RESEARCH HIGHLIGHTS

TUMOUR IMMUNOLOGY

States of exhaustion

To what extent T cell dysfunction in tumours resembles T cell exhaustion in chronic viral infections, and the mechanisms by which immune checkpoint blockade improves tumour immune surveillance even when T cells are dysfunctional. is poorly understood. In a study published in Nature Immunology, Miller, Sen et al. identify a subpopulation of dysfunctional or exhausted CD8+ tumour-infiltrating lymphocytes (TILs) that are polyfunctional and respond to anti-programmed cell death 1 (PD1) therapy. In response to anti-PD1, this subpopulation gives rise to the majority of cytotoxic terminally exhausted TILs.

The authors first compared exhausted CD8⁺ T cells from mice during chronic infection with lymphocytic choriomeningitis virus (LCMV) with CD8+ T cells isolated from ovalbumin-expressing B16F10 (B16-OVA) mouse melanoma tumours by single-cell expression analysis. Among exhausted CD8+ T cells in LCMV infections, clusters of four subpopulations were found, all of which expressed a T cell exhaustion signature (including Pd1 and Tox). These subpopulations included stem-like or progenitor CD8⁺ T cells (referred to as progenitor exhausted CD8+ T cells or T_{PE} cells from hereon) and terminally exhausted CD8⁺ T cells (T $_{\rm TE}$ cells). When analysing TILs, signatures derived from LCMV T_{PF} cells (expressing Tcf7 (which encodes transcription factor 7 (TCF7; also known as TCF1)) and the gene encoding DNA-binding protein inhibitor ID3) and $\rm T_{\rm TE}$ cells (expressing Tim3 (which encodes T cell membrane protein 3 (TIM3)) were significantly enriched. For isolation of live T cells and flow cytometry analyses, the authors used the cell surface marker SLAMF6 for T_{PE} cells as it was highly co-expressed

with TCF1 in this cell population but not in T_{TE} cells. Gene expression profiles of the corresponding two subpopulations overlapped significantly between TILs and LCMV T cells. However, the two subpopulations were distinct in their transcriptional and phenotypical state and maintained by distinct epigenetic states: T_{PF} cells and T_{TE} cells were distinguishable based on their profiles of chromatinaccessible regions (ChARs), with 13,340 ChARs unique to T_{PE} cells and 8,085 ChARs unique to T_{TE} cells in both tumour and LCMV T cells. These ChARs were associated with genes regulating cytokine production, survival and memory in T_{PE} cells, and cell division, apoptosis and cytotoxicity in T_{TE} cells. The authors then turned their attention to T_{PE} and T_{TE} biology in tumour-bearing mice. In growing tumours, the abundance of T_{TE} relative to T_{PE} cells increased. While the T cell receptor (TCR) repertoire was less diverse in T_{TE} cells than in T_{pe} cells, it overlapped by 50%. In addition, when SLAMF6+TIM3-T_{PF} cells were transferred into tumour-bearing congenic mice carrying the differential Ptprca pan-leukocyte marker, SLAMF6+ as well as TIM3+ T cells were recovered 16 days later. TIM3+ T cells were more cytotoxic, meaning they produced more interferon-y and granzyme B in vitro than SLAMF6⁺TIM3⁻ T_{PE} cells.

In growing tumours, the abundance of T_{TE} relative to T_{PE} cells

increased

When naive mice were implanted with B16-OVA tumours 30-40 days after having received T_{PE} cells, T_{PF} cells trafficked into the tumour tissue and proliferated there, as indicated by the increased number of T_{PE} cells recovered from tumour tissue compared with secondary lymphoid organs. Moreover, tumours in mice that received T_{PE} cells as opposed to T_{TE} cells grew slower - likely a sign of the improved ability of T_{PE} cells to proliferate and survive and continuously replenish cytotoxic T_{TE} cells. In response to anti-PD1 treatment in tumour-bearing congenically marked mice, transferred $T_{\mbox{\tiny PE}}$ cells expanded significantly, whereas T_{TE} cells did not. T_{PE} cells also converted into the terminally exhausted phenotype at a higher rate than in control tumours.

In patients with melanoma, CD8⁺ T cell populations expressing TCF1 and PD1, indicative of the T_{PE} cell type, were present in almost all biopsy samples before immune checkpoint blockade therapy. Also, a higher ratio of TCF1⁺ cells among the total population of PD1⁺CD8⁺ T cells positively correlated with prolonged progression-free survival and overall survival on therapy.

T cell exhaustion and the heterogeneity of exhausted T cell populations in tumours are a mirror of the T cell exhaustion and heterogeneity appearing in chronic viral infections. These findings can translate into improved strategies for PD1 blockade, in which the expansion of T_{PE} cells in patients can become a central aim in therapeutic strategies to improve outcomes.

Ulrike Harjes

ORIGINAL ARTICLE Miller, B. C. et al. Subsets of exhausted CD8⁺T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019)