Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Rare ribosomopathies: insights into mechanisms of cancer

Abstract

Long thought to be too big and too ubiquitous to fail, we now know that human cells can fail to make sufficient amounts of ribosomes, causing a number of diseases collectively known as ribosomopathies. The best characterized ribosomopathies, with the exception of Treacher Collins syndrome, are inherited bone marrow failure syndromes, each of which has a marked increase in cancer predisposition relative to the general population. Although rare, emerging data reveal that the inherited bone marrow failure syndromes may be underdiagnosed on the basis of classical symptomology, leaving undiagnosed patients with these syndromes at an elevated risk of cancer without adequate counselling and surveillance. The link between the inherited ribosomopathies and cancer has led to greater awareness that somatic mutations in factors involved in ribosome biogenesis may also be drivers in sporadic cancers. Our goal here is to compare and contrast the pathophysiological mechanisms underpinning ribosomopathies to gain a better understanding of the mechanisms that predispose these disorders to cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ribosomopathies affect different steps of ribosome synthesis.
Fig. 2: Nucleolar stress response is induced by defective ribosome assembly.
Fig. 3: Translational alterations in ribosomopathies.
Fig. 4: Disruption of ribosome synthesis and function can promote tumorigenesis.

Similar content being viewed by others

References

  1. Luzzatto, L. & Karadimitris, A. Dyskeratosis and ribosomal rebellion. Nat. Genet. 19, 6–7 (1998).

    CAS  PubMed  Google Scholar 

  2. Dianzani, I. & Loreni, F. Diamond-Blackfan anemia: a ribosomal puzzle. Haematologica 93, 1601–1604 (2008).

    CAS  PubMed  Google Scholar 

  3. Alter, B. P. et al. Malignancies and survival patterns in the National Cancer Institute inherited bone marrow failure syndromes cohort study. Br. J. Haematol. 150, 179–188 (2010).

    PubMed  PubMed Central  Google Scholar 

  4. De Keersmaecker, K. et al. Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat. Genet. 45, 186–190 (2013).

    PubMed  Google Scholar 

  5. Kressler, D., Hurt, E. & Bassler, J. A. Puzzle of life: crafting ribosomal subunits. Trends Biochem. Sci. 42, 640–654 (2017).

    CAS  PubMed  Google Scholar 

  6. Reichow, S. L. et al. The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res. 35, 1452–1464 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ban, N. et al. A new system for naming ribosomal proteins. Curr. Opin. Struct. Biol. 24, 165–169 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, J. et al. Assembly factors Rpf2 and Rrs1 recruit 5S rRNA and ribosomal proteins rpL5 and rpL11 into nascent ribosomes. Genes Dev. 21, 2580–2592 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Leidig, C. et al. 60S ribosome biogenesis requires rotation of the 5S ribonucleoprotein particle. Nat. Commun. 5, 3491 (2014).

    PubMed  Google Scholar 

  10. Vlachos, A. et al. Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference. Br. J. Haematol. 142, 859–876 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Clinton, C. & Gazda, H. T. in GeneReviews® (eds Adam, M. P., Ardinger, H. H. & Pagon, R. A.) (University of Washington, Seattle, 2009).

  12. Ikeda, F. et al. Exome sequencing identified RPS15A as a novel causative gene for Diamond-Blackfan anemia. Haematologica 102, e93–e96 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mirabello, L. et al. Novel and known ribosomal causes of Diamond-Blackfan anaemia identified through comprehensive genomic characterisation. J. Med. Genet. 54, 417–425 (2017).

    CAS  PubMed  Google Scholar 

  14. Orfali, K. A., Ohene-Abuakwa, Y. & Ball, S. E. Diamond Blackfan anaemia in the UK: clinical and genetic heterogeneity. Br. J. Haematol. 125, 243–252 (2004).

    CAS  PubMed  Google Scholar 

  15. Khajuria, R. K. et al. Ribosome levels selectively regulate translation and lineage commitment in human hematopoiesis. Cell 173, 90–103 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Flygare, J. et al. Human RPS19, the gene mutated in Diamond-Blackfan anemia, encodes a ribosomal protein required for the maturation of 40S ribosomal subunits. Blood 109, 980–986 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Choesmel, V. et al. Impaired ribosome biogenesis in Diamond-Blackfan anemia. Blood 109, 1275–1283 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ebert, B. L. et al. Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 451, 335–339 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Boocock, G. R. et al. Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat. Genet. 33, 97–101 (2003).

    CAS  PubMed  Google Scholar 

  20. Warren, A. J. Molecular basis of the human ribosomopathy Shwachman-Diamond syndrome. Adv. Biol. Regul. 67, 109–127 (2018).

    CAS  PubMed  Google Scholar 

  21. Stepensky, P. et al. Mutations in EFL1, an SBDS partner, are associated with infantile pancytopenia, exocrine pancreatic insufficiency and skeletal anomalies in a Shwachman-Diamond like syndrome. J. Med. Genet. 54, 558–566 (2017).

    CAS  PubMed  Google Scholar 

  22. Dhanraj, S. et al. Biallelic mutations in DNAJC21 cause Shwachman-Diamond syndrome. Blood 129, 1557–1562 (2017).

    CAS  PubMed  Google Scholar 

  23. Savage, S. A. et al. in GeneReviews® (eds Adam, M. P., Ardinger, H. H. & Pagon, R. A.) (University of Washington, Seattle, 2009).

  24. Heiss, N. S. et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat. Genet. 19, 32–38 (1998).

    CAS  PubMed  Google Scholar 

  25. Ge, J. et al. Dyskerin ablation in mouse liver inhibits rRNA processing and cell division. Mol. Cell Biol. 30, 413–422 (2010).

    CAS  PubMed  Google Scholar 

  26. Yoon, A. et al. Impaired control of IRES-mediated translation in X-linked dyskeratosis congenita. Science 312, 902–906 (2006).

    CAS  PubMed  Google Scholar 

  27. Bertuch, A. A. The molecular genetics of the telomere biology disorders. RNA Biol. 13, 696–706 (2016).

    PubMed  Google Scholar 

  28. Thumati, N. R. et al. Severity of X-linked dyskeratosis congenita (DKCX) cellular defects is not directly related to dyskerin (DKC1) activity in ribosomal RNA biogenesis or mRNA translation. Hum. Mutat. 34, 1698–1707 (2013).

    CAS  PubMed  Google Scholar 

  29. Thiel, C. T. & Rauch, A. The molecular basis of the cartilage-hair hypoplasia-anauxetic dysplasia spectrum. Best Pract. Res. Clin. Endocrinol. Metab. 25, 131–142 (2011).

    CAS  PubMed  Google Scholar 

  30. Ridanpaa, M. et al. Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia. Cell 104, 195–203 (2001).

    CAS  PubMed  Google Scholar 

  31. Goldfarb, K. C. & Cech, T. R. Targeted CRISPR disruption reveals a role for RNase MRP RNA in human preribosomal RNA processing. Genes Dev. 31, 59–71 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gill, T. et al. RNase MRP cleaves the CLB2 mRNA to promote cell cycle progression: novel method of mRNA degradation. Mol. Cell Biol. 24, 945–953 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Topper, J. N., Bennett, J. L. & Clayton, D. A. A role for RNAase MRP in mitochondrial RNA processing. Cell 70, 16–20 (1992).

    CAS  PubMed  Google Scholar 

  34. Thiel, C. T. et al. Type and level of RMRP functional impairment predicts phenotype in the cartilage hair hypoplasia-anauxetic dysplasia spectrum. Am. J. Hum. Genet. 81, 519–529 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pestov, D. G., Strezoska, Z. & Lau, L. F. Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G(1)/S transition. Mol. Cell Biol. 21, 4246–4255 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Danilova, N., Sakamoto, K. M. & Lin, S. Ribosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family. Blood 112, 5228–5237 (2008).

    CAS  PubMed  Google Scholar 

  37. Jaako, P. et al. Disruption of the 5S RNP-Mdm2 interaction significantly improves the erythroid defect in a mouse model for Diamond-Blackfan anemia. Leukemia 29, 2221–2229 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Dutt, S. et al. Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood 117, 2567–2576 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. McGowan, K. A. et al. Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nat. Genet. 40, 963–970 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Marechal, V. et al. The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. Mol. Cell Biol. 14, 7414–7420 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lohrum, M. A. et al. Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 3, 577–587 (2003).

    CAS  PubMed  Google Scholar 

  42. Dai, M. S. & Lu, H. Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J. Biol. Chem. 279, 44475–44482 (2004).

    CAS  PubMed  Google Scholar 

  43. Zhang, Y. et al. Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol. Cell Biol. 23, 8902–8912 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu, X., Xiong, X. & Sun, Y. The role of ribosomal proteins in the regulation of cell proliferation, tumorigenesis, and genomic integrity. Sci. China Life Sci. 59, 656–672 (2016).

    CAS  PubMed  Google Scholar 

  45. Donati, G. et al. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint. Cell Rep. 4, 87–98 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sloan, K. E., Bohnsack, M. T. & Watkins, N. J. The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress. Cell Rep. 5, 237–247 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Pelava, A., Schneider, C. & Watkins, N. J. The importance of ribosome production, and the 5S RNP-MDM2 pathway, in health and disease. Biochem. Soc. Trans. 44, 1086–1090 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nicolas, E. et al. Involvement of human ribosomal proteins in nucleolar structure and p53-dependent nucleolar stress. Nat. Commun. 7, 11390 (2016).

    PubMed  PubMed Central  Google Scholar 

  49. Fumagalli, S. et al. Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction. Nat. Cell Biol. 11, 501–508 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gazda, H. T. et al. Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients. Am. J. Hum. Genet. 83, 769–780 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Teng, T. et al. Loss of tumor suppressor RPL5/RPL11 does not induce cell cycle arrest but impedes proliferation due to reduced ribosome content and translation capacity. Mol. Cell Biol. 33, 4660–4671 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mills, E. W. & Green, R. Ribosomopathies: there’s strength in numbers. Science 358, eaan2755 (2017).

    PubMed  Google Scholar 

  53. Ludwig, L. S. et al. Altered translation of GATA1 in Diamond-Blackfan anemia. Nat. Med. 20, 748–753 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Gastou, M. et al. The severe phenotype of Diamond-Blackfan anemia is modulated by heat shock protein 70. Blood Adv. 1, 1959–1976 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Horos, R. et al. Ribosomal deficiencies in Diamond-Blackfan anemia impair translation of transcripts essential for differentiation of murine and human erythroblasts. Blood 119, 262–272 (2012).

    CAS  PubMed  Google Scholar 

  56. Yang, Z. et al. Delayed globin synthesis leads to excess heme and the macrocytic anemia of Diamond Blackfan anemia and del(5q) myelodysplastic syndrome. Sci. Transl Med. 8, 338ra67 (2016).

    PubMed  PubMed Central  Google Scholar 

  57. Jack, K. et al. rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells. Mol. Cell 44, 660–666 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Bellodi, C., Kopmar, N. & Ruggero, D. Deregulation of oncogene-induced senescence and p53 translational control in X-linked dyskeratosis congenita. EMBO J. 29, 1865–1876 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Vlachos, A. et al. Incidence of neoplasia in Diamond Blackfan anemia: a report from the Diamond Blackfan Anemia Registry. Blood 119, 3815–3819 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Alter, B. P. et al. Cancer in the National Cancer Institute inherited bone marrow failure syndrome cohort after fifteen years of follow-up. Haematologica 103, 30–39 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Donadieu, J. et al. Analysis of risk factors for myelodysplasias, leukemias and death from infection among patients with congenital neutropenia. Experience of the French Severe Chronic Neutropenia Study Group. Haematologica 90, 45–53 (2005).

    PubMed  Google Scholar 

  62. Vlachos, A. et al. Increased risk of colon cancer and osteogenic sarcoma in Diamond Blackfan anemia. Blood 132, 2205–2208 (2018).

    PubMed  Google Scholar 

  63. Vlachos, A. et al. Increased prevalence of congenital heart disease in children with Diamond Blackfan anemia suggests unrecognized Diamond Blackfan anemia as a cause of congenital heart disease in the general population: a report of the Diamond Blackfan Anemia Registry. Circ. Genom. Precis Med. 11, e002044 (2018).

    PubMed  Google Scholar 

  64. Lindsley, R. C. et al. Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation. N. Engl. J. Med. 376, 536–547 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Taskinen, M. et al. Extended follow-up of the Finnish cartilage-hair hypoplasia cohort confirms high incidence of non-Hodgkin lymphoma and basal cell carcinoma. Am. J. Med. Genet. A 146A, 2370–2375 (2008).

    PubMed  Google Scholar 

  66. Fancello, L. et al. The ribosomal protein gene RPL5 is a haploinsufficient tumor suppressor in multiple cancer types. Oncotarget 8, 14462–14478 (2017).

    PubMed  PubMed Central  Google Scholar 

  67. Hofman, I. J. F. et al. RPL5 on 1p22.1 is recurrently deleted in multiple myeloma and its expression is linked to bortezomib response. Leukemia 31, 1706–1714 (2017).

    CAS  PubMed  Google Scholar 

  68. Vlachos, A. Acquired ribosomopathies in leukemia and solid tumors. Hematol. Am. Soc. Hematol. Educ. Program 2017, 716–719 (2017).

    Google Scholar 

  69. Nieminen, T. T. et al. Germline mutation of RPS20, encoding a ribosomal protein, causes predisposition to hereditary nonpolyposis colorectal carcinoma without DNA mismatch repair deficiency. Gastroenterology 147, 595–598 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rao, S. et al. Inactivation of ribosomal protein L22 promotes transformation by induction of the stemness factor, Lin28B. Blood 120, 3764–3773 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kondrashov, N. et al. Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterning. Cell 145, 383–397 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, Y. et al. Ribosomal proteins Rpl22 and Rpl22l1 control morphogenesis by regulating pre-mRNA splicing. Cell Rep. 18, 545–556 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Elghetany, M. T. & Alter, B. P. p53 protein overexpression in bone marrow biopsies of patients with Shwachman-Diamond syndrome has a prevalence similar to that of patients with refractory anemia. Arch. Pathol. Lab Med. 126, 452–455 (2002).

    PubMed  Google Scholar 

  74. Jones, N. C. et al. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function. Nat. Med. 14, 125–133 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Fok, W. C. et al. p53 mediates failure of human definitive hematopoiesis in dyskeratosis congenita. Stem Cell Rep. 9, 409–418 (2017).

    CAS  Google Scholar 

  76. Marcel, V., Nguyen Van Long, F. & Diaz, J. J. 40 Years of research put p53 in translation. Cancers (Basel) 10, E152 (2018).

    Google Scholar 

  77. Ajore, R. et al. Deletion of ribosomal protein genes is a common vulnerability in human cancer, especially in concert with TP53 mutations. EMBO Mol. Med. 9, 498–507 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Xia, J. et al. Somatic mutations and clonal hematopoiesis in congenital neutropenia. Blood 131, 408–416 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kulasekararaj, A. G. et al. TP53 mutations in myelodysplastic syndrome are strongly correlated with aberrations of chromosome 5, and correlate with adverse prognosis. Br. J. Haematol. 160, 660–672 (2013).

    CAS  PubMed  Google Scholar 

  80. Scharenberg, C. et al. Progression in patients with low- and intermediate-1-risk del(5q) myelodysplastic syndromes is predicted by a limited subset of mutations. Haematologica 102, 498–508 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ruggero, D. & Pandolfi, P. P. Does the ribosome translate cancer? Nat. Rev. Cancer 3, 179–192 (2003).

    CAS  PubMed  Google Scholar 

  82. Lodish, H. F. Model for the regulation of mRNA translation applied to haemoglobin synthesis. Nature 251, 385–388 (1974).

    CAS  PubMed  Google Scholar 

  83. Sulima, S. O. & De Keersmaecker, K. Ribosomal proteins: a novel class of oncogenic drivers. Oncotarget 8, 89427–89428 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. Sulima, S. O. et al. Bypass of the pre-60S ribosomal quality control as a pathway to oncogenesis. Proc. Natl Acad. Sci. USA 111, 5640–5645 (2014).

    CAS  PubMed  Google Scholar 

  85. Weis, F. et al. Mechanism of eIF6 release from the nascent 60S ribosomal subunit. Nat. Struct. Mol. Biol. 22, 914–919 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Dameshek, W. Riddle: what do aplastic anemia, paroxysmal nocturnal hemoglobinuria (PNH) and “hypoplastic” leukemia have in common? Blood 30, 251–254 (1967).

    CAS  PubMed  Google Scholar 

  87. De Keersmaecker, K., Sulima, S. O. & Dinman, J. D. Ribosomopathies and the paradox of cellular hypo- to hyperproliferation. Blood 125, 1377–1382 (2015).

    PubMed  PubMed Central  Google Scholar 

  88. Orgel, L. E. The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc. Natl Acad. Sci. USA 49, 517–521 (1963).

    CAS  PubMed  Google Scholar 

  89. Bursac, S. et al. Mutual protection of ribosomal proteins L5 and L11 from degradation is essential for p53 activation upon ribosomal biogenesis stress. Proc. Natl Acad. Sci. USA 109, 20467–20472 (2012).

    CAS  PubMed  Google Scholar 

  90. Turi, Z. et al. Perturbation of RNA Polymerase I transcription machinery by ablation of HEATR1 triggers the RPL5/RPL11-MDM2-p53 ribosome biogenesis stress checkpoint pathway in human cells. Cell Cycle 17, 92–101 (2018).

    CAS  PubMed  Google Scholar 

  91. Grummt, I. Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus. Genes Dev. 17, 1691–1702 (2003).

    CAS  PubMed  Google Scholar 

  92. Albert, B. et al. A molecular titration system coordinates ribosomal protein gene transcription with ribosomal RNA synthesis. Mol. Cell 64, 720–733 (2016).

    CAS  PubMed  Google Scholar 

  93. Sakai, D. & Trainor, P. A. Face off against ROS: Tcof1/Treacle safeguards neuroepithelial cells and progenitor neural crest cells from oxidative stress during craniofacial development. Dev. Growth Differ. 58, 577–585 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Juli, G. et al. Depletion of ribosomal protein S19 causes a reduction of rRNA synthesis. Sci. Rep. 6, 35026 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Doulatov, S. et al. Drug discovery for Diamond-Blackfan anemia using reprogrammed hematopoietic progenitors. Sci. Transl Med. 9, eaah5645 (2017).

    PubMed  PubMed Central  Google Scholar 

  96. Schaechter, M., Maaloe, O. & Kjeldgaard, N. O. Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J. Gen. Microbiol. 19, 592–606 (1958).

    CAS  PubMed  Google Scholar 

  97. Polymenis, M. & Schmidt, E. V. Coordination of cell growth with cell division. Curr. Opin. Genet. Dev. 9, 76–80 (1999).

    CAS  PubMed  Google Scholar 

  98. Schmidt, E. V. The role of c-myc in cellular growth control. Oncogene 18, 2988–2996 (1999).

    CAS  PubMed  Google Scholar 

  99. Chan, J. C. et al. AKT promotes rRNA synthesis and cooperates with c-MYC to stimulate ribosome biogenesis in cancer. Sci. Signal. 4, ra56 (2011).

    PubMed  Google Scholar 

  100. Woods, S. J. et al. The nucleolus as a fundamental regulator of the p53 response and a new target for cancer therapy. Biochim. Biophys. Acta 1849, 821–829 (2015).

    CAS  PubMed  Google Scholar 

  101. Sulima, S. O. et al. How ribosomes translate cancer. Cancer Discov. 7, 1069–1087 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02719977 (2018).

  103. Lee, H. C. et al. RNA polymerase I inhibition with CX-5461 as a novel therapeutic strategy to target MYC in multiple myeloma. Br. J. Haematol. 177, 80–94 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Lawrence, M. G. et al. Patient-derived models of abiraterone- and enzalutamide-resistant prostate cancer reveal sensitivity to ribosome-directed therapy. Eur. Urol. 74, 562–572 (2018).

    CAS  PubMed  Google Scholar 

  105. Hein, N. et al. Inhibition of Pol I transcription treats murine and human AML by targeting the leukemia-initiating cell population. Blood 129, 2882–2895 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Vincent, M. et al. Treacher Collins syndrome: a clinical and molecular study based on a large series of patients. Genet. Med. 18, 49–56 (2016).

    PubMed  Google Scholar 

  107. Wise, C. A. et al. TCOF1 gene encodes a putative nucleolar phosphoprotein that exhibits mutations in Treacher Collins syndrome throughout its coding region. Proc. Natl Acad. Sci. USA 94, 3110–3115 (1997).

    CAS  PubMed  Google Scholar 

  108. Dauwerse, J. G. et al. Mutations in genes encoding subunits of RNA polymerases I and III cause Treacher Collins syndrome. Nat. Genet. 43, 20–22 (2011).

    CAS  PubMed  Google Scholar 

  109. Lipton, J. M. & Ellis, S. R. Diamond-Blackfan anemia: diagnosis, treatment, and molecular pathogenesis. Hematol. Oncol. Clin. North Am. 23, 261–282 (2009).

    PubMed  PubMed Central  Google Scholar 

  110. Gripp, K. W. et al. Diamond-Blackfan anemia with mandibulofacial dystostosis is heterogeneous, including the novel DBA genes TSR2 and RPS28. Am. J. Med. Genet. A 164A, 2240–2249 (2014).

    PubMed  Google Scholar 

  111. Montellese, C. et al. Poly(A)-specific ribonuclease is a nuclear ribosome biogenesis factor involved in human 18S rRNA maturation. Nucleic Acids Res. 45, 6822–6836 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Nousbeck, J. et al. Alopecia, neurological defects, and endocrinopathy syndrome caused by decreased expression of RBM28, a nucleolar protein associated with ribosome biogenesis. Am. J. Hum. Genet. 82, 1114–1121 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Marneros, A. G. BMS1 is mutated in aplasia cutis congenita. PLOS Genet. 9, e1003573 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Meyer, B. et al. The Bowen-Conradi syndrome protein Nep1 (Emg1) has a dual role in eukaryotic ribosome biogenesis, as an essential assembly factor and in the methylation of Psi1191 in yeast 18S rRNA. Nucleic Acids Res. 39, 1526–1537 (2011).

    CAS  PubMed  Google Scholar 

  115. Bolze, A. et al. Ribosomal protein SA haploinsufficiency in humans with isolated congenital asplenia. Science 340, 976–978 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Jenkinson, E. M. et al. Mutations in SNORD118 cause the cerebral microangiopathy leukoencephalopathy with calcifications and cysts. Nat. Genet. 48, 1185–1192 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Paolini, N. A. et al. A ribosomopathy reveals decoding defective ribosomes driving human dysmorphism. Am. J. Hum. Genet. 100, 506–522 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Reviewer information

Nature Reviews Cancer thanks D. Lafontaine, L. Montanaro and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to this work.

Corresponding author

Correspondence to Steven R. Ellis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

2'-O-methylation

The addition, mostly found in pre-rRNA, of a methyl group at the 2' position of the ribose by ribonucleoprotein complexes containing C/D box family small nucleolar RNA.

Pseudouridylation

The isomerization of uridine due to a 180° rotation for which the uracil is attached to the ribose via a carbon–carbon instead of a nitrogen–carbon glycosidic bond.

Myelodysplastic syndrome

A heterogeneous group of clonal disorders characterized by ineffective haematopoiesis and cytopenias that may evolve into acute myeloid leukaemia.

Metaphyseal chondrodysplasia

A defective bone development causing short stature.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aspesi, A., Ellis, S.R. Rare ribosomopathies: insights into mechanisms of cancer. Nat Rev Cancer 19, 228–238 (2019). https://doi.org/10.1038/s41568-019-0105-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-019-0105-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer