged 4T1 or Met1-derived transplantable orthotopic mouse models do not respond to immunotherapy owing to increased CD8 + T cell exhaustion and decreased IFNγ production.

    Article  PubMed  Google Scholar 

  198. Elias, R., Hartshorn, K., Rahma, O., Lin, N. & Snyder-Cappione, J. E. Aging, immune senescence, and immunotherapy: a comprehensive review. Semin. Oncol. 45, 187–200 (2018).

    Article  PubMed  Google Scholar 

  199. Elias, R., Karantanos, T., Sira, E. & Hartshorn, K. L. Immunotherapy comes of age: immune aging & checkpoint inhibitors. J. Geriatr. Oncol. 8, 229–235 (2017).

    Article  PubMed  Google Scholar 

  200. Singh, H. et al. FDA subset analysis of the safety of nivolumab in elderly patients with advanced cancers. J. Clin. Oncol. 34 (Suppl. 15), 10010 (2016).

    Article  Google Scholar 

  201. Betof, A. S. et al. Impact of age on outcomes with immunotherapy for patients with melanoma. Oncologist 22, 963–971 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Gettinger, S. N. et al. Nivolumab (NIVO) safety profile: summary of findings from trials in patients (pts) with advanced squamous (SQ) non-small cell lung cancer (NSCLC). Eur. J. Cancer 51, S631 (2015).

    Article  Google Scholar 

  203. Hodi, F. S. et al. Clinical response, progression-free survival (PFS), and safety in patients (pts) with advanced melanoma (MEL) receiving nivolumab (NIVO) combined with ipilimumab (IPI) vs IPI monotherapy in CheckMate 069 study. J. Clin. Oncol. 33 (Suppl. 15), 9004 (2015).

    Article  Google Scholar 

  204. Friedman, C. F. et al. Efficacy and safety of checkpoint blockade for treatment of advanced melanoma (mel) in patients (pts) age 80 and older (80+). J. Clin. Oncol. 34 (Suppl. 15), 10009 (2016).

    Article  Google Scholar 

  205. Figueiredo, A. S. P., Hurez, V., Liu, A. & Curiel, T. J. Age and sex affect αCTLA-4 efficacy alone and combined with αB7-H1 or regulatory T cell depletion in a melanoma model. J. Immunol. 196, 213.4 (2016).

    Google Scholar 

  206. Lichtenstein, M. R. L. et al. Impact of age on outcomes with immunotherapy in patients with non-small cell lung cancer. J. Thorac. Oncol. 14, 547–552 (2019).

    Article  PubMed  CAS  Google Scholar 

  207. Freedman, R. A. et al. Promoting accrual of older patients with cancer to clinical trials: an alliance for clinical trials in oncology member survey (A171602). Oncologist 23, 1016–1023 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Xu, X. et al. Age-related impairment of vascular structure and functions. Aging Dis. 8, 590–610 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Dutta, S. & Sengupta, P. Men and mice: relating their ages. Life Sci. 152, 244–248 (2016).

    Article  CAS  PubMed  Google Scholar 

  210. Hale, J. S., Boursalian, T. E., Turk, G. L. & Fink, P. J. Thymic output in aged mice. Proc. Natl Acad. Sci. USA 103, 8447–8452 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Alpert, A. et al. A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring. Nat. Med. 25, 487–495 (2019). This longitudinal study performed in humans shows that immunological age is not equivalent to chronological age and is better modelled using an immune ageing 'IMM-AGE' score.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Partridge, A. H. et al. Subtype-dependent relationship between young age at diagnosis and breast cancer survival. J. Clin. Oncol. 34, 3308–3314 (2016).

    Article  PubMed  Google Scholar 

  213. Berian, J. R., Benson, A. B. 3rd & Nelson, H. Young age and aggressive treatment in colon cancer. JAMA 314, 613–614 (2015).

    Article  CAS  PubMed  Google Scholar 

  214. Bauer, J. et al. BRAF mutations in cutaneous melanoma are independently associated with age, anatomic site of the primary tumor, and the degree of solar elastosis at the primary tumor site. Pigment Cell Melanoma Res. 24, 345–351 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Tas, F. & Erturk, K. Patient age and cutaneous malignant melanoma: elderly patients are likely to have more aggressive histological features and poorer survival. Mol. Clin. Oncol. 7, 1083–1088 (2017).

    PubMed  PubMed Central  Google Scholar 

  216. Natale, C. A. et al. Activation of G protein-coupled estrogen receptor signaling inhibits melanoma and improves response to immune checkpoint blockade. eLife 7, e31770 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Liu, P. H. et al. Association of obesity with risk of early-onset colorectal cancer among women. JAMA Oncol. 5, 37–44 (2019).

    Article  PubMed  Google Scholar 

  218. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011). The INK-ATTAC GEMM used in this study highlights the occurrence of p16 INK4A-induced senescence in multiple pathologies while also showing that clearance of p16 INK4A-expressing senescent cells may be effective in delaying these age-associated disorders.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Storer, M. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119–1130 (2013). This study underlines the homeostatic importance of senescence induction in embryonic growth and development.

    Article  CAS  PubMed  Google Scholar 

  220. Munoz-Espin, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013). This paper demonstrates the importance of programmed senescence in embryonic development.

    Article  CAS  PubMed  Google Scholar 

  221. Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014). This paper shows the homeostatic importance of senescent cell induction for wound healing via secretion of the SASP factor PDGF-AA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Jeon, O. H. et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 23, 775–781 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Mosteiro, L., Pantoja, C., de Martino, A. & Serrano, M. Senescence promotes in vivo reprogramming through p16INK4a and IL-6. Aging Cell 17, e12711 (2018). This study highlights p16 INK4a and IL-6 as key drivers of senescence-induced in vivo reprogramming and the implications thereof for tissue damage and pathology.

    Article  CAS  Google Scholar 

  224. Mosteiro, L. et al. Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science 354, aaf4445 (2016).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This review is dedicated to the memory of Dr Aarti Hurria, a prominent geriatric oncologist at the City of Hope, Los Angeles, CA. Dr Hurria was a loving mentor to so many, a pioneer in the field of geriatric oncology, and a positive force in the field of ageing and cancer. This review was supported by research grants from the National Cancer Institute R01CA1746046 (ATW) and R01CA207935 (ATW, MEF).

Author information

Authors and Affiliations

Authors

Contributions

A.T.W. contributed substantially to the discussions and subject matter. M.E.F. researched the data for the article. A.T.W and M.E.F. contributed equally to writing the article and to reviewing and/or editing of the manuscript before submission.

Corresponding authors

Correspondence to Mitchell Fane or Ashani T. Weeraratna.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cancer thanks J. DeGregori, S. McAllister and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Proteostasis

The homeostatic maintenance of protein folding for proper structure and function.

Cellular senescence

Refers to the potentially irreversible arrest of cell proliferation (growth) that occurs when cells experience certain stressors.

Osteoclastogenesis

The process by which stem cells or stromal cells commit towards an osteoclast lineage.

Strain-stiffening

The property of increasing stiffness with increasing deformation.

Thymic atrophy

The loss in cellularity of the thymus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fane, M., Weeraratna, A.T. How the ageing microenvironment influences tumour progression. Nat Rev Cancer 20, 89–106 (2020). https://doi.org/10.1038/s41568-019-0222-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-019-0222-9

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer