Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modelling cancer in microfluidic human organs-on-chips

Abstract

One of the problems that has slowed the development and approval of new anticancer therapies is the lack of preclinical models that can be used to identify key molecular, cellular and biophysical features of human cancer progression. This is because most in vitro cancer models fail to faithfully recapitulate the local tissue and organ microenvironment in which tumours form, which substantially contributes to the complex pathophysiology of the disease. More complex in vitro cancer models have been developed, including transwell cell cultures, spheroids and organoids grown within flexible extracellular matrix gels, which better mimic normal and cancerous tissue development than cells maintained on conventional 2D substrates. But these models still lack the tissue–tissue interfaces, organ-level structures, fluid flows and mechanical cues that cells experience within living organs, and furthermore, it is difficult to collect samples from the different tissue microcompartments. In this Review, we outline how recent developments in microfluidic cell culture technology have led to the generation of human organs-on-chips (also known as organ chips) that are now being used to model cancer cell behaviour within human-relevant tissue and organ microenvironments in vitro. Organ chips enable experimentalists to vary local cellular, molecular, chemical and biophysical parameters in a controlled manner, both individually and in precise combinations, while analysing how they contribute to human cancer formation and progression and responses to therapy. We also discuss the challenges that must be overcome to ensure that organ chip models meet the needs of cancer researchers, drug developers and clinicians interested in personalized medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A timeline showing the development of different cancer organs-on-chips.
Fig. 2: Orthotopic breast cancer in situ chip.
Fig. 3: Neovascularization chips.
Fig. 4: Orthotopic invasive versus dormant lung cancer organs-on-chips.
Fig. 5: Metastatic cancer cell dissemination models.
Fig. 6: Modelling systemic metastasis in a body-on-chip.

Similar content being viewed by others

References

  1. Day, C. P., Merlino, G. & Van Dyke, T. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell 163, 39–53 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gould, S. E., Junttila, M. R. & de Sauvage, F. J. Translational value of mouse models in oncology drug development. Nat. Med. 21, 431–439 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Killion, J. J., Radinsky, R. & Fidler, I. J. Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Rev. 17, 279–284 (1999).

    Article  CAS  Google Scholar 

  4. Justus, C. R., Leffler, N., Ruiz-Echevarria, M. & Yang, L. V. In vitro cell migration and invasion assays. J. Vis. Exp. 88, 51046 (2014).

    Google Scholar 

  5. Mehta, G., Hsiao, A. Y., Ingram, M., Luker, G. D. & Takayama, S. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J. Control. Release 164, 192–204 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Edmondson, R., Broglie, J. J., Adcock, A. F. & Yang, L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev. Technol. 12, 207–218 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hirschhaeuser, F. et al. Multicellular tumor spheroids: an underestimated tool is catching up again. J. Biotechnol. 148, 3–15 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Guan, P.-P. et al. By activating matrix metalloproteinase-7, shear stress promotes chondrosarcoma cell motility, invasion and lung colonization. Oncotarget 6, 9140–9159 (2015).

    PubMed  PubMed Central  Google Scholar 

  9. Heldin, C.-H., Rubin, K., Pietras, K. & Ostman, A. High interstitial fluid pressure — an obstacle in cancer therapy. Nat. Rev. Cancer 4, 806–813 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Polacheck, W. J., Charest, J. L. & Kamm, R. D. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc. Natl Acad. Sci. USA 108, 11115–11120 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ghosh, S. P. et al. Amelioration of radiation-induced hematopoietic and gastrointestinal damage by Ex-RAD(R) in mice. J. Radiat. Res. 53, 526–536 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chaudhuri, P. K., Low, B. C. & Lim, C. T. Mechanobiology of tumor growth. Chem. Rev. 118, 6499–6515 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Drost, J. & Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 18, 407–418 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Bhadriraju, K. & Chen, C. S. Engineering cellular microenvironments to improve cell-based drug testing. Drug Discov. Today 7, 612–620 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Novak, R. et al. Scalable fabrication of stretchable, dual channel, microfluidic organ chips. J. Vis. Exp. 140, e58151 (2018).

    Google Scholar 

  17. Jain, A. et al. Primary human lung alveolus-on-a-chip model of intravascular thrombosis for assessment of therapeutics. Clin. Pharmacol. Ther. 103, 332–340 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Barrile, R. et al. Organ-on-chip recapitulates thrombosis induced by an anti-CD154 monoclonal antibody: translational potential of advanced microengineered systems. Clin. Pharmacol. Ther. 104, 1240–1248 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Hassell, B. A. et al. Human organ chip models recapitulate orthotopic lung cancer growth, therapeutic responses, and tumor dormancy in vitro. Cell Rep. 21, 508–516 (2017). This study describes the development of a human lung cancer chip that recapitulates tumour growth, invasion patterns and responses to therapy observed in patients.

    Article  CAS  PubMed  Google Scholar 

  20. Choi, Y. et al. A microengineered pathophysiological model of early-stage breast cancer. Lab Chip 15, 3350–3357 (2015). This study describes the generation of an early-stage breast cancer chip model that can be used to evaluate the efficacy and toxicity of an anticancer drug.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Musah, S. et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat. Biomed. Eng. 1, 0069 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huh, D. et al. A human disease model of drug toxicity — induced pulmonary edema in a lung-on-a-chip microdevice. Sci. Transl Med. 4, 159ra147 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Stucki, A. O. et al. A lung-on-a-chip array with an integrated bio-inspired respiration mechanism. Lab Chip 15, 1302–1310 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Benam, K. H. et al. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat. Methods 13, 151–157 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Benam, K. H. et al. Matched-comparative modeling of normal and diseased human airway responses using a microengineered breathing lung chip. Cell Syst. 3, 456–466 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Sellgren, K. L., Butala, E. J., Gilmour, B. P., Randell, S. H. & Grego, S. A biomimetic multicellular model of the airways using primary human cells. Lab Chip 14, 3349–3358 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Jang, K.-J. et al. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr. Biol. 5, 1119–1129 (2013).

    Article  CAS  Google Scholar 

  29. Maschmeyer, I. et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip 15, 2688–2699 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Musah, S., Dimitrakakis, N., Camacho, D. M., Church, G. M. & Ingber, D. E. Directed differentiation of human induced pluripotent stem cells into mature kidney podocytes and establishment of a glomerulus chip. Nat. Protoc. 13, 1662–1685 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim, H. J. & Ingber, D. E. Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol. 5, 1130–1140 (2013).

    Article  CAS  Google Scholar 

  32. Kasendra, M. et al. Development of a primary human small intestine-on-a-chip using biopsy-derived organoids. Sci. Rep. 8, 2871 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Esch, M. B., Mahler, G. J., Stokol, T. & Shuler, M. L. Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury. Lab Chip 14, 3081–3092 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, C. Y. et al. Micropatterned cell–cell interactions enable functional encapsulation of primary hepatocytes in hydrogel microtissues. Tissue Eng. Part A 20, 2200–2212 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Beckwitt, C. H. et al. Liver ‘organ on a chip’. Exp. Cell Res. 363, 15–25 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Sieber, S. et al. Bone marrow-on-a-chip: long-term culture of human haematopoietic stem cells in a three-dimensional microfluidic environment. J. Tissue Eng. Regen. Med. 12, 479–489 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Herland, A. et al. Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood-brain barrier on a chip. PLOS ONE 11, 1–21 (2016).

    Article  CAS  Google Scholar 

  38. Adriani, G., Ma, D., Pavesi, A., Kamm, R. D. & Goh, E. L. K. A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood-brain barrier. Lab Chip 17, 448–459 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, Y. I., Abaci, H. E. & Shuler, M. L. Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol. Bioeng. 114, 184–194 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Kim, H. J., Li, H., Collins, J. J. & Ingber, D. E. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl Acad. Sci. USA 113, E7–E15 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Jalili-Firoozinezhad, S. et al. Modeling radiation injury-induced cell death and countermeasure drug responses in a human gut-on-a-chip. Cell Death Dis. 9, 223 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wang, G. et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat. Med. 20, 616–623 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Montanez-Sauri, S. I., Sung, K. E., Berthier, E. & Beebe, D. J. Enabling screening in 3D microenvironments: probing matrix and stromal effects on the morphology and proliferation of T47D breast carcinoma cells. Integr. Biol. 5, 631–640 (2013).

    Article  CAS  Google Scholar 

  44. Lang, J. D., Berry, S. M., Powers, G. L., Beebe, D. J. & Alarid, E. T. Hormonally responsive breast cancer cells in a microfluidic co-culture model as a sensor of microenvironmental activity. Integr. Biol. 5, 807–816 (2013).

    Article  CAS  Google Scholar 

  45. Regier, M. C. et al. Transitions from mono- to co- to tri-culture uniquely affect gene expression in breast cancer, stromal, and immune compartments. Biomed. Microdevices 18, 70 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Folkman, J., Watson, K., Ingber, D. & Hanahan, D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339, 58–61 (1989).

    Article  CAS  PubMed  Google Scholar 

  47. Nguyen, D.-H. T. et al. Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc. Natl Acad. Sci. USA 110, 6712–6717 (2013). This paper describes how angiogenic sprouting can be replicated in a microfluidic device and how this model enables the investigation of the effects of angiogenic inhibitors on sprouting morphogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, M. B., Whisler, J. A., Jeon, J. S. & Kamm, R. D. Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Integr. Biol. 5, 1262–1271 (2013).

    Article  CAS  Google Scholar 

  49. Moya, M. L., Hsu, Y.-H., Lee, A. P., Hughes, C. C. W. & George, S. C. In vitro perfused human capillary networks. Tissue Eng. Part C 19, 730–737 (2013).

    Article  CAS  Google Scholar 

  50. Bischel, L. L., Young, E. W. K., Mader, B. R. & Beebe, D. J. Tubeless microfluidic angiogenesis assay with three-dimensional endothelial-lined microvessels. Biomaterials 34, 1471–1477 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Baker, B. M., Trappmann, B., Stapleton, S. C., Toro, E. & Chen, C. S. Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients. Lab Chip 13, 3246 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, X. et al. Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels. Lab Chip 16, 282–290 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Kim, S., Lee, H., Chung, M. & Jeon, N. L. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13, 1489–1500 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Miller, C. P., Tsuchida, C., Zheng, Y., Himmelfarb, J. & Akilesh, S. A. 3D human renal cell carcinoma-on-a-chip for the study of tumor angiogenesis. Neoplasia 20, 610–620 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu, X., Newbold, M. A. & Haynes, C. L. Recapitulation of in vivo-like neutrophil transendothelial migration using a microfluidic platform. Analyst 140, 5055–5064 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Wu, X., Newbold, M. A., Gao, Z. & Haynes, C. L. A versatile microfluidic platform for the study of cellular interactions between endothelial cells and neutrophils. Biochim. Biophys. Acta Gen. Subj. 1861, 1122–1130 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Hsu, Y.-H., Moya, M. L., Hughes, C. C. W., George, S. C. & Lee, A. P. A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays. Lab Chip 13, 2990–2998 (2013). This study presents a microfluidic model for tissue arrays with interconnected vascular networks.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jeon, J. S., Zervantonakis, I. K., Chung, S., Kamm, R. D. & Charest, J. L. In vitro model of tumor cell extravasation. PLOS ONE 8, e56910 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jeon, J. S. et al. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc. Natl Acad. Sci. USA 112, 214–219 (2015). This study develops a vascularized microfluidic assay to study breast cancer extravasation into different organ microenvironments.

    Article  CAS  PubMed  Google Scholar 

  60. Chen, M. B., Lamar, J. M., Li, R., Hynes, R. O. & Kamm, R. D. Elucidation of the roles of tumor integrin β1 in the extravasation stage of the metastasis cascade. Cancer Res. 76, 2513–2524 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gilardi, M. et al. The key role of talin-1 in cancer cell extravasation dissected through human vascularized 3D microfluidic model [PO-12]. Thromb. Res. 140 (Suppl), S180–S181 (2016).

    Article  PubMed  Google Scholar 

  62. Chen, M. B. et al. On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics. Nat. Protoc. 12, 865–880 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee, J.-H. et al. Microfluidic co-culture of pancreatic tumor spheroids with stellate cells as a novel 3D model for investigation of stroma-mediated cell motility and drug resistance. J. Exp. Clin. Cancer Res. 37, 4 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Jeong, S.-Y., Lee, J.-H., Shin, Y., Chung, S. & Kuh, H.-J. Co-culture of tumor spheroids and fibroblasts in a collagen matrix-incorporated microfluidic chip mimics reciprocal activation in solid tumor microenvironment. PLOS ONE 11, e0159013 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Rizvi, I. et al. Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proc. Natl Acad. Sci. USA 110, E1974–E1983 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sung, K. E. et al. Transition to invasion in breast cancer: a microfluidic in vitro model enables examination of spatial and temporal effects. Integr. Biol. 3, 439–450 (2011).

    Article  CAS  Google Scholar 

  67. Ramaswamy, S., Ross, K. N., Lander, E. S. & Golub, T. R. A molecular signature of metastasis in primary solid tumors. Nat. Genet. 33, 49–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Hsu, T. H. et al. Analysis of the paracrine loop between cancer cells and fibroblasts using a microfluidic chip. Lab Chip 11, 1808–1814 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Li, R. et al. Macrophage-secreted TNFα and TGFβ1 influence migration speed and persistence of cancer cells in 3D tissue culture via independent pathways. Cancer Res. 77, 279–290 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Erdogan, B. et al. Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin. J. Cell Biol. 216, 3799–3816 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, S. et al. Study on invadopodia formation for lung carcinoma invasion with a microfluidic 3D culture device. PLOS ONE 8, e56448 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Huang, C. P. et al. Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Lab Chip 9, 1740–1748 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bai, J. et al. Contact-dependent carcinoma aggregate dispersion by M2a macrophages via ICAM-1 and β2 integrin interactions. Oncotarget 6, 25295–25307 (2015).

    PubMed  PubMed Central  Google Scholar 

  74. Ao, M. et al. Stretching fibroblasts remodels fibronectin and alters cancer cell migration. Sci. Rep. 5, 8334 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zervantonakis, I. K. et al. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc. Natl Acad. Sci. USA 109, 13515–13520 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Reymond, N., D’Água, B. B. & Ridley, A. J. Crossing the endothelial barrier during metastasis. Nat. Rev. Cancer 13, 858–870 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Tang, Y. et al. A biomimetic microfluidic tumor microenvironment platform mimicking the EPR effect for rapid screening of drug delivery systems. Sci. Rep. 7, 9359 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Sun, Y. et al. CXCL12-CXCR4 axis promotes the natural selection of breast cancer cell metastasis. Tumour Biol. 35, 7765–7773 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Song, J. W. et al. Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells. PLOS ONE 4, e5756 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Regmi, S., Fu, A. & Luo, K. Q. High shear stresses under exercise condition destroy circulating tumor cells in a microfluidic system. Sci. Rep. 7, 39975 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Boussommier-Calleja, A. et al. The effects of monocytes on tumor cell extravasation in a 3D vascularized microfluidic model. Biomaterials https://doi.org/10.1016/j.biomaterials.2018.03.005 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yousem, S. A & Beasley, M. B. Bronchioloalveolar carcinoma: a review of current concepts and evolving issues. Arch. Pathol. Lab. Med. 131, 1027–1032 (2007).

    PubMed  Google Scholar 

  83. Abe, M. Targeting the interplay between myeloma cells and the bone marrow microenvironment in myeloma. Int. J. Hematol. 94, 334–343 (2011).

    Article  PubMed  Google Scholar 

  84. Zhang, W., Lee, W. Y., Siegel, D. S., Tolias, P. & Zilberberg, J. Patient-specific 3D microfluidic tissue model for multiple myeloma. Tissue Eng. Part C 20, 663–670 (2014).

    Article  CAS  Google Scholar 

  85. Pak, C. et al. MicroC(3): an ex vivo microfluidic cis-coculture assay to test chemosensitivity and resistance of patient multiple myeloma cells. Integr. Biol. 7, 643–654 (2015).

    Article  CAS  Google Scholar 

  86. Macedo, F. et al. Bone metastases: an overview. Oncol. Rev. 11, 321 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Bersini, S. et al. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 35, 2454–2461 (2014). This study uses a microfluidic plattform to investigate the specificity of human breast cancer metastasis to the bone revealing the involvement of breast cancer cell receptor CXCR2 and the bone-secreted chemokine CXCL5 in cancer cell extravasation.

    Article  CAS  PubMed  Google Scholar 

  88. Mastro, A. M. & Vogler, E. A. A three-dimensional osteogenic tissue model for the study of metastatic tumor cell interactions with bone. Cancer Res. 69, 4097–4100 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Krishnan, V., Vogler, E. A., Sosnoski, D. M. & Mastro, A. M. In vitro mimics of bone remodeling and the vicious cycle of cancer in bone. J. Cell. Physiol. 229, 453–462 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Talukdar, S. & Kundu, S. C. Engineered 3D silk-based metastasis models: Interactions between human breast adenocarcinoma, mesenchymal stem cells and osteoblast-like cells. Adv. Funct. Mater. 23, 5249–5260 (2013).

    Article  CAS  Google Scholar 

  91. Xu, H. et al. A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors. Sci. Rep. 6, 36670 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen, Y. A. et al. Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions. Lab Chip 11, 3626–3633 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Ying, L. et al. Cancer associated fibroblast-derived hepatocyte growth factor inhibits the paclitaxel-induced apoptosis of lung cancer A549 cells by up-regulating the PI3K/Akt and GRP78 signaling on a microfluidic platform. PLOS ONE 10, 1–15 (2015).

    Google Scholar 

  94. Faley, S. L. et al. Microfluidic single cell arrays to interrogate signalling dynamics of individual, patient-derived hematopoietic stem cells. Lab Chip 9, 2659–2664 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Xu, Z. et al. Application of a microfluidic chip-based 3D co-culture to test drug sensitivity for individualized treatment of lung cancer. Biomaterials 34, 4109–4117 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Bai, J., Tu, T.-Y., Kim, C., Thiery, J. P. & Kamm, R. D. Identification of drugs as single agents or in combination to prevent carcinoma dissemination in a microfluidic 3D environment. Oncotarget 6, 36603–36614 (2015).

    PubMed  PubMed Central  Google Scholar 

  97. Sobrino, A. et al. 3D microtumors in vitro supported by perfused vascular networks. Sci. Rep. 6, 31589 (2016). This study uses a microfluidic platform with vascularized microtumours to reveal that dual target angiogenesis inhibitors are more effective to regress the vasculature than single target inhibitors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Walsh, C. L. et al. A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics. Lab Chip 9, 545–554 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Pavesi, A. et al. Engineering a 3D microfluidic culture platform for tumor-treating field application. Sci. Rep. 6, 26584 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jarvis, M. et al. Microfluidic co-culture devices to assess penetration of nanoparticles into cancer cell mass. Bioeng. Transl Med. 2, 268–277 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Terrell-Hall, T. B., Nounou, M. I., El-Amrawy, F., Griffith, J. I. G. & Lockman, P. R. Trastuzumab distribution in an in-vivo and in-vitro model of brain metastases of breast cancer. Oncotarget 8, 83734–83744 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Pavesi, A. et al. A 3D microfluidic model for preclinical evaluation of TCR-engineered T cells against solid tumors. JCI Insight 2, 89762 (2017). This study describes the development of a microdevice platform that enables the investigation of factors that can alter antitumour efficacy of adoptive T cell function in 3D.

    Article  PubMed  Google Scholar 

  103. Lee, S. W. L. et al. Characterizing the role of monocytes in T cell cancer immunotherapy using a 3D microfluidic model. Front. Immunol. 9, 416 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Joyce, J. A. & Fearon, D. T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74–80 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Prantil-Baun, R. et al. Physiologically based pharmacokinetic and pharmacodynamic analysis enabled by microfluidically linked organs-on-chips. Annu. Rev. Pharmacol. Toxicol. 58, 37–64 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Zhang, B. & Radisic, M. Organ-on-a-chip devices advance to market. Lab Chip 17, 2395–2420 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Lanz, H. L. et al. Therapy response testing of breast cancer in a 3D high-throughput perfused microfluidic platform. BMC Cancer 17, 709 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Holton, A. B. et al. Microfluidic biopsy trapping device for the real-time monitoring of tumor microenvironment. PLOS ONE 12, e0169797 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Domansky, K. et al. Clear castable polyurethane elastomer for fabrication of microfluidic devices. Lab Chip 13, 3956–3964 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Domansky, K. et al. SEBS elastomers for fabrication of microfluidic devices with reduced drug absorption by injection molding and extrusion. Microfluid. Nanofluid. 21, 107 (2017).

    Article  CAS  Google Scholar 

  111. van Midwoud, P. M., Janse, A., Merema, M. T., Groothuis, G. M. M. & Verpoorte, E. Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models. Anal. Chem. 84, 3938–3944 (2012).

    Article  PubMed  CAS  Google Scholar 

  112. Homan, K. A. et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci. Rep. 6, 34845 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Marx, U. et al. Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX 33, 272–321 (2016).

    PubMed  PubMed Central  Google Scholar 

  114. Skardal, A., Shupe, T. & Atala, A. Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. Drug Discov. Today 21, 1399–1411 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Edington, C. D. et al. Interconnected microphysiological systems for quantitative biology and pharmacology studies. Sci. Rep. 8, 4530 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Oleaga, C. et al. Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci. Rep. 6, 20030 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Vernetti, L. et al. Functional coupling of human microphysiology systems: intestine, liver, kidney proximal tubule, blood-brain barrier and skeletal muscle. Sci. Rep. 7, 42296 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lee, H. et al. A pumpless multi-organ-on-a-chip (MOC) combined with a pharmacokinetic-pharmacodynamic (PK-PD) model. Biotechnol. Bioeng. 114, 432–443 (2016).

    Article  PubMed  CAS  Google Scholar 

  119. Sung, J. H., Kam, C. & Shuler, M. L. A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab Chip 10, 446–455 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Eduati, F. et al. A microfluidics platform for combinatorial drug screening on cancer biopsies. Nat. Commun. 9, 2434 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Wyss Institute for Biologically Inspired Engineering at Harvard University and Defense Advanced Research Projects Agency (DARPA) under Cooperative Agreement Number W911NF-12-2-0036. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of DARPA or the US Government.

Author information

Authors and Affiliations

Authors

Contributions

Both A.S.-P. and B.A.H. researched and compiled the data from the literature and drafted a first draft of the manuscript. D.E.I. edited and revised the manuscript, working with the other authors.

Corresponding author

Correspondence to Donald E. Ingber.

Ethics declarations

Competing interests

D.E.I. is a founder of, holds equity in and chairs the scientific advisory board of Emulate Inc. A.S.-P. and B.A.H. declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Matrigel

A commercial product containing an extracellular matrix hydrogel composed of tumour-derived basement membrane proteins used for cell culture.

Fluid shear stress

Physical drag forces created by fluid flow parallel to the surface of a material, such as the apical membrane of the endothelium in a blood vessel.

Hydrostatic pressure

Pressure exerted by a fluid owing to gravity, a pressurized reservoir, pump or centrifugal force.

Peristaltic deformations

Cyclic muscular contractions and relaxations within the wall of an organ, such as the intestine.

Barth syndrome

A rare genetic disorder characterized by weakened heart and muscles, low white blood cell count and short statue.

Chronic obstructive pulmonary disease

A chronic inflammatory lung disease involving chronic bronchitis and/or emphysema that causes obstructed airflow in the lungs, resulting in difficulties in breathing.

Epithelial–mesenchymal transition

(EMT). A process in which epithelial cells take on a mesenchymal phenotype and lose their polarity and cell–cell contacts, which is associated with increased migratory and invasive capacity.

Matrix metalloproteinases

Enzymes that degrade extracellular matrix.

Minimal residual disease

The few surviving tumour cells that remain in tissues after complete remission is achieved through a successful therapeutic intervention; these cells are thought to be responsible for relapse of cancer.

Sacrificial materials

Substances that are deposited within other materials to form a solid gel and can later be solubilized to create hollow compartments, such as microfluidic channels, within a structure.

Arteriovenous malformation

An abnormal connection between blood vessels mainly in the brain or spine disrupting normal blood flow and oxygen circulation.

Laminar flow

A flow regime in which fluid flows in parallel layers with no disruption between the layers and a constant velocity at any point in the fluid.

Pneumatic micro-valves

Air controlled valves at the micrometre scale for the regulation of system pressure, as well as the control of flow rate and direction.

Invadopodia

Dynamic actin-rich cell membrane protrusions that can be associated with cancer cell invasion.

M2A macrophages

A subpopulation of alternatively activated macrophages that are associated with a T helper 2 cell immune response and are induced as a result of stimulation by the cytokines interleukin-4 (IL-4) and IL-13 or during fungal and helminth infections.

Endosteal surface

A layer covering the endosteum, which is a thin membranous tissue containing bone stem cells, blood vessels and connective tissue fibres that coats the inside of long bones and surrounds the bone marrow-filled medullary cavity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sontheimer-Phelps, A., Hassell, B.A. & Ingber, D.E. Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer 19, 65–81 (2019). https://doi.org/10.1038/s41568-018-0104-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-018-0104-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer