Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

OPINION

A framework for examining how diet impacts tumour metabolism

Abstract

The way cancer cells utilize nutrients to support their growth and proliferation is determined by cancer cell-intrinsic and cancer cell-extrinsic factors, including interactions with the environment. These interactions can define therapeutic vulnerabilities and impact the effectiveness of cancer therapy. Diet-mediated changes in whole-body metabolism and systemic nutrient availability can affect the environment that cancer cells are exposed to within tumours, and a better understanding of how diet modulates nutrient availability and utilization by cancer cells is needed. How diet impacts cancer outcomes is also of great interest to patients, yet clear evidence for how diet interacts with therapy and impacts tumour growth is lacking. Here we propose an experimental framework to probe the connections between diet and cancer metabolism. We examine how dietary factors may affect tumour growth by altering the access to and utilization of nutrients by cancer cells. Our growing understanding of how certain cancer types respond to various diets, how diet impacts cancer cell metabolism to mediate these responses and whether dietary interventions may constitute new therapeutic opportunities will begin to provide guidance on how best to use diet and nutrition to manage cancer in patients.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: A proposed framework for examining how diet impacts tumour metabolism, growth and progression.
Fig. 2: Different diets can be defined by the relative contributions of different macronutrients to caloric intake.
Fig. 3: Understanding how dietary factors impact tumour metabolism may help incorporate dietary interventions into cancer therapy.

References

  1. 1.

    Vander Heiden, M. G. & DeBerardinis, R. J. Understanding the intersections between metabolism and cancer biology. Cell 168, 657–669 (2017).

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Luengo, A., Gui, D. Y. & Vander Heiden, M. G. Targeting metabolism for cancer therapy. Cell Chem. Biol. 24, 1161–1180 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Davidson, S. M. et al. Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer. Cell Metab. 23, 517–528 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Gui, D. Y. et al. Environment dictates dependence on mitochondrial complex I for NAD+ and aspartate production and determines cancer cell sensitivity to metformin. Cell Metab. 24, 716–727 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Mayers, J. R. et al. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science 353, 1161–1165 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    Muir, A. et al. Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to glutaminase inhibition. Elife 6, e27713 (2017).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Cantor, J. R. et al. Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of ump synthase. Cell 169, 258–272.e17 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Vande Voorde, J. et al. Improving the metabolic fidelity of cancer models with a physiological cell culture medium. Sci. Adv. 5, eaau7314 (2019).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Muir, A., Danai, L. V. & Vander Heiden, M. G. Microenvironmental regulation of cancer Cell Metab.olism: implications for experimental design and translational studies. Dis Model. Mech 11, (2018).

  10. 10.

    Maddocks, O. D. K. et al. Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature 544, 372–376 (2017).

    CAS  PubMed  Google Scholar 

  11. 11.

    Sullivan, M. R. et al. Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability. Elife 8, e44235 (2019).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Mayne, S. T., Playdon, M. C. & Rock, C. L. Diet, nutrition, and cancer: past, present and future. Nat. Rev. Clin. Oncol. 13, 504–515 (2016).

    PubMed  Google Scholar 

  13. 13.

    Khandekar, M. J., Cohen, P. & Spiegelman, B. M. Molecular mechanisms of cancer development in obesity. Nat. Rev. Cancer 11, 886–895 (2011).

    CAS  Google Scholar 

  14. 14.

    Kitahara, C. M. et al. Prospective investigation of body mass index, colorectal adenoma, and colorectal cancer in the prostate, lung, colorectal, and ovarian cancer screening trial. J. Clin. Oncol. 31, 2450–2459 (2013).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Meynet, O. & Ricci, J.-E. Caloric restriction and cancer: molecular mechanisms and clinical implications. Trends Mol. Med. 20, 419–427 (2014).

    CAS  PubMed  Google Scholar 

  16. 16.

    Michels, K. B. & Ekbom, A. Caloric restriction and incidence of breast cancer. JAMA 291, 1226–1230 (2004).

    CAS  PubMed  Google Scholar 

  17. 17.

    World Cancer Research Fund/American Institute for Cancer Research. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. American Institute for Cancer Research http://www.aicr.org/assets/docs/pdf/reports/Second_Expert_Report.pdf (2007).

  18. 18.

    Kushi, L. H. et al. American cancer society guidelines on nutrition and physical activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J. Clin. 62, 30–67 (2012).

    PubMed  Google Scholar 

  19. 19.

    Kalaany, N. Y. & Sabatini, D. M. Tumours with PI3K activation are resistant to dietary restriction. Nature 458, 725–731 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Hopkins, B. D. et al. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature 560, 499–503 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Nogueira, L. M. et al. Dose-dependent effects of calorie restriction on gene expression, metabolism, and tumor progression are partially mediated by insulin-like growth factor-1. Cancer Med. 1, 275–288 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Lu, Z. et al. Fasting selectively blocks development of acute lymphoblastic leukemia via leptin-receptor upregulation. Nat. Med. 23, 79–90 (2017).

    CAS  Google Scholar 

  23. 23.

    Beyaz, S. et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 531, 53–58 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Hursting, S. D., Dunlap, S. M., Ford, N. A., Hursting, M. J. & Lashinger, L. M. Calorie restriction and cancer prevention: a mechanistic perspective. Cancer Metab. 1, 10 (2013).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Lee, C. & Longo, V. D. Fasting vs dietary restriction in cellular protection and cancer treatment: from model organisms to patients. Oncogene 30, 3305–3316 (2011).

    CAS  PubMed  Google Scholar 

  26. 26.

    Lv, M., Zhu, X., Wang, H., Wang, F. & Guan, W. Roles of caloric restriction, ketogenic diet and intermittent fasting during initiation, progression and metastasis of cancer in animal models: a systematic review and meta-analysis. PLOS ONE 9, e115147 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    De Lorenzo, M. S. et al. Caloric restriction reduces growth of mammary tumors and metastases. Carcinogenesis 32, 1381–1387 (2011).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Nogueira, L. M., Dunlap, S. M., Ford, N. A. & Hursting, S. D. Calorie restriction and rapamycin inhibit MMTV-Wnt-1 mammary tumor growth in a mouse model of postmenopausal obesity. Endocr. Relat. Cancer 19, 57–68 (2012).

    CAS  PubMed  Google Scholar 

  29. 29.

    Curry, N. L. et al. Pten-null tumors cohabiting the same lung display differential AKT activation and sensitivity to dietary restriction. Cancer Discov. 3, 908–921 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Lanza-Jacoby, S. et al. Calorie restriction delays the progression of lesions to pancreatic cancer in the LSL-KrasG12D; Pdx-1/Cre mouse model of pancreatic cancer. Exp. Biol. Med. (Maywood) 238, 787–797 (2013).

    Google Scholar 

  31. 31.

    Mukherjee, P., Abate, L. E. & Seyfried, T. N. Antiangiogenic and proapoptotic effects of dietary restriction on experimental mouse and human brain tumors. Clin. Cancer Res. 10, 5622–5629 (2004).

    CAS  PubMed  Google Scholar 

  32. 32.

    Shelton, L. M., Huysentruyt, L. C., Mukherjee, P. & Seyfried, T. N. Calorie restriction as an anti-invasive therapy for malignant brain cancer in the VM mouse. ASN Neuro. 2, e00038 (2010).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Danai, L. V. et al. Altered exocrine function can drive adipose wasting in early pancreatic cancer. Nature 558, 600–604 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Algire, C., Amrein, L., Zakikhani, M., Panasci, L. & Pollak, M. Metformin blocks the stimulative effect of a high-energy diet on colon carcinoma growth in vivo and is associated with reduced expression of fatty acid synthase. Endocr. Relat. Cancer 17, 351–360 (2010).

    CAS  PubMed  Google Scholar 

  35. 35.

    O’Neill, A. M. et al. High-fat Western diet-induced obesity contributes to increased tumor growth in mouse models of human colon cancer. Nutr. Res. 36, 1325–1334 (2016).

    PubMed  Google Scholar 

  36. 36.

    Schulz, M. D. et al. High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature 514, 508–512 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Chang, H. H. et al. Incidence of pancreatic cancer is dramatically increased by a high fat, high calorie diet in KrasG12D mice. PLOS ONE 12, e0184455 (2017).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Nadella, S. et al. Dietary fat stimulates pancreatic cancer growth and promotes fibrosis of the tumor microenvironment through the cholecystokinin receptor. Am. J. Physiol. Gastrointest Liver Physiol. 315, G699–G712 (2018).

    CAS  PubMed  Google Scholar 

  39. 39.

    Okumura, T. et al. Extra-pancreatic invasion induces lipolytic and fibrotic changes in the adipose microenvironment, with released fatty acids enhancing the invasiveness of pancreatic cancer cells. Oncotarget 8, 18280–18295 (2017).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Philip, B. et al. A high-fat diet activates oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice. Gastroenterology 145, 1449–1458 (2013).

    CAS  PubMed  Google Scholar 

  41. 41.

    Huang, M. et al. Diet-induced alteration of fatty acid synthase in prostate cancer progression. Oncogenesis 5, e195 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Kim, S. et al. Myristoylation of Src kinase mediates Src-induced and high-fat diet-accelerated prostate tumor progression in mice. J. Biol. Chem. 292, 18422–18433 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Sundaram, S. & Yan, L. High-fat diet enhances mammary tumorigenesis and pulmonary metastasis and alters inflammatory and angiogenic profiles in MMTV-PyMT Mice. AntiCancer Res. 36, 6279–6287 (2016).

    CAS  Google Scholar 

  44. 44.

    Ip, B. C., Liu, C., Smith, D. E., Ausman, L. M. & Wang, X. D. High-refined-carbohydrate and high-fat diets induce comparable hepatic tumorigenesis in male mice. J. Nutr. 144, 647–653 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Maddocks, O. D. et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493, 542–546 (2013).

    CAS  PubMed  Google Scholar 

  46. 46.

    Sullivan, M. R. et al. Increased serine synthesis provides an advantage for tumors arising in tissues where serine levels are limiting. Cell Metab. 29, 1410–1421 (2019).

    PubMed  Google Scholar 

  47. 47.

    Breillout, F., Hadida, F., Echinard-Garin, P., Lascaux, V. & Poupon, M. F. Decreased rat rhabdomyosarcoma pulmonary metastases in response to a low methionine diet. AntiCancer Res. 7, 861–867 (1987).

    CAS  PubMed  Google Scholar 

  48. 48.

    Guo, H. et al. Therapeutic tumor-specific cell cycle block induced by methionine starvation in vivo. Cancer Res. 53, 5676–5679 (1993).

    CAS  PubMed  Google Scholar 

  49. 49.

    Hoshiya, Y. et al. Human tumors are methionine dependent in vivo. AntiCancer Res. 15, 717–718 (1995).

    CAS  PubMed  Google Scholar 

  50. 50.

    Komninou, D., Leutzinger, Y., Reddy, B. S. & Richie, J. P. J. Methionine restriction inhibits colon carcinogenesis. Nutr. Cancer 54, 202–208 (2006).

    CAS  PubMed  Google Scholar 

  51. 51.

    Gao, X. et al. Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature https://doi.org/10.1038/s41586-019-1437-3 (2019).

    CAS  PubMed  Google Scholar 

  52. 52.

    Stafford, P. et al. The ketogenic diet reverses gene expression patterns and reduces reactive oxygen species levels when used as an adjuvant therapy for glioma. Nutr. Metab. (Lond) 7, 74 (2010).

    Google Scholar 

  53. 53.

    Abdelwahab, M. G. et al. The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma. PLOS ONE 7, e36197 (2012).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Poff, A. M., Ari, C., Seyfried, T. N. & D’Agostino, D. P. The ketogenic diet and hyperbaric oxygen therapy prolong survival in mice with systemic metastatic cancer. PLOS ONE 8, e65522 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Freedland, S. J. et al. Carbohydrate restriction, prostate cancer growth, and the insulin-like growth factor axis. Prostate 68, 11–19 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Mavropoulos, J. C. et al. The effects of varying dietary carbohydrate and fat content on survival in a murine LNCaP prostate cancer xenograft model. Cancer Prev. Res. (Phila) 2, 557–565 (2009).

    CAS  Google Scholar 

  57. 57.

    Otto, C. et al. Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides. BMC Cancer 8, 122 (2008).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Liśkiewicz, A. D. et al. Long-term high fat ketogenic diet promotes renal tumor growth in a rat model of tuberous sclerosis. Sci. Rep. 6, 21807 (2016).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Xia, S. et al. Prevention of dietary-fat-fueled ketogenesis attenuates BRAF V600E tumor growth. Cell Metab. 25, 358–373 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Kang, H. B. et al. Metabolic rewiring by oncogenic BRAF V600E links ketogenesis pathway to BRAF-MEK1 signaling. Mol. Cell 59, 345–358 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Morscher, R. J. et al. Inhibition of neuroblastoma tumor growth by ketogenic diet and/or calorie restriction in a CD1-nu mouse model. PLOS ONE 10, e0129802 (2015).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Woolf, E. C., Syed, N. & Scheck, A. C. Tumor metabolism, the ketogenic diet and β-hydroxybutyrate: novel approaches to adjuvant brain tumor therapy. Front. Mol. Neurosci. 9, 122 (2016).

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Zhou, W. et al. The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer. Nutr. Metab. (Lond) 4, 5 (2007).

    Google Scholar 

  64. 64.

    Seyfried, T. N., Sanderson, T. M., El-Abbadi, M. M., McGowan, R. & Mukherjee, P. Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br. J. Cancer. 89, 1375–1382 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Maurer, G. D. et al. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy. BMC Cancer 11, 315 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Shukla, S. K. et al. Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia. Cancer Metab. 2, 18 (2014).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Wheatley, K. E. et al. Low-carbohydrate diet versus caloric restriction: effects on weight loss, hormones, and colon tumor growth in obese mice. Nutr. Cancer 60, 61–68 (2008).

    CAS  PubMed  Google Scholar 

  68. 68.

    Allen, B. G. et al. Ketogenic diets enhance oxidative stress and radio-chemo-therapy responses in lung cancer xenografts. Clin. Cancer Res. 19, 3905–3913 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Pascual, G. et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541, 41–45 (2017).

    CAS  PubMed  Google Scholar 

  70. 70.

    Chen, M. et al. An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer. Nat. Genet. 50, 206–218 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Knott, S. R. V. et al. Asparagine bioavailability governs metastasis in a model of breast cancer. Nature 554, 378–381 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Patti, G. J., Yanes, O. & Siuzdak, G. Innovation: metabolomics: the apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 13, 263–269 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Collet, T. H. et al. A metabolomic signature of acute caloric restriction. J. Clin. Endocrinol. Metab. 102, 4486–4495 (2017).

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Margolis, L. M. et al. Calorie restricted high protein diets downregulate lipogenesis and lower intrahepatic triglyceride concentrations in male rats. Nutrients 8, E571 (2016).

    PubMed  Google Scholar 

  75. 75.

    Miller, K. N. et al. Aging and caloric restriction impact adipose tissue, adiponectin, and circulating lipids. Aging Cell 16, 497–507 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Selman, C. et al. Coordinated multitissue transcriptional and plasma metabonomic profiles following acute caloric restriction in mice. Physiol. Genomics 27, 187–200 (2006).

    CAS  PubMed  Google Scholar 

  77. 77.

    Raeini-Sarjaz, M., Vanstone, C. A., Papamandjaris, A. A., Wykes, L. J. & Jones, P. J. Comparison of the effect of dietary fat restriction with that of energy restriction on human lipid metabolism. Am. J. Clin. Nutr. 73, 262–267 (2001).

    CAS  PubMed  Google Scholar 

  78. 78.

    Appel, L. J. et al. Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: results of the OmniHeart randomized trial. JAMA 294, 2455–2464 (2005).

    CAS  PubMed  Google Scholar 

  79. 79.

    Ma, Y. et al. Association between carbohydrate intake and serum lipids. J. Am. Coll. Nutr. 25, 155–163 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Kennedy, A. R. et al. A high-fat, ketogenic diet induces a unique metabolic state in mice. Am. J. Physiol. Endocrinol. Metab. 292, E1724–E1739 (2007).

    CAS  PubMed  Google Scholar 

  81. 81.

    Douris, N. et al. Adaptive changes in amino acid metabolism permit normal longevity in mice consuming a low-carbohydrate ketogenic diet. Biochim. Biophys. Acta. 1852, 2056–2065 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Heischmann, S. et al. Regulation of kynurenine metabolism by a ketogenic diet. J. Lipid Res. 59, 958–966 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Fujisaka, S. et al. Diet, genetics, and the gut microbiome drive dynamic changes in plasma metabolites. Cell Rep. 22, 3072–3086 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Wang, W. et al. Effects of high-fat diet on plasma profiles of eicosanoid metabolites in mice. Prostaglandins Other Lipid Mediat. 127, 9–13 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Sansbury, B. E., Bhatnagar, A. & Hill, B. G. Impact of nutrient excess and endothelial nitric oxide synthase on the plasma metabolite profile in mice. Front. Physiol. 5, 453 (2014).

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Lai, Y. S. et al. Mass-spectrometry-based serum metabolomics of a c57bl/6j mouse model of high-fat-diet-induced non-alcoholic fatty liver disease development. J. Agric Food Chem. 63, 7873–7884 (2015).

    CAS  PubMed  Google Scholar 

  87. 87.

    Stone, K. P. et al. Compromised responses to dietary methionine restriction in adipose tissue but not liver of ob/ob mice. Obesity (Silver Spring) 23, 1836–1844 (2015).

    CAS  Google Scholar 

  88. 88.

    Kokkinakis, D. M., Schold, S. C. J., Hori, H. & Nobori, T. Effect of long-term depletion of plasma methionine on the growth and survival of human brain tumor xenografts in athymic mice. Nutr. Cancer 29, 195–204 (1997).

    CAS  PubMed  Google Scholar 

  89. 89.

    Lees, E. K. et al. Direct comparison of methionine restriction with leucine restriction on the metabolic health of C57BL/6J mice. Sci. Rep. 7, 9977 (2017).

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    Elshorbagy, A. K. et al. Cysteine supplementation reverses methionine restriction effects on rat adiposity: significance of stearoyl-coenzyme A desaturase. J. Lipid Res. 52, 104–112 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Huang, T. H. et al. A methionine-restricted diet and endurance exercise decrease bone mass and extrinsic strength but increase intrinsic strength in growing male rats. J. Nutr. 144, 621–630 (2014).

    CAS  PubMed  Google Scholar 

  92. 92.

    Fukumura, D., Duda, D. G., Munn, L. L. & Jain, R. K. Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models. Microcirculation 17, 206–225 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Pan, M. et al. Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation. Nat. Cell Biol. 18, 1090–1101 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Wiig, H. & Swartz, M. A. Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiol. Rev. 92, 1005–1060 (2012).

    CAS  PubMed  Google Scholar 

  95. 95.

    Wiig, H., Aukland, K. & Tenstad, O. Isolation of interstitial fluid from rat mammary tumors by a centrifugation method. Am. J. Physiol. Heart Circ. Physiol. 284, H416–H424 (2003).

    CAS  PubMed  Google Scholar 

  96. 96.

    Haslene-Hox, H. et al. A new method for isolation of interstitial fluid from human solid tumors applied to proteomic analysis of ovarian carcinoma tissue. PLOS ONE 6, e19217 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Ho, P. C. et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T Cell Res.ponses. Cell 162, 1217–1228 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Burgess, E. A. & Sylven, B. Glucose, lactate, and lactic dehydrogenase activity in normal interstitial fluid and that of solid mouse tumors. Cancer Res. 22, 581–588 (1962).

    CAS  PubMed  Google Scholar 

  99. 99.

    Gullino, P. M., Clark, S. H. & Grantham, F. H. The interstitial fluid of solid tumors. Cancer Res. 24, 780–794 (1964).

    CAS  PubMed  Google Scholar 

  100. 100.

    Hensley, C. T. et al. Metabolic heterogeneity in human lung tumors. Cell 164, 681–694 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Poff, A. M., Ari, C., Arnold, P., Seyfried, T. N. & D’Agostino, D. P. Ketone supplementation decreases tumor cell viability and prolongs survival of mice with metastatic cancer. Int. J. Cancer 135, 1711–1720 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Birsoy, K. et al. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature 508, 108–112 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Schwarz, J. M., Linfoot, P., Dare, D. & Aghajanian, K. Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets. Am. J. Clin. Nutr. 77, 43–50 (2003).

    CAS  PubMed  Google Scholar 

  104. 104.

    Ikemoto, S. et al. High-fat diet-induced hyperglycemia and obesity in mice: differential effects of dietary oils. Metabolism 45, 1539–1546 (1996).

    CAS  Google Scholar 

  105. 105.

    Jang, C. et al. The small intestine converts dietary fructose into glucose and organic acids. Cell Metab. 27, 351–361.e3 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Balakumar, M. et al. High-fructose diet is as detrimental as high-fat diet in the induction of insulin resistance and diabetes mediated by hepatic/pancreatic endoplasmic reticulum (ER) stress. Mol. Cell Biochem. 423, 93–104 (2016).

    CAS  PubMed  Google Scholar 

  107. 107.

    Goncalves, M. D. et al. High-fructose corn syrup enhances intestinal tumor growth in mice. Science 363, 1345–1349 (2019).

    CAS  PubMed  Google Scholar 

  108. 108.

    Hensley, C. T., Wasti, A. T. & DeBerardinis, R. J. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J. Clin. Invest. 123, 3678–3684 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Sellers, K. et al. Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J. Clin. Invest. 125, 687–698 (2015).

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    Tardito, S. et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat. Cell Biol. 17, 1556–1568 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Raffaghello, L. et al. Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proc. Natl Acad. Sci. USA 105, 8215–8220 (2008).

    CAS  PubMed  Google Scholar 

  112. 112.

    Schroll, M. M., Liu, X., Herzog, S. K., Skube, S. B. & Hummon, A. B. Nutrient restriction of glucose or serum results in similar proteomic expression changes in 3D colon cancer cell cultures. Nutr. Res. 36, 1068–1080 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Lashinger, L. M. et al. Starving cancer from the outside and inside: separate and combined effects of calorie restriction and autophagy inhibition on Ras-driven tumors. Cancer Metab. 4, 18 (2016).

    PubMed  PubMed Central  Google Scholar 

  114. 114.

    Bianchi, G. et al. Fasting induces anti-Warburg effect that increases respiration but reduces atp-synthesis to promote apoptosis in colon cancer models. Oncotarget 6, 11806–11819 (2015).

    PubMed  PubMed Central  Google Scholar 

  115. 115.

    Zhang, J. et al. Low ketolytic enzyme levels in tumors predict ketogenic diet responses in cancer cell lines in vitro and in vivo. J. Lipid Res. 59, 625–634 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Huang, D. et al. Hepatocellular carcinoma redirects to ketolysis for progression under nutrition deprivation stress. Cell Res. 26, 1112–1130 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Buescher, J. M. et al. A roadmap for interpreting 13C metabolite labeling patterns from cells. Curr. Opin. Biotechnol. 34, 189–201 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Chong, J. et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 46, W486–W494 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Sergushichev, A. A. et al. GAM: a web-service for integrated transcriptional and metabolic network analysis. Nucleic Acids Res. 44, W194–W200 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Hui, S. et al. Glucose feeds the TCA cycle via circulating lactate. Nature 551, 115–118 (2017).

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    Valkenburg, K. C., de Groot, A. E. & Pienta, K. J. Targeting the tumour stroma to improve cancer therapy. Nat. Rev. Clin. Oncol. 15, 366–381 (2018).

    PubMed  PubMed Central  Google Scholar 

  122. 122.

    Lyssiotis, C. A. & Kimmelman, A. C. Metabolic interactions in the tumor microenvironment. Trends Cell Biol. 27, 863–875 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Ying, M., Guo, C. & Hu, X. The quantitative relationship between isotopic and net contributions of lactate and glucose to the TCA cycle. J. Biol. Chem. 294, 9615–9630 (2019).

    CAS  PubMed  Google Scholar 

  124. 124.

    Timmers, S. et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 14, 612–622 (2011).

    CAS  PubMed  Google Scholar 

  125. 125.

    Pernicova, I. & Korbonits, M. Metformin–mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol. 10, 143–156 (2014).

    CAS  PubMed  Google Scholar 

  126. 126.

    Fang, Y. et al. Duration of rapamycin treatment has differential effects on metabolism in mice. Cell Metab. 17, 456–462 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Ohe, K., Morris, H. P. & Weinhouse, S. Beta-hydroxybutyrate dehydrogenase activity in liver and liver tumors. Cancer Res. 27, 1360–1371 (1967).

    CAS  PubMed  Google Scholar 

  128. 128.

    Tisdale, M. J. & Brennan, R. A. Loss of acetoacetate coenzyme A transferase activity in tumours of peripheral tissues. Br. J. Cancer. 47, 293–297 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Patel, M. S., Russell, J. J. & Gershman, H. Ketone-body metabolism in glioma and neuroblastoma cells. Proc. Natl Acad. Sci. USA 78, 7214–7218 (1981).

    CAS  PubMed  Google Scholar 

  130. 130.

    Magee, B. A., Potezny, N., Rofe, A. M. & Conyers, R. A. The inhibition of malignant cell growth by ketone bodies. Aust. J. Exp. Biol. Med. Sci. 57, 529–539 (1979).

    CAS  PubMed  Google Scholar 

  131. 131.

    Rodrigues, L. M. et al. The action of β-hydroxybutyrate on the growth, metabolism and global histone H3 acetylation of spontaneous mouse mammary tumours: evidence of a β-hydroxybutyrate paradox. Cancer Metab. 5, 4 (2017).

    PubMed  PubMed Central  Google Scholar 

  132. 132.

    Xu, X. et al. Overview of the development of glutaminase inhibitors: achievements and future directions. J. Med. Chem. 62, 1096–1115 (2019).

    CAS  PubMed  Google Scholar 

  133. 133.

    Lien, E. C., Lyssiotis, C. A. & Cantley, L. C. Metabolic reprogramming by the PI3K-Akt-mTOR pathway in cancer. Recent Results Cancer Res. 207, 39–72 (2016).

    CAS  PubMed  Google Scholar 

  134. 134.

    Kanarek, N. et al. Histidine catabolism is a major determinant of methotrexate sensitivity. Nature 559, 632–636 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Huennekens, F. M. The methotrexate story: a paradigm for development of cancer chemotherapeutic agents. Adv. Enzyme Regul. 34, 397–419 (1994).

    CAS  PubMed  Google Scholar 

  136. 136.

    Nencioni, A., Caffa, I., Cortellino, S. & Longo, V. D. Fasting and cancer: molecular mechanisms and clinical application. Nat. Rev. Cancer 18, 707–719 (2018).

    CAS  PubMed  Google Scholar 

  137. 137.

    Hoshiya, Y., Kubota, T., Matsuzaki, S. W., Kitajima, M. & Hoffman, R. M. Methionine starvation modulates the efficacy of cisplatin on human breast cancer in nude mice. AntiCancer Res. 16, 3515–3517 (1996).

    CAS  PubMed  Google Scholar 

  138. 138.

    Poirson-Bichat, F., Gonçalves, R. A., Miccoli, L., Dutrillaux, B. & Poupon, M. F. Methionine depletion enhances the antitumoral efficacy of cytotoxic agents in drug-resistant human tumor xenografts. Clin. Cancer Res. 6, 643–653 (2000).

    CAS  PubMed  Google Scholar 

  139. 139.

    Lee, C. et al. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci. Transl. Med. 4, 124ra27 (2012).

    PubMed  PubMed Central  Google Scholar 

  140. 140.

    de Groot, S. et al. The effects of short-term fasting on tolerance to (neo) adjuvant chemotherapy in HER2-negative breast cancer patients: a randomized pilot study. BMC Cancer 15, 652 (2015).

    PubMed  PubMed Central  Google Scholar 

  141. 141.

    Dorff, T. B. et al. Safety and feasibility of fasting in combination with platinum-based chemotherapy. BMC Cancer 16, 360 (2016).

    PubMed  PubMed Central  Google Scholar 

  142. 142.

    Safdie, F. M. et al. Fasting and cancer treatment in humans: a case series report. Aging (Albany NY) 1, 988–1007 (2009).

    Google Scholar 

  143. 143.

    Bauersfeld, S. P. et al. The effects of short-term fasting on quality of life and tolerance to chemotherapy in patients with breast and ovarian cancer: a randomized cross-over pilot study. BMC Cancer 18, 476 (2018).

    PubMed  PubMed Central  Google Scholar 

  144. 144.

    Hoffman, R. M. Clinical studies of methionine-restricted diets for cancer patients. Methods Mol. Biol. 1866, 95–105 (2019).

    PubMed  Google Scholar 

  145. 145.

    Thivat, E. et al. Phase II trial of the association of a methionine-free diet with cystemustine therapy in melanoma and glioma. AntiCancer Res. 29, 5235–5240 (2009).

    CAS  PubMed  Google Scholar 

  146. 146.

    Durando, X. et al. Dietary methionine restriction with FOLFOX regimen as first line therapy of metastatic colorectal cancer: a feasibility study. Oncol. 78, 205–209 (2010).

    CAS  Google Scholar 

  147. 147.

    Di Biase, S. et al. Fasting regulates EGR1 and protects from glucose- and dexamethasone-dependent sensitization to chemotherapy. PLOS Biol. 15, e2001951 (2017).

    PubMed  PubMed Central  Google Scholar 

  148. 148.

    Obrist, F. et al. Metabolic vulnerability of cisplatin-resistant cancers. EMBO J. 37, e98597 (2018).

    PubMed  PubMed Central  Google Scholar 

  149. 149.

    Gravel, S. P. et al. Serine deprivation enhances antineoplastic activity of biguanides. Cancer Res. 74, 7521–7533 (2014).

    CAS  PubMed  Google Scholar 

  150. 150.

    Ricci, M. R. & Ulman, E. A. Laboratory animal diets: a critical part of your in vivo research. Research Diets https://researchdiets.com/system/resources/W1siZiIsIjIwMTgvMDMvMjkvNzF0NjQ5OXcwZl9MYWJvcmF0b3J5X0FuaW1hbF9EaWV0c19fQV9Dcml0aWNhbF9QYXJ0X29mX3lvdXJfSW5fdml2b19SZXNlYXJjaF93ZWIucGRmIl1d/Laboratory_Animal_Diets_%20A_Critical_Part_of_your_In_vivo_Research_web.pdf (2005).

  151. 151.

    Chen, Y. et al. The influence of dietary lipid composition on liver mitochondria from mice following 1 month of calorie restriction. BioSci. Rep. 33, 83–95 (2012).

    CAS  PubMed  Google Scholar 

  152. 152.

    Abbott, S. K., Else, P. L., Atkins, T. A. & Hulbert, A. J. Fatty acid composition of membrane bilayers: importance of diet polyunsaturated fat balance. Biochim. Biophys. Acta. 1818, 1309–1317 (2012).

    CAS  PubMed  Google Scholar 

  153. 153.

    Tosi, F., Sartori, F., Guarini, P., Olivieri, O. & Martinelli, N. Delta-5 and delta-6 desaturases: crucial enzymes in polyunsaturated fatty acid-related pathways with pleiotropic influences in health and disease. Adv. Exp. Med. Biol. 824, 61–81 (2014).

    CAS  PubMed  Google Scholar 

  154. 154.

    Ackerman, D. et al. triglycerides promote lipid homeostasis during hypoxic stress by balancing fatty acid saturation. Cell Rep. 24, 2596–2605.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. 155.

    Kamphorst, J. J. et al. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc. Natl Acad. Sci. USA 110, 8882–8887 (2013).

    CAS  Google Scholar 

  156. 156.

    Serini, S., Piccioni, E., Merendino, N. & Calviello, G. Dietary polyunsaturated fatty acids as inducers of apoptosis: implications for cancer. Apoptosis 14, 135–152 (2009).

    CAS  PubMed  Google Scholar 

  157. 157.

    Roongta, U. V. et al. Cancer cell dependence on unsaturated fatty acids implicates stearoyl-CoA desaturase as a target for cancer therapy. Mol. Cancer Res. 9, 1551–1561 (2011).

    CAS  PubMed  Google Scholar 

  158. 158.

    Peck, B. et al. Inhibition of fatty acid desaturation is detrimental to cancer cell survival in metabolically compromised environments. Cancer Metab. 4, 6 (2016).

    PubMed  PubMed Central  Google Scholar 

  159. 159.

    Peck, B. & Schulze, A. Lipid desaturation - the next step in targeting lipogenesis in cancer. FEBS J. 283, 2767–2778 (2016).

    CAS  PubMed  Google Scholar 

  160. 160.

    Reeves, P. G., Nielsen, F. H. & Fahey, G. C. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123, 1939–1951 (1993).

    CAS  PubMed  Google Scholar 

  161. 161.

    Ellacott, K. L., Morton, G. J., Woods, S. C., Tso, P. & Schwartz, M. W. Assessment of feeding behavior in laboratory mice. Cell Metab. 12, 10–17 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162.

    Pugh, T. D., Klopp, R. G. & Weindruch, R. Controlling caloric consumption: protocols for rodents and rhesus monkeys. Neurobiol. Aging 20, 157–165 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Vander Heiden laboratory for thoughtful discussions and comments on the manuscript. E.C.L. is a Damon Runyon Fellow supported by the Damon Runyon Cancer Research Foundation (DRG-2299-17). M.G.V.H. is supported by the Emerald Foundation, the Lustgarten Foundation, SU2C, the Ludwig Center at MIT, the US National Cancer Institute, the MIT Center for Precision Cancer Medicine and a Faculty Scholars award from the Howard Hughes Medical Institute.

Author information

Affiliations

Authors

Contributions

Both authors contributed to the discussion of manuscript content, writing of the manuscript and reviewing or editing of the manuscript before submission.

Corresponding author

Correspondence to Matthew G. Vander Heiden.

Ethics declarations

Competing interests

M.G.V.H. is a consultant for and scientific advisory board member of Agios Pharmaceuticals, Aeglea Biotherapeutics and Auron Therapeutics. E.C.L. reports no competing interests.

Additional information

Peer review information

Nature Reviews Cancer thanks L. Hodson, V. Longo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lien, E.C., Vander Heiden, M.G. A framework for examining how diet impacts tumour metabolism. Nat Rev Cancer 19, 651–661 (2019). https://doi.org/10.1038/s41568-019-0198-5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing