Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

OPINION

Genomic evolution of cancer models: perils and opportunities

Abstract

Cancer research relies on model systems, which reflect the biology of actual human tumours to only a certain extent. One important feature of human cancer is its intra-tumour genomic heterogeneity and instability. However, the extent of such genomic instability in cancer models has received limited attention in research. Here, we review the state of knowledge of genomic instability of cancer models and discuss its biological origins and implications for basic research and for cancer precision medicine. We discuss strategies to cope with such genomic evolution and evaluate both the perils and the emerging opportunities associated with it.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The biological origins of cancer model evolution.
Fig. 2: Perils of cancer model evolution.
Fig. 3: New research opportunities presented by cancer model evolution.

References

  1. Greaves, M. Evolutionary determinants of cancer. Cancer Discov. 5, 806–820 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McGranahan, N. & Swanton, C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168, 613–628 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Drost, J. & Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 18, 407–418 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Byrne, A. T. et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat. Rev. Cancer 17, 254–268 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Gillet, J. P., Varma, S. & Gottesman, M. M. The clinical relevance of cancer cell lines. J. Natl Cancer Inst. 105, 452–458 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jeggo, P. A., Pearl, L. H. & Carr, A. M. DNA repair, genome stability and cancer: a historical perspective. Nat. Rev. Cancer 16, 35–42 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Kersten, K., de Visser, K. E., van Miltenburg, M. H. & Jonkers, J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol. Med. 9, 137–153 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Garnett, M. J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–575 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Basu, A. et al. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 154, 1151–1161 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang, W. et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 41, D955–D961 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meyers, R. M. et al. Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells. Nat. Genet. 49, 1779–1784 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Klijn, C. et al. A comprehensive transcriptional portrait of human cancer cell lines. Nat. Biotechnol. 33, 306–312 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Bertotti, A. et al. A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. 1, 508–523 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Laurent, C. et al. Patient-derived xenografts recapitulate molecular features of human uveal melanomas. Mol. Oncol. 7, 625–636 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lin, D. et al. High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 74, 1272–1283 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Townsend, E. C. et al. The public repository of xenografts enables discovery and randomized phase II-like trials in mice. Cancer Cell 29, 574–586 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Garman, B. et al. Genetic and genomic characterization of 462 melanoma patient-derived xenografts, tumor biopsies, and cell lines. Cell Rep. 21, 1936–1952 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Krepler, C. et al. A comprehensive patient-derived xenograft collection representing the heterogeneity of melanoma. Cell Rep. 21, 1953–1967 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pauli, C. et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 7, 462–477 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Stewart, E. et al. Orthotopic patient-derived xenografts of paediatric solid tumours. Nature 549, 96–100 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Beshiri, M. L. et al. A PDX/organoid biobank of advanced prostate cancers captures genomic and phenotypic heterogeneity for disease modeling and therapeutic screening. Clin. Cancer Res. 24, 4332–4345 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Drapkin, B. J. et al. Genomic and functional fidelity of small cell lung cancer patient-derived xenografts. Cancer Discov. 8, 600–615 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gao, H. et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med. 21, 1318–1325 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Bruna, A. et al. A biobank of breast cancer explants with preserved intra-tumor heterogeneity to screen anticancer compounds. Cell 167, 260–274 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gao, D. et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 159, 176–187 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van de Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Lee, S. H. et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell 173, 515–528 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sachs, N. et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172, 373–386 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Vlachogiannis, G. et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359, 920–926 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Izumchenko, E. et al. Patient-derived xenografts effectively capture responses to oncology therapy in a heterogeneous cohort of patients with solid tumors. Ann. Oncol. 28, 2595–2605 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hidalgo, M. et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 4, 998–1013 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marangoni, E. et al. A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin. Cancer Res. 13, 3989–3998 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, X. et al. A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res. 73, 4885–4897 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Prinz, F., Schlange, T. & Asadullah, K. Believe it or not: how much can we rely on published data on potential drug targets? Nat. Rev. Drug Discov. 10, 712 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Begley, C. G. & Ellis, L. M. Drug development: raise standards for preclinical cancer research. Nature 483, 531–533 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Haibe-Kains, B. et al. Inconsistency in large pharmacogenomic studies. Nature 504, 389–393 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. The Cancer Cell Line Encyclopedia Consortium & The Genomics of Drug Sensitivity in Cancer Consortium. Pharmacogenomic agreement between two cancer cell line data sets. Nature 528, 84–87 (2015).

    Google Scholar 

  40. Haverty, P. M. et al. Reproducible pharmacogenomic profiling of cancer cell line panels. Nature 533, 333–337 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Franca, T. F. & Monserrat, J. M. Reproducibility crisis in science or unrealistic expectations? EMBO Rep. 19, e46008 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Hunter, P. The reproducibility “crisis”: reaction to replication crisis should not stifle innovation. EMBO Rep. 18, 1493–1496 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baker, M. Reproducibility crisis: blame it on the antibodies. Nature 521, 274–276 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Loken, E. & Gelman, A. Measurement error and the replication crisis. Science 355, 584–585 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Horbach, S. & Halffman, W. The ghosts of HeLa: how cell line misidentification contaminates the scientific literature. PLOS ONE 12, e0186281 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Walrath, J. C., Hawes, J. J., Van Dyke, T. & Reilly, K. M. Genetically engineered mouse models in cancer research. Adv. Cancer Res. 106, 113–164 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tschaharganeh, D. F., Lowe, S. W., Garippa, R. J. & Livshits, G. Using CRISPR/Cas to study gene function and model disease in vivo. FEBS J. 283, 3194–3203 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Andrechek, E. R. et al. Genetic heterogeneity of Myc-induced mammary tumors reflecting diverse phenotypes including metastatic potential. Proc. Natl Acad. Sci. USA 106, 16387–16392 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Van Keymeulen, A. et al. Reactivation of multipotency by oncogenic PIK3CA induces breast tumour heterogeneity. Nature 525, 119–123 (2015).

    Article  PubMed  CAS  Google Scholar 

  50. Westcott, P. M. et al. The mutational landscapes of genetic and chemical models of Kras-driven lung cancer. Nature 517, 489–492 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Nassar, D., Latil, M., Boeckx, B., Lambrechts, D. & Blanpain, C. Genomic landscape of carcinogen-induced and genetically induced mouse skin squamous cell carcinoma. Nat. Med. 21, 946–954 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Ben-David, U. et al. The landscape of chromosomal aberrations in breast cancer mouse models reveals driver-specific routes to tumorigenesis. Nat. Commun. 7, 12160 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Herschkowitz, J. I. et al. Comparative oncogenomics identifies breast tumors enriched in functional tumor-initiating cells. Proc. Natl Acad. Sci. USA 109, 2778–2783 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Uchimura, A. et al. Germline mutation rates and the long-term phenotypic effects of mutation accumulation in wild-type laboratory mice and mutator mice. Genome Res. 25, 1125–1134 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Simon, M. M. et al. A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genome Biol. 14, R82 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Mulligan, M. K. et al. Alcohol trait and transcriptional genomic analysis of C57BL/6 substrains. Genes Brain Behav. 7, 677–689 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Liron, T., Raphael, B., Hiram-Bab, S., Bab, I. A. & Gabet, Y. Bone loss in C57BL/6J-OlaHsd mice, a substrain of C57BL/6J carrying mutated alpha-synuclein and multimerin-1 genes. J. Cell. Physiol. 233, 371–377 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Kalish, S. et al. C57BL/6N mice are more resistant to ehrlich ascites tumors than C57BL/6J mice: the role of macrophage nitric oxide. Med. Sci. Monit. Bas. Res. 21, 235–240 (2015).

    Article  Google Scholar 

  59. Bourdi, M., Davies, J. S. & Pohl, L. R. Mispairing C57BL/6 substrains of genetically engineered mice and wild-type controls can lead to confounding results as it did in studies of JNK2 in acetaminophen and concanavalin A liver injury. Chem. Res. Toxicol. 24, 794–796 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mahajan, V. S. et al. Striking immune phenotypes in gene-targeted mice are driven by a copy-number variant originating from a commercially available C57BL/6 strain. Cell Rep. 15, 1901–1909 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mattapallil, M. J. et al. The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes. Invest. Ophthalmol. Vis. Sci. 53, 2921–2927 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jones, C. et al. Comparative genomic hybridization reveals extensive variation among different MCF-7 cell stocks. Cancer Genet. Cytogenet. 117, 153–158 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Coser, K. R. et al. Antiestrogen-resistant subclones of MCF-7 human breast cancer cells are derived from a common monoclonal drug-resistant progenitor. Proc. Natl Acad. Sci. USA 106, 14536–14541 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nugoli, M. et al. Genetic variability in MCF-7 sublines: evidence of rapid genomic and RNA expression profile modifications. BMC Cancer 3, 13 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kleensang, A. et al. Genetic variability in a frozen batch of MCF-7 cells invisible in routine authentication affecting cell function. Sci. Rep. 6, 28994 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Frattini, A. et al. High variability of genomic instability and gene expression profiling in different HeLa clones. Sci. Rep. 5, 15377 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sato, S., Rancourt, A., Sato, Y. & Satoh, M. S. Single-cell lineage tracking analysis reveals that an established cell line comprises putative cancer stem cells and their heterogeneous progeny. Sci. Rep. 6, 23328 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ben-David, U. et al. Genetic and transcriptional evolution alters cancer cell line drug response. Nature 560, 325–330 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu, Y. et al. Genomic, proteomic and phenotypic heterogeneity in HeLa cells across laboratories: implications for reproducibility of research results. Preprint at bioRxiv https://doi.org/10.1101/307421 (2018).

    Article  Google Scholar 

  70. Fasterius, E. & Al-Khalili Szigyarto, C. Analysis of public RNA-sequencing data reveals biological consequences of genetic heterogeneity in cell line populations. Sci. Rep. 8, 11226 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Weissbein, U., Plotnik, O., Vershkov, D. & Benvenisty, N. Culture-induced recurrent epigenetic aberrations in human pluripotent stem cells. PLOS Genet. 13, e1006979 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Mekhoubad, S. et al. Erosion of dosage compensation impacts human iPSC disease modeling. Cell Stem Cell 10, 595–609 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Locke, W. J. & Clark, S. J. Epigenome remodelling in breast cancer: insights from an early in vitro model of carcinogenesis. Breast Cancer Res. 14, 215 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Boehm, J. S. & Golub, T. R. An ecosystem of cancer cell line factories to support a cancer dependency map. Nat. Rev. Genet. 16, 373–374 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Liu, X. et al. ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am. J. Pathol. 180, 599–607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hong, A. L. et al. Integrated genetic and pharmacologic interrogation of rare cancers. Nat. Commun. 7, 11987 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Peng, S. et al. Tumor grafts derived from patients with head and neck squamous carcinoma authentically maintain the molecular and histologic characteristics of human cancers. J. Transl Med. 11, 198 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Gunther, H. S. et al. Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene 27, 2897–2909 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Schulte, A. et al. A distinct subset of glioma cell lines with stem cell-like properties reflects the transcriptional phenotype of glioblastomas and overexpresses CXCR4 as therapeutic target. Glia 59, 590–602 (2011).

    Article  PubMed  Google Scholar 

  80. Cifola, I. et al. Renal cell carcinoma primary cultures maintain genomic and phenotypic profile of parental tumor tissues. BMC Cancer 11, 244 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ben-David, U. et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat. Genet. 49, 1567–1575 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Villacorta-Martin, C., Craig, A. J. & Villanueva, A. Divergent evolutionary trajectories in transplanted tumor models. Nat. Genet. 49, 1565–1566 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Eirew, P. et al. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518, 422–426 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Clappier, E. et al. Clonal selection in xenografted human T cell acute lymphoblastic leukemia recapitulates gain of malignancy at relapse. J. Exp. Med. 208, 653–661 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Klco, J. M. et al. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell 25, 379–392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. de Boer, B. et al. Prospective isolation and characterization of genetically and functionally distinct AML subclones. Cancer Cell 34, 674–689 (2018).

    Article  PubMed  CAS  Google Scholar 

  87. Grasse, S. et al. Epigenomic profiling of non-small cell lung cancer xenografts uncover LRP12 DNA methylation as predictive biomarker for carboplatin resistance. Genome Med. 10, 55 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Tiriac, H. et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discov. 8, 1112–1129 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Roerink, S. F. et al. Intra-tumour diversification in colorectal cancer at the single-cell level. Nature 556, 457–462 (2018).

    Article  PubMed  CAS  Google Scholar 

  90. Li, X. et al. Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics. Nat. Commun. 9, 2983 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Gupta, P. B. et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146, 633–644 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Knouse, K. A., Lopez, K. E., Bachofner, M. & Amon, A. Chromosome segregation fidelity in epithelia requires tissue architecture. Cell 175, 200–211 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rowald, K. et al. Negative selection and chromosome instability induced by Mad2 overexpression delay breast cancer but facilitate oncogene-independent outgrowth. Cell Rep. 15, 2679–2691 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hingorani, S. R. et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7, 469–483 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Sato, M., Glasebrook, A. L. & Bryant, H. U. Raloxifene: a selective estrogen receptor modulator. J. Bone Miner. Metab. 12, S9–S20 (1994).

    Article  CAS  Google Scholar 

  96. Kim, H. R. et al. Co-clinical trials demonstrate predictive biomarkers for dovitinib, an FGFR inhibitor, in lung squamous cell carcinoma. Ann. Oncol. 28, 1250–1259 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Owonikoko, T. K. et al. Patient-derived xenografts faithfully replicated clinical outcome in a phase II co-clinical trial of arsenic trioxide in relapsed small cell lung cancer. J. Transl Med. 14, 111 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Klemm, F. & Joyce, J. A. Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol. 25, 198–213 (2015).

    Article  PubMed  Google Scholar 

  99. Morgan, M. M. et al. Personalized in vitro cancer models to predict therapeutic response: challenges and a framework for improvement. Pharmacol. Ther. 165, 79–92 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Neve, R. M. et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10, 515–527 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gendoo, D. M. A. et al. Whole genomes define concordance of matched primary, xenograft, and organoid models of pancreas cancer. Preprint at bioRxiv https://doi.org/10.1101/209692 (2017).

    Article  Google Scholar 

  102. Haapaniemi, E., Botla, S., Persson, J., Schmierer, B. & Taipale, J. CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 24, 927–930 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Ihry, R. J. et al. p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nat. Med. 24, 939–946 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Aguirre, A. J. et al. Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting. Cancer Discov. 6, 914–929 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Munoz, D. M. et al. CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false-positive hits for highly amplified genomic regions. Cancer Discov. 6, 900–913 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Mitra, A., Mishra, L. & Li, S. Technologies for deriving primary tumor cells for use in personalized cancer therapy. Trends Biotechnol. 31, 347–354 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Andor, N. et al. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity. Nat. Med. 22, 105–113 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Janiszewska, M. et al. In situ single-cell analysis identifies heterogeneity for PIK3CA mutation and HER2 amplification in HER2-positive breast cancer. Nat. Genet. 47, 1212–1219 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Venteicher, A. S. et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science 355, eaai8478 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Tabassum, D. P. & Polyak, K. Tumorigenesis: it takes a village. Nat. Rev. Cancer 15, 473–483 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Marusyk, A. et al. Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature 514, 54–58 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chapman, A. et al. Heterogeneous tumor subpopulations cooperate to drive invasion. Cell Rep. 8, 688–695 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mateo, F. et al. SPARC mediates metastatic cooperation between CSC and non-CSC prostate cancer cell subpopulations. Mol. Cancer 13, 237 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ouchi, R., Okabe, S., Migita, T., Nakano, I. & Seimiya, H. Senescence from glioma stem cell differentiation promotes tumor growth. Biochem. Biophys. Res. Commun. 470, 275–281 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Vinci, M. et al. Functional diversity and cooperativity between subclonal populations of pediatric glioblastoma and diffuse intrinsic pontine glioma cells. Nat. Med. 24, 1204–1215 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bhang, H. E. et al. Studying clonal dynamics in response to cancer therapy using high-complexity barcoding. Nat. Med. 21, 440–448 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Hata, A. N. et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat. Med. 22, 262–269 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Negrini, S., Gorgoulis, V. G. & Halazonetis, T. D. Genomic instability — an evolving hallmark of cancer. Nat. Rev. Mol. Cell Biol. 11, 220–228 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Gaillard, H., Garcia-Muse, T. & Aguilera, A. Replication stress and cancer. Nat. Rev. Cancer 15, 276–289 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Sansregret, L., Vanhaesebroeck, B. & Swanton, C. Determinants and clinical implications of chromosomal instability in cancer. Nat. Rev. Clin. Oncol. 15, 139–150 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Wetterstrand, K. A. DNA sequencing costs: data: data from the NHGRI Genome Sequencing Program (GSP). NIH https://www.genome.gov/27541954/dna-sequencing-costs-data/ (2018).

  122. Roth, A. et al. PyClone: statistical inference of clonal population structure in cancer. Nat. Methods 11, 396–398 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Silva, G. O. et al. SynthEx: a synthetic-normal-based DNA sequencing tool for copy number alteration detection and tumor heterogeneity profiling. Genome Biol. 18, 66 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Carter, S. L., Eklund, A. C., Kohane, I. S., Harris, L. N. & Szallasi, Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat. Genet. 38, 1043–1048 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Zhang, S., Yuan, Y. & Hao, D. A genomic instability score in discriminating nonequivalent outcomes of BRCA1/2 mutations and in predicting outcomes of ovarian cancer treated with platinum-based chemotherapy. PLOS ONE 9, e113169 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Burrell, R. A. et al. Replication stress links structural and numerical cancer chromosomal instability. Nature 494, 492–496 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ben-David, U. & Benvenisty, N. in StemBook (eds The Stem Cell Research Community) https://doi.org/10.3824/stembook.1.150.1 (Harvard Stem Cell Institute, Cambridge, MA, 2012).

  128. Ben-David, U., Mayshar, Y. & Benvenisty, N. Virtual karyotyping of pluripotent stem cells on the basis of their global gene expression profiles. Nat. Protoc. 8, 989–997 (2013).

    Article  PubMed  CAS  Google Scholar 

  129. Santaguida, S. & Amon, A. Short- and long-term effects of chromosome mis-segregation and aneuploidy. Nat. Rev. Mol. Cell Biol. 16, 473–485 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Sheltzer, J. M. et al. Single-chromosome gains commonly function as tumor suppressors. Cancer Cell 31, 240–255 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ben-David, U. et al. Aneuploidy induces profound changes in gene expression, proliferation and tumorigenicity of human pluripotent stem cells. Nat. Commun. 5, 4825 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Zack, T. I. et al. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45, 1134–1140 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank I. Fung for her assistance with designing and preparing the figures. This work was supported by the Human Frontiers Science Program (U.B.-D.), the Howard Hughes Medical Institute (T.R.G.), the US National Institutes of Health (R01 CA188228; R.B.), the Gray Matters Brain Cancer Foundation (R.B.), the Bridge Project (R.B.), a Broad Institute SPARC award (R.B.) and a Broad Institute BroadNext10 grant (U.B.-D.).

Reviewer information

Nature Reviews Cancer thanks J. Gray, R. Kimple and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed to discussion of the content and wrote, reviewed and edited the manuscript.

Corresponding authors

Correspondence to Uri Ben-David, Rameen Beroukhim or Todd R. Golub.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

US Institute for Laboratory Animal Research (ILAR): http://dels.nas.edu/global/ilar/Lab-Codes

Cell STRAINER: https://cellstrainer.broadinstitute.org

Glossary

Clonal dynamics

Changes in the relative abundance of tumour subclones throughout model propagation.

Copy number effect

In CRISPR screens, copy number changes result in a gene-independent anti-proliferative effect of Cas9-mediated DNA cleavage, confounding the measurement of gene essentiality. This effect can be corrected computationally using genome-wide copy number measurements.

Established cell lines

(ECLs). Models generated as patient-derived cell lines, followed by prolonged culture propagation. These models are not assumed to represent the specific tumours from which they were derived.

Founder effect

Genetic diversity that results when a cell population is descended from a small number of original cells.

Genetically engineered mouse models

(GEMMs). Models generated by genetically manipulating mice using genetic alterations that characterize human tumours.

Genetic drift

Stochastic changes in the clonal composition of the cancer cell population owing to chance disappearance and/or expansion of particular subclones.

Genetic selection

Directional changes in the clonal composition of the cancer cell population owing to growth advantage and/or disadvantage of particular subclones.

Ongoing genomic instability

Generation of de novo genetic alterations throughout model propagation, contributing to the genomic evolution of the model.

Patient-derived cell lines

(PDCLs). Models generated by the transferring of tumour cells into a 2D plastic dish using culture conditions that enable cells to proliferate.

Patient-derived organoids

(PDOs). Models generated by the embedment of tumour (or normal) cells into a 3D matrix using culture conditions that mimic the in vivo tumour niche.

Patient-derived xenografts

(PDXs). Models generated by the direct engraftment of resected human tumours into immune-deficient mice, followed by their serial transplantation between mice.

Pre-existing heterogeneity

Genetic diversity within the original tumour that contributes to the genomic evolution of the model.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ben-David, U., Beroukhim, R. & Golub, T.R. Genomic evolution of cancer models: perils and opportunities. Nat Rev Cancer 19, 97–109 (2019). https://doi.org/10.1038/s41568-018-0095-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-018-0095-3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer