OPINION

Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion

Abstract

Ferroptosis is a recently recognized cell death modality that is morphologically, biochemically and genetically distinct from other forms of cell death and that has emerged to play an important role in cancer biology. Recent discoveries have highlighted the metabolic plasticity of cancer cells and have provided intriguing insights into how metabolic rewiring is a critical event for the persistence, dedifferentiation and expansion of cancer cells. In some cases, this metabolic reprogramming has been linked to an acquired sensitivity to ferroptosis, thus opening up new opportunities to treat therapy-insensitive tumours. However, it is not yet clear what metabolic determinants are critical for therapeutic resistance and evasion of immune surveillance. Therefore, a better understanding of the processes that regulate ferroptosis sensitivity should ultimately aid in the discovery of novel therapeutic strategies to improve cancer treatment. In this Perspectives article, we provide an overview of the known mechanisms that regulate sensitivity to ferroptosis in cancer cells and how the modulation of metabolic pathways controlling ferroptosis might reshape the tumour niche, leading to an immunosuppressive microenvironment that promotes tumour growth and progression.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The main metabolic processes regulating ferroptosis and GPX4 activity.
Fig. 2: Hypothetical model of an inverse correlation of the cellular peroxide tone and immune evasion.
Fig. 3: Possible modulation of tumour immunity by ferroptotic cancer cells.

References

  1. 1.

    Conrad, M., Angeli, J. P., Vandenabeele, P. & Stockwell, B. R. Regulated necrosis: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 15, 348–366 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

    CAS  PubMed  Google Scholar 

  4. 4.

    Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Ingold, I. et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172, 409–422 (2018).

    CAS  PubMed  Google Scholar 

  6. 6.

    Kagan, V. E. et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 13, 81–90 (2017).

    CAS  PubMed  Google Scholar 

  7. 7.

    Doll, S. et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91–98 (2017).

    CAS  PubMed  Google Scholar 

  8. 8.

    Dixon, S. J. et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem. Biol. 10, 1604–1609 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Yuan, H., Li, X., Zhang, X., Kang, R. & Tang, D. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem. Biophys. Res. Commun. 478, 1338–1343 (2016).

    CAS  PubMed  Google Scholar 

  10. 10.

    Friedmann-Angeli, J. P., Miyamoto, S. & Schulze, A. Ferroptosis: the greasy side of cell death. Chem. Res. Toxicol. 32, 362–369 (2019).

    CAS  PubMed  Google Scholar 

  11. 11.

    Chen, Y. et al. Quantitative profiling of protein carbonylations in ferroptosis by an aniline-derived probe. J. Am. Chem. Soc. 140, 4712–4720 (2018).

    CAS  PubMed  Google Scholar 

  12. 12.

    Wang, L. et al. A pharmacological probe identifies cystathionine beta-synthase as a new negative regulator for ferroptosis. Cell Death Dis. 9, 1005 (2018).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Lee, J. et al. The viability of primary hepatocytes is maintained under a low cysteine-glutathione redox state with a marked elevation in ophthalmic acid production. Exp. Cell Res. 361, 178–191 (2017).

    CAS  PubMed  Google Scholar 

  14. 14.

    Hayano, M., Yang, W. S., Corn, C. K., Pagano, N. C. & Stockwell, B. R. Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation. Cell Death Differ. 23, 270–278 (2016).

    CAS  PubMed  Google Scholar 

  15. 15.

    Gao, M., Monian, P., Quadri, N., Ramasamy, R. & Jiang, X. Glutaminolysis and transferrin regulate ferroptosis. Mol. Cell 59, 298–308 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Gao, M. et al. Ferroptosis is an autophagic cell death process. Cell Res. 26, 1021–1032 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Hou, W. et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12, 1425–1428 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Torii, S. et al. An essential role for functional lysosomes in ferroptosis of cancer cells. Biochem. J. 473, 769–777 (2016).

    CAS  PubMed  Google Scholar 

  19. 19.

    Conrad, M. et al. Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev. 32, 602–619 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Miess, H. et al. The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell carcinoma. Oncogene 37, 5435–5450 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Viswanathan, V. S. et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547, 453–457 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Jiang, L. et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520, 57–62 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Tsoi, J. et al. Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. Cancer Cell 33, 890–904 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Gentric, G. et al. PML-regulated mitochondrial metabolism enhances chemosensitivity in human ovarian cancers. Cell Metab. 29, 156–173 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Brigelius-Flohe, R. & Maiorino, M. Glutathione peroxidases. Biochim. Biophys. Acta 1830, 3289–3303 (2013).

    CAS  PubMed  Google Scholar 

  26. 26.

    Ursini, F., Maiorino, M., Valente, M., Ferri, L. & Gregolin, C. Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochim. Biophys. Acta 710, 197–211 (1982).

    CAS  PubMed  Google Scholar 

  27. 27.

    Yant, L. J. et al. The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic. Biol. Med. 34, 496–502 (2003).

    CAS  PubMed  Google Scholar 

  28. 28.

    Liu, H., Schreiber, S. L. & Stockwell, B. R. Targeting dependency on the GPX4 lipid peroxide repair pathway for cancer therapy. Biochemistry 57, 2059–2060 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Shah, R., Shchepinov, M. S. & Pratt, D. A. Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Cent. Sci. 4, 387–396 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Nomura, K., Imai, H., Koumura, T., Kobayashi, T. & Nakagawa, Y. Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem. J. 351, 183–193 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Canli, O. et al. Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors. Blood 127, 139–148 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Kang, R. et al. Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host Microbe 24, 97–108 (2018).

    CAS  PubMed  Google Scholar 

  33. 33.

    Muller, T. et al. Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure. Cell. Mol. Life Sci. 74, 3631–3645 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Cheok, C. F., Verma, C. S., Baselga, J. & Lane, D. P. Translating p53 into the clinic. Nat. Rev. Clin. Oncol. 8, 25–37 (2011).

    CAS  PubMed  Google Scholar 

  35. 35.

    Li, T. et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149, 1269–1283 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Wang, S. J. et al. Acetylation is crucial for p53-mediated ferroptosis and tumor suppression. Cell Rep. 17, 366–373 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Jennis, M. et al. An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes Dev. 30, 918–930 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Aydin, E., Johansson, J., Nazir, F. H., Hellstrand, K. & Martner, A. Role of NOX2-derived reactive oxygen species in NK cell-mediated control of murine melanoma metastasis. Cancer Immunol. Res. 5, 804–811 (2017).

    CAS  PubMed  Google Scholar 

  39. 39.

    Moon, S. H. et al. p53 represses the mevalonate pathway to mediate tumor suppression. Cell 176, 564–580 (2019).

    CAS  PubMed  Google Scholar 

  40. 40.

    Shimada, K. et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat. Chem. Biol. 12, 497–503 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Garcia-Bermudez, J. et al. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature 567, 118–122 (2019).

    CAS  PubMed  Google Scholar 

  42. 42.

    Turrell, F. K. et al. Lung tumors with distinct p53 mutations respond similarly to p53 targeted therapy but exhibit genotype-specific statin sensitivity. Genes Dev. 31, 1339–1353 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Tarangelo, A. et al. p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep. 22, 569–575 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Maddocks, O. D. et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493, 542–546 (2013).

    CAS  PubMed  Google Scholar 

  45. 45.

    Xie, Y. et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep. 20, 1692–1704 (2017).

    CAS  PubMed  Google Scholar 

  46. 46.

    Carbone, M. et al. BAP1 and cancer. Nat. Rev. Cancer 13, 153–159 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Zhang, Y. et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat. Cell Biol. 20, 1181–1192 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Baughman, J. M. et al. NeuCode proteomics reveals Bap1 regulation of metabolism. Cell Rep. 16, 583–595 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Faronato, M. et al. Increased expression of 5-lipoxygenase is common in clear cell renal cell carcinoma. Histol. Histopathol. 22, 1109–1118 (2007).

    CAS  PubMed  Google Scholar 

  50. 50.

    Zou, Y. et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat. Commun. 10, 1617 (2019).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Jiang, Y. et al. EGLN1/c-Myc induced lymphoid-specific helicase inhibits ferroptosis through lipid metabolic gene expression changes. Theranostics 7, 3293–3305 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Briggs, K. J. et al. Paracrine induction of HIF by glutamate in breast cancer: EglN1 senses cysteine. Cell 166, 126–139 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Timmerman, L. A. et al. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell 24, 450–465 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Chen, X. et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1alpha pathway. Nature 508, 103–107 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Accioly, M. T. et al. Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells. Cancer Res. 68, 1732–1740 (2008).

    CAS  PubMed  Google Scholar 

  56. 56.

    Liu, L. et al. Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell 160, 177–190 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Behan, F. M. et al. Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens. Nature 568, 511–516 (2019).

    Article  PubMed  Google Scholar 

  58. 58.

    Hangauer, M. J. et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551, 247–250 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Richard, G. et al. ZEB1-mediated melanoma cell plasticity enhances resistance to MAPK inhibitors. EMBO Mol. Med. 8, 1143–1161 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Talebi, A. et al. Sustained SREBP-1-dependent lipogenesis as a key mediator of resistance to BRAF-targeted therapy. Nat. Commun. 9, 2500 (2018).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Krebs, A. M. et al. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat. Cell Biol. 19, 518–529 (2017).

    CAS  PubMed  Google Scholar 

  62. 62.

    Gubelmann, C. et al. Identification of the transcription factor ZEB1 as a central component of the adipogenic gene regulatory network. eLife 3, e03346 (2014).

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Wang, D. & DuBois, R. N. Immunosuppression associated with chronic inflammation in the tumor microenvironment. Carcinogenesis 36, 1085–1093 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Di Minin, G. et al. Mutant p53 reprograms TNF signaling in cancer cells through interaction with the tumor suppressor DAB2IP. Mol. Cell 56, 617–629 (2014).

    PubMed  Google Scholar 

  65. 65.

    Wang, S. S. et al. Bap1 is essential for kidney function and cooperates with Vhl in renal tumorigenesis. Proc. Natl Acad. Sci. USA 111, 16538–16543 (2014).

    CAS  PubMed  Google Scholar 

  66. 66.

    Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Wei, J. & Gronert, K. Eicosanoid and specialized proresolving mediator regulation of lymphoid cells. Trends Biochem. Sci. 44, 214–225 (2018).

    PubMed  Google Scholar 

  68. 68.

    Chen, C. J., Huang, H. S. & Chang, W. C. Inhibition of arachidonate metabolism in human epidermoid carcinoma a431 cells overexpressing phospholipid hydroperoxide glutathione peroxidase. J. Biomed. Sci. 9, 453–459 (2002).

    CAS  PubMed  Google Scholar 

  69. 69.

    Chen, C. J., Huang, H. S., Lin, S. B. & Chang, W. C. Regulation of cyclooxygenase and 12-lipoxygenase catalysis by phospholipid hydroperoxide glutathione peroxidase in A431 cells. Prostaglandins Leukot. Essent. Fatty Acids 62, 261–268 (2000).

    CAS  PubMed  Google Scholar 

  70. 70.

    Huang, H. S., Chen, C. J., Suzuki, H., Yamamoto, S. & Chang, W. C. Inhibitory effect of phospholipid hydroperoxide glutathione peroxidase on the activity of lipoxygenases and cyclooxygenases. Prostaglandins Other Lipid Mediat. 58, 65–75 (1999).

    CAS  PubMed  Google Scholar 

  71. 71.

    Chen, C. J., Huang, H. S. & Chang, W. C. Depletion of phospholipid hydroperoxide glutathione peroxidase up-regulates arachidonate metabolism by 12S-lipoxygenase and cyclooxygenase 1 in human epidermoid carcinoma A431 cells. FASEB J. 17, 1694–1696 (2003).

    CAS  PubMed  Google Scholar 

  72. 72.

    Araujo, A. C., Wheelock, C. E. & Haeggstrom, J. Z. The eicosanoids, redox-regulated lipid mediators in immunometabolic disorders. Antioxid. Redox Signal. 29, 275–296 (2018).

    CAS  PubMed  Google Scholar 

  73. 73.

    Haeggstrom, J. Z. & Funk, C. D. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem. Rev. 111, 5866–5898 (2011).

    PubMed  Google Scholar 

  74. 74.

    Seiler, A. et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 8, 237–248 (2008).

    CAS  PubMed  Google Scholar 

  75. 75.

    Loscalzo, J. Membrane redox state and apoptosis: death by peroxide. Cell Metab. 8, 182–183 (2008).

    CAS  PubMed  Google Scholar 

  76. 76.

    Milne, G. L., Dai, Q. & Roberts, L. J. 2nd. The isoprostanes—25 years later. Biochim. Biophys. Acta 1851, 433–445 (2015).

    CAS  PubMed  Google Scholar 

  77. 77.

    Folco, G. & Murphy, R. C. Eicosanoid transcellular biosynthesis: from cell-cell interactions to in vivo tissue responses. Pharmacol. Rev. 58, 375–388 (2006).

    CAS  PubMed  Google Scholar 

  78. 78.

    Dar, H. H. et al. Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium. J. Clin. Invest. 128, 4639–4653 (2018).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Kim, S. et al. Circulating levels of inflammatory cytokines and risk of colorectal adenomas. Cancer Res. 68, 323–328 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Latchoumycandane, C., Marathe, G. K., Zhang, R. & McIntyre, T. M. Oxidatively truncated phospholipids are required agents of tumor necrosis factor alpha (TNFalpha)-induced apoptosis. J. Biol. Chem. 287, 17693–17705 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Katunga, L. A. et al. Obesity in a model of gpx4 haploinsufficiency uncovers a causal role for lipid-derived aldehydes in human metabolic disease and cardiomyopathy. Mol. Metab. 4, 493–506 (2015).

  82. 82.

    Canli, O. et al. Myeloid cell-derived reactive oxygen species induce epithelial mutagenesis. Cancer Cell 32, 869–883 (2017).

    CAS  PubMed  Google Scholar 

  83. 83.

    Matsushita, M. et al. T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. J. Exp. Med. 212, 555–568 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Elliott, M. R. & Ravichandran, K. S. The dynamics of apoptotic cell clearance. Dev. Cell 38, 147–160 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Kloditz, K. & Fadeel, B. Three cell deaths and a funeral: macrophage clearance of cells undergoing distinct modes of cell death. Cell Death Discov. 5, 65 (2019).

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Li, C. et al. Novel allosteric activators for ferroptosis regulator glutathione peroxidase 4. J. Med. Chem. 62, 266–275 (2018).

    PubMed  Google Scholar 

  87. 87.

    Wang, D. & Dubois, R. N. Eicosanoids and cancer. Nat. Rev. Cancer 10, 181–193 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Morgan, A. H. et al. Phosphatidylethanolamine-esterified eicosanoids in the mouse: tissue localization and inflammation-dependent formation in Th-2 disease. J. Biol. Chem. 284, 21185–21191 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    D’Herde, K. & Krysko, D. V. Ferroptosis: oxidized PEs trigger death. Nat. Chem. Biol. 13, 4–5 (2017).

    PubMed  Google Scholar 

  90. 90.

    Lauber, K. et al. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113, 717–730 (2003).

    CAS  PubMed  Google Scholar 

  91. 91.

    Rothe, T. et al. 12/15-Lipoxygenase-mediated enzymatic lipid oxidation regulates DC maturation and function. J. Clin. Invest. 125, 1944–1954 (2015).

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    Tyurin, V. A. et al. Oxidatively modified phosphatidylserines on the surface of apoptotic cells are essential phagocytic ‘eat-me’ signals: cleavage and inhibition of phagocytosis by Lp-PLA2. Cell Death Differ. 21, 825–835 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Uderhardt, S. et al. 12/15-lipoxygenase orchestrates the clearance of apoptotic cells and maintains immunologic tolerance. Immunity 36, 834–846 (2012).

    CAS  PubMed  Google Scholar 

  94. 94.

    Veglia, F. et al. Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. Nat. Commun. 8, 2122 (2017).

    PubMed  PubMed Central  Google Scholar 

  95. 95.

    Cao, W. et al. Oxidized lipids block antigen cross-presentation by dendritic cells in cancer. J. Immunol. 192, 2920–2931 (2014).

    CAS  PubMed Central  Google Scholar 

  96. 96.

    Wen, Q., Liu, J., Kang, R., Zhou, B. & Tang, D. The release and activity of HMGB1 in ferroptosis. Biochem. Biophys. Res. Commun. 510, 278–283 (2019).

    CAS  PubMed  Google Scholar 

  97. 97.

    Yu, Y. et al. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents. Mol. Cell Oncol. 2, e1054549 (2015).

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Yamazaki, T. et al. Defective immunogenic cell death of HMGB1-deficient tumors: compensatory therapy with TLR4 agonists. Cell Death Differ. 21, 69–78 (2014).

    CAS  PubMed  Google Scholar 

  99. 99.

    Aaes, T. L. et al. Vaccination with necroptotic cancer cells induces efficient anti-tumor immunity. Cell Rep. 15, 274–287 (2016).

    CAS  PubMed  Google Scholar 

  100. 100.

    Yatim, N. et al. RIPK1 and NF-kappaB signaling in dying cells determines cross-priming of CD8+ T cells. Science 350, 328–334 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Linkermann, A. et al. Synchronized renal tubular cell death involves ferroptosis. Proc. Natl Acad. Sci. USA 111, 16836–16841 (2014).

    CAS  PubMed  Google Scholar 

  102. 102.

    Hassannia, B. et al. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J. Clin. Invest. 128, 3341–3355 (2018).

    PubMed  PubMed Central  Google Scholar 

  103. 103.

    Li, W. et al. Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. J. Clin. Invest. 130, 126428 (2019).

    PubMed  Google Scholar 

  104. 104.

    Krysko, D. V. et al. TLR-2 and TLR-9 are sensors of apoptosis in a mouse model of doxorubicin-induced acute inflammation. Cell Death Differ. 18, 1316–1325 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050–1059 (2007).

    CAS  PubMed  Google Scholar 

  106. 106.

    Wang, D. & DuBois, R. N. The role of prostaglandin E(2) in tumor-associated immunosuppression. Trends Mol. Med. 22, 1–3 (2016).

    PubMed  Google Scholar 

  107. 107.

    Zelenay, S. et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162, 1257–1270 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Bottcher, J. P. et al. NK Cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022–1037 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Kalinski, P. Regulation of immune responses by prostaglandin E2. J. Immunol. 188, 21–28 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Kurtova, A. V. et al. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517, 209–213 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Bluml, S. et al. Oxidized phospholipids negatively regulate dendritic cell maturation induced by TLRs and CD40. J. Immunol. 175, 501–508 (2005).

    PubMed  Google Scholar 

  112. 112.

    Dixon, S. J. et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife 3, e02523 (2014).

    PubMed  PubMed Central  Google Scholar 

  113. 113.

    Yoshikawa, M. et al. xCT inhibition depletes CD44v-expressing tumor cells that are resistant to EGFR-targeted therapy in head and neck squamous cell carcinoma. Cancer Res. 73, 1855–1866 (2013).

    CAS  PubMed  Google Scholar 

  114. 114.

    Zhang, Y. et al. Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem. Biol. https://doi.org/10.1016/j.chembiol.2019.01.008 (2019).

    Article  PubMed  Google Scholar 

  115. 115.

    Chen, M. S. et al. CHAC1 degradation of glutathione enhances cystine-starvation-induced necroptosis and ferroptosis in human triple negative breast cancer cells via the GCN2-eIF2alpha-ATF4 pathway. Oncotarget 8, 114588–114602 (2017).

    PubMed  PubMed Central  Google Scholar 

  116. 116.

    Mai, T. T. et al. Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat. Chem. 9, 1025–1033 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Hao, S. et al. Cysteine dioxygenase 1 mediates erastin-induced ferroptosis in human gastric cancer cells. Neoplasia 19, 1022–1032 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Guo, J. et al. Ferroptosis: a novel anti-tumor action for cisplatin. Cancer Res. Treat. 50, 445–460 (2018).

    CAS  PubMed  Google Scholar 

  119. 119.

    Fang, X. et al. Ferroptosis as a target for protection against cardiomyopathy. Proc. Natl Acad. Sci. USA 116, 2672–2680 (2019).

    CAS  PubMed  Google Scholar 

  120. 120.

    Yao, X. et al. Multifunctional nanoplatform for photoacoustic imaging-guided combined therapy enhanced by CO induced ferroptosis. Biomaterials 197, 268–283 (2019).

    CAS  PubMed  Google Scholar 

  121. 121.

    Kim, S. E. et al. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat. Nanotechnol. 11, 977–985 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Szwed, M. et al. Small variations in nanoparticle structure dictate differential cellular stress responses and mode of cell death. Nanotoxicology https://doi.org/10.1080/17435390.2019.1576238 (2019).

    Article  PubMed  Google Scholar 

  123. 123.

    Wang, S. et al. Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics. ACS Nano. 12, 12380–12392 (2018).

    CAS  PubMed  Google Scholar 

  124. 124.

    Ostman, A., Frijhoff, J., Sandin, A. & Bohmer, F. D. Regulation of protein tyrosine phosphatases by reversible oxidation. J. Biochem. 150, 345–356 (2011).

    PubMed  Google Scholar 

  125. 125.

    Stocker, S., Maurer, M., Ruppert, T. & Dick, T. P. A role for 2-Cys peroxiredoxins in facilitating cytosolic protein thiol oxidation. Nat. Chem. Biol. 14, 148–155 (2018).

    PubMed  Google Scholar 

  126. 126.

    Conrad, M. et al. 12/15-lipoxygenase-derived lipid peroxides control receptor tyrosine kinase signaling through oxidation of protein tyrosine phosphatases. Proc. Natl Acad. Sci. USA 107, 15774–15779 (2010).

    CAS  PubMed  Google Scholar 

  127. 127.

    Wang, H. P., Schafer, F. Q., Goswami, P. C., Oberley, L. W. & Buettner, G. R. Phospholipid hydroperoxide glutathione peroxidase induces a delay in G1 of the cell cycle. Free Radic. Res. 37, 621–630 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Martin-Sanchez, D. et al. TWEAK and RIPK1 mediate a second wave of cell death during AKI. Proc. Natl Acad. Sci. USA 115, 4182–4187 (2018).

    PubMed  Google Scholar 

Download references

Acknowledgements

J.P.F.A. is supported by the Junior Group Leader programme of the Rudolf Virchow Center, University of Würzburg. D.V.K. is supported by FWO-Flanders (1506218 N, 1507118 N, G051918N and 3G043219) and Ghent University (Special Research Fund; BOF14-GOA-019 and IOP 01/O3618). M.C. is supported by the Deutsche Forschungsgemeinschaft (DFG) CO 291/5-2, the German Federal Ministry of Education and Research (BMBF) through the Joint Project Modelling ALS Disease In Vitro (MAIV; 01EK1611B) and the VIP+ programme NEUROPROTEKT (03VP04260), as well as the m4 Award provided by the Bavarian Ministry of Economic Affairs, Regional Development and Energy (StMWi). The authors would also like to apologize to all colleagues whose work could not be cited owing to space limitations.

Reviewer information

Nature Reviews Cancer thanks X. Jiang, P. Meier and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to José Pedro Friedmann Angeli or Marcus Conrad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

β-Oxidation

A catabolic process in which fatty acid molecules are oxidized in mitochondria to generate acetyl-CoA, NADH and FADH, the last two of which drive forces of the electron transport chain.

Conventional type 1 dendritic cell

(cDC1). A subset of dendritic cells dependent on the transcription factor BATF3 for development and characterized by the specific expression of C-type lectin receptor DNGR1.

Eicosanoids

Bioactive metabolites derived from the enzymatic and non-enzymatic oxidation of arachidonic acid and other polyunsaturated fatty acids that are 20 carbon units in length.

Labile iron pool

A transient pool of chelatable redox-active iron.

Mevalonate pathway

A metabolic pathway responsible for the generation of sterol isoprenoids, such as cholesterol, and non-sterol isoprenoids including dolichol, haem A, isopentenyl tRNA and ubiquinone.

Necrotic cell death

In contrast to the prototype of programmed cell death, that is, apoptosis, this umbrella term is used to identify cells that share similar terminal features that include, but are not limited to, extracellular extravasation and immunogenicity.

Peroxidatic cysteine

A cysteine residue found in the catalytic site of several redoxins that is responsible for the nucleophilic attack of a peroxide bond.

Transsulfuration pathway

A metabolic pathway responsible for the interconversion of methionine to cysteine.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Friedmann Angeli, J.P., Krysko, D.V. & Conrad, M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer 19, 405–414 (2019). https://doi.org/10.1038/s41568-019-0149-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing