RESEARCH HIGHLIGHTS

TUMOUR IMMUNOLOGY

PRC2-mediated MHC-I silencing drives immune evasion

Both MHC class I antigen presentation pathway (MHC-I APP) mutations and transcriptional repression of MHC-I have been associated with resistance to immune checkpoint inhibitors (ICIs). Now, Mark Dawson's laboratory reports an evolutionarily conserved mechanism whereby Polycomb repressive complex 2 (PRC2) mediates epigenetic silencing of MHC-I APP genes to promote immune evasion.

To identify key regulators of MHC-I repression, Burr et al. performed a genome-wide CRISPR– Cas9 screen in the MHC-I-low K-562 erythroleukaemia cell line. Remarkably, the top candidate genes encoded epigenetic regulatory proteins, with the top two hits (*EED* and *SUZ12*) encoding core components of PRC2, indicating a potential epigenetic regulatory mechanism.

Subsequent functional validation experiments in K-562 cells illustrated that *EED* knockout restored MHC-I cell surface expression, whereas concurrent *EED* overexpression reinstated MHC-1 silencing and restored histone H3 lysine 27 trimethylation (H3K27me3), suggesting that PRC2 mediates transcriptional repression of MHC-I APP genes. Indeed, pharmacological inhibition of the EZH2 methyltransferase subunit of PRC2 markedly depleted H3K27me3 levels and transcriptionally induced MHC-I APP genes in

K-562 cells and restored MHC-I cell surface expression in both K-562 cells and MHC-I-low small-cell lung cancer (SCLC) and neuroblastoma cells. Moreover, mutation of a crucial catalytic residue in EZH2 impaired PRC2-mediated repression of MHC-I, whereas expression of a H3 variant with a K27M mutation strongly induced MHC-I expression. Further experiments demonstrated a pivotal role for EZH2-mediated H3K27me3 repressive marks in maintenance of MHC-I silencing in MHC-I-deficient cancers.

Interestingly, an MHC-I-low mouse SCLC (mSCLC) cell line, in which the previous K-562 findings were recapitulated, was found to be highly resistant to antigen-specific T cell-mediated killing and failed to induce cytokine production in T cells in vitro. This resistance was overcome by pretreatment with EZH2 inhibitors to induce MHC-I expression and, therefore, effective T cell activation, establishing the functional importance of MHC-I silencing.

Intriguingly, mSCLC cells were not eliminated by an allogeneic T cell response upon subcutaneous transplantation into non-histocompatible recipient mice, suggesting that MHC-I APP silencing facilitates immune evasion in transmissible cancers, as reported for Tasmanian devil facial tumours. PRC2 has key immunomodulatory functions that can be co-opted by cancer cells

55

However, Ezh2-knockout mSCLC tumours were universally rejected upon allogeneic transplantation into immunocompetent, but not immunodeficient, mice, establishing a crucial role for PRC2-mediated MHC-I silencing in evasion of the antitumour CD8⁺ T cell response in vivo. Furthermore, in three patients with EGFR-mutant lung adenocarcinoma that underwent SCLC transformation following EGFR inhibitor treatment and who subsequently failed to respond to ICIs, the transformed SCLC harboured marked downregulation of MHC-I APP components relative to the adenocarcinoma tissues, suggesting that neuroendocrine transformation can confer immune privilege to a tumour via MHC-I APP loss in the clinical setting.

Finally, chromatin immunoprecipitation followed by sequencing (ChIP-seq) experiments in MHC-I-deficient human and Tasmanian devil cells revealed that the presence of bivalent histone modifications, specifically activating H3K4me3 and repressive H3K27me3 marks, at MHC-I APP gene promoters was a conserved feature. Collectively, the authors hypothesized that this bivalency is maintained by an evolutionarily conserved function of PRC2 and is a physiological mechanism of MHC-I regulation.

Overall, the study reveals a conserved tumour-intrinsic role for PRC2 in MHC-I APP regulation, reinforcing the notion that PRC2 has key immunomodulatory functions that can be co-opted by cancer cells — through both genomic and non-genomic mechanisms — to evade immune surveillance.

"Our future research will explore potential therapeutic approaches incorporating PRC2 inhibition to overcome immunotherapy resistance in aggressive MHC-I-deficient malignancies, as well as predictive biomarkers for such combination strategies," concludes Dawson.

Conor A. Bradley

ORIGINAL ARTICLE Burr, M. L. et al. An evolutionarily conserved function of Polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. *Cancer Cell* https://doi.org/10.1016/j.ccell. 2019.08.008 (2019)