Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutically exploiting STAT3 activity in cancer — using tissue repair as a road map

Abstract

The tightly orchestrated temporal and spatial control of signal transducer and activator of transcription 3 (STAT3) activity in epithelial, immune and stromal cells is critical for wound healing and tissue repair. Excessive STAT3 activation within cancer cells and cells of the tumour microenvironment can be viewed as a neoplastic mimic of an inflammation-driven repair response that collectively promotes tumour progression. In addition to the canonical transcriptional pathways by which STAT3 promotes stem cell-like characteristics, survival, proliferation, metastatic potential and immune evasion, cytoplasmic STAT3 activity fuels tumour growth by metabolic and other non-transcriptional mechanisms. Here, we review the tumour-modulating activities of STAT3 in light of its role as a signalling node integrating inflammatory responses during wound healing. Accordingly, many of the cytokines that contribute to the para-inflammatory state of most solid malignancies converge on and underpin dysregulated STAT3 activity. Targeting of these cytokines, their cognate receptors and associated signalling cascades in clinical trials is beginning to demonstrate therapeutic efficacy, given that interference with STAT3 activity is likely to simultaneously curb the growth of cancer cells and augment antitumour immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Linking inflammation from tissue repair to malignant transformation.
Fig. 2: Canonical STAT3 signalling.
Fig. 3: Integration of nuclear and cytoplasmic STAT3 activities.
Fig. 4: STAT3 signalling in the tumour microenvironment.

Similar content being viewed by others

References

  1. O’Shea, J. J. et al. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu. Rev. Med. 66, 311–328 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Heinrich, P. C. et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 374, 1–20 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Groner, B. & von Manstein, V. Jak Stat signaling and cancer: opportunities, benefits and side effects of targeted inhibition. Mol. Cell. Endocrinol. 451, 1–14 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Yu, H., Lee, H., Herrmann, A., Buettner, R. & Jove, R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat. Rev. Cancer 14, 736–746 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Johnson, D. E., O’Keefe, R. A. & Grandis, J. R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 15, 234–248 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hillmer, E. J., Zhang, H., Li, H. S. & Watowich, S. S. STAT3 signaling in immunity. Cytokine Growth Factor Rev. 31, 1–15 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dvorak, H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986).

    CAS  PubMed  Google Scholar 

  8. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Sano, S. et al. Keratinocyte-specific ablation of Stat3 exhibits impaired skin remodeling, but does not affect skin morphogenesis. EMBO J. 18, 4657–4668 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chang, H. Y. et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLOS Biol. 2, E7 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Fielding, C. A. et al. IL-6 regulates neutrophil trafficking during acute inflammation via STAT3. J. Immunol. 181, 2189–2195 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Arwert, E. N., Hoste, E. & Watt, F. M. Epithelial stem cells, wound healing and cancer. Nat. Rev. Cancer 12, 170–180 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Buettner, R. et al. Activated signal transducers and activators of transcription 3 signaling induces CD46 expression and protects human cancer cells from complement-dependent cytotoxicity. Mol. Cancer Res. 5, 823–832 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Cassetta, L. & Pollard, J. W. Targeting macrophages: therapeutic approaches in cancer. Nat. Rev. Drug Discov. https://doi.org/10.1038/nrd.2018.169 (2018).

    Article  PubMed  Google Scholar 

  15. Kinchen, J. et al. Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease. Cell 175, 372–386 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jarnicki, A., Putoczki, T. & Ernst, M. Stat3: linking inflammation to epithelial cancer - more than a “gut” feeling? Cell Div. 5, 14 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008). This review defines para-inflammation as an adaptive and reversible state of subclinical inflammation in response to tissue damage and stress, including tumorigenesis.

    Article  CAS  PubMed  Google Scholar 

  18. Phesse, T. J. et al. Partial inhibition of gp130-Jak-Stat3 signaling prevents Wnt-beta-catenin-mediated intestinal tumor growth and regeneration. Sci. Signal. 7, ra92 (2014). This paper provides genetic evidence that partial suppression of GP130-dependent STAT3 signaling restricts the growth of intestinal tumours arising from excessive activation of canonical WNT signaling, which is a bona fide oncogenic event.

    Article  PubMed  CAS  Google Scholar 

  19. Lasry, A., Zinger, A. & Ben-Neriah, Y. Inflammatory networks underlying colorectal cancer. Nat. Immunol. 17, 230–240 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Aran, D. et al. Widespread parainflammation in human cancer. Genome Biol. 17, 145 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Pilati, C. et al. Somatic mutations activating STAT3 in human inflammatory hepatocellular adenomas. J. Exp. Med. 208, 1359–1366 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Koskela, H. L. et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. N. Engl. J. Med. 366, 1905–1913 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barbieri, I. et al. Constitutively active Stat3 enhances neu-mediated migration and metastasis in mammary tumors via upregulation of Cten. Cancer Res. 70, 2558–2567 (2010). This paper genetically clarifies the tumorigenic capacity of a constitutive activating mutation in the endogenous Stat3 allele.

    Article  CAS  PubMed  Google Scholar 

  24. Bromberg, J. F. et al. Stat3 as an oncogene. Cell 98, 295–303 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Tebbutt, N. C. et al. Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice. Nat. Med. 8, 1089–1097 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Zenewicz, L. A. et al. IL-22 deficiency alters colonic microbiota to be transmissible and colitogenic. J. Immunol. 190, 5306–5312 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Schmidt, S. et al. ADAM17 is required for EGF-R-induced intestinal tumors via IL-6 trans-signaling. J. Exp. Med. 215, 1205–1225 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grivennikov, S. I. et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491, 254–258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Putoczki, T. L. et al. Interleukin-11 is the dominant IL-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell 24, 257–271 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Rajagopal, S., Rajagopal, K. & Lefkowitz, R. J. Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat. Rev. Drug Discov. 9, 373–386 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee, H. et al. STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors. Nat. Med. 16, 1421–1428 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bollrath, J. et al. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell 15, 91–102 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Garbers, C., Heink, S., Korn, T. & Rose-John, S. Interleukin-6: designing specific therapeutics for a complex cytokine. Nat. Rev. Drug Discov. 17, 395–412 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Rose-John, S., Winthrop, K. & Calabrese, L. The role of IL-6 in host defence against infections: immunobiology and clinical implications. Nat. Rev. Rheumatol. 13, 399–409 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Poli, V. & Camporeale, A. STAT3-mediated metabolic reprograming in cellular transformation and implications for drug resistance. Front. Oncol. 5, 121 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liang, J. et al. The correlation between the immune and epithelial-mesenchymal transition signatures suggests potential therapeutic targets and prognosis prediction approaches in kidney cancer. Sci. Rep. 8, 6570 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Marusyk, A. et al. Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature 514, 54–58 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bromberg, J. F., Horvath, C. M., Besser, D., Lathem, W. W. & Darnell, J. E. Jr. Stat3 activation is required for cellular transformation by v-src. Mol. Cell. Biol. 18, 2553–2558 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim, D. J., Tremblay, M. L. & Digiovanni, J. Protein tyrosine phosphatases, TC-PTP, SHP1, and SHP2, cooperate in rapid dephosphorylation of Stat3 in keratinocytes following UVB irradiation. PLOS ONE 5, e10290 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Peyser, N. D. et al. Loss-of-function PTPRD mutations lead to increased STAT3 activation and sensitivity to STAT3 inhibition in head and neck cancer. PLOS ONE 10, e0135750 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Tartaglia, M. et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat. Genet. 34, 148–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Chung, C. D. et al. Specific inhibition of Stat3 signal transduction by PIAS3. Science 278, 1803–1805 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Babon, J. J., Varghese, L. N. & Nicola, N. A. Inhibition of IL-6 family cytokines by SOCS3. Semin. Immunol. 26, 13–19 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. El Kasmi, K. C. et al. General nature of the STAT3-activated anti-inflammatory response. J. Immunol. 177, 7880–7888 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Ip, W. K. E., Hoshi, N., Shouval, D. S., Snapper, S. & Medzhitov, R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 356, 513–519 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu, L., McBride, K. M. & Reich, N. C. STAT3 nuclear import is independent of tyrosine phosphorylation and mediated by importin-alpha3. Proc. Natl Acad. Sci. USA 102, 8150–8155 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ma, J. & Cao, X. Regulation of Stat3 nuclear import by importin α5 and importin α7 via two different functional sequence elements. Cell. Signal. 18, 1117–1126 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Aigner, P., Just, V. & Stoiber, D. STAT3 isoforms: alternative fates in cancer? Cytokine https://doi.org/10.1016/j.cyto.2018.07.014 (2018).

    Article  PubMed  Google Scholar 

  49. Takeda, K. et al. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc. Natl Acad. Sci. USA 94, 3801–3804 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Maritano, D. et al. The STAT3 isoforms alpha and beta have unique and specific functions. Nat. Immunol. 5, 401–409 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Yoo, J. Y., Huso, D. L., Nathans, D. & Desiderio, S. Specific ablation of Stat3beta distorts the pattern of Stat3-responsive gene expression and impairs recovery from endotoxic shock. Cell 108, 331–344 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Zhong, Z., Wen, Z. & Darnell, J. E. Jr. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264, 95–98 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Wen, Z., Zhong, Z. & Darnell, J. E. Jr. Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 82, 241–250 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Shen, Y. et al. Essential role of STAT3 in postnatal survival and growth revealed by mice lacking STAT3 serine 727 phosphorylation. Mol. Cell. Biol. 24, 407–419 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Baumgart, S. et al. Inflammation-induced NFATc1-STAT3 transcription complex promotes pancreatic cancer initiation by KrasG12D. Cancer Discov. 4, 688–701 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang, J. et al. Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NFκB. Genes Dev. 21, 1396–1408 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, X., Wrzeszczynska, M. H., Horvath, C. M. & Darnell, J. E. Jr. Interacting regions in Stat3 and c-Jun that participate in cooperative transcriptional activation. Mol. Cell. Biol. 19, 7138–7146 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schuringa, J. J., Schepers, H., Vellenga, E. & Kruijer, W. Ser727-dependent transcriptional activation by association of p300 with STAT3 upon IL-6 stimulation. FEBS Lett. 495, 71–76 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Ndubuisi, M. I., Guo, G. G., Fried, V. A., Etlinger, J. D. & Sehgal, P. B. Cellular physiology of STAT3: where’s the cytoplasmic monomer? J. Biol. Chem. 274, 25499–25509 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Gough, D. J. et al. Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 324, 1713–1716 (2009). This manuscript shows that mitochondrial STAT3 is required for RAS transformation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wegrzyn, J. et al. Function of mitochondrial Stat3 in cellular respiration. Science 323, 793–797 (2009). This is the first description of a mitochondrial pool of STAT3 that augments the activity of the ETC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Avalle, L. et al. STAT3 localizes to the ER, acting as a gatekeeper for ER-mitochondrion Ca2+ fluxes and apoptotic responses. Cell Death Differ. https://doi.org/10.1038/s41418-018-0171-y (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Shah, M. et al. Membrane-associated STAT3 and PY-STAT3 in the cytoplasm. J. Biol. Chem. 281, 7302–7308 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Shen, S. et al. Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity. Mol. Cell 48, 667–680 (2012). This manuscript shows a direct interaction between STAT3 and PKR that sequesters PKR away from its substrate, eIF2A, and blocks the formation of autophagosomes.

    Article  CAS  PubMed  Google Scholar 

  65. Silver, D. L., Naora, H., Liu, J., Cheng, W. & Montell, D. J. Activated signal transducer and activator of transcription (STAT) 3: localization in focal adhesions and function in ovarian cancer cell motility. Cancer Res. 64, 3550–3558 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  Google Scholar 

  67. Sabharwal, S. S. & Schumacker, P. T. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat. Rev. Cancer 14, 709–721 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Demaria, M. et al. A STAT3-mediated metabolic switch is involved in tumour transformation and STAT3 addiction. Aging (Albany NY) 2, 823–842 (2010).

    Article  CAS  Google Scholar 

  69. Ziegler, P. K. et al. Mitophagy in intestinal epithelial cells triggers adaptive immunity during tumorigenesis. Cell 174, 88–101 (2018). This study uses preclinical mouse models of colon cancer to show that STAT3 loss results in mitochondrial damage and enhanced mitophagy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vassilev, A. O., Lorenz, D. R., Tibbles, H. E. & Uckun, F. M. Role of the leukemia-associated transcription factor STAT3 in platelet physiology. Leuk. Lymphoma 43, 1461–1467 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Macias, E., Rao, D., Carbajal, S., Kiguchi, K. & DiGiovanni, J. Stat3 binds to mtDNA and regulates mitochondrial gene expression in keratinocytes. J. Invest. Dermatol. 134, 1971–1980 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, Q. et al. Mitochondrial localized Stat3 promotes breast cancer growth via phosphorylation of serine 727. J. Biol. Chem. 288, 31280–31288 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Phillips, D. et al. Stoichiometry of STAT3 and mitochondrial proteins: implications for the regulation of oxidative phosphorylation by protein-protein interactions. J. Biol. Chem. 285, 23532–23536 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gough, D. J., Marie, I. J., Lobry, C., Aifantis, I. & Levy, D. E. STAT3 supports experimental K-RasG12D-induced murine myeloproliferative neoplasms dependent on serine phosphorylation. Blood 124, 2252–2261 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. You, L. et al. The role of STAT3 in autophagy. Autophagy 11, 729–739 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sargeant, T. J. et al. Stat3 controls cell death during mammary gland involution by regulating uptake of milk fat globules and lysosomal membrane permeabilization. Nat. Cell Biol. 16, 1057–1068 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kreuzaler, P. A. et al. Stat3 controls lysosomal-mediated cell death in vivo. Nat. Cell Biol. 13, 303–309 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Talloczy, Z. et al. Regulation of starvation- and virus-induced autophagy by the eIF2α kinase signaling pathway. Proc. Natl Acad. Sci. USA 99, 190–195 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Gao, S. P. & Bromberg, J. F. Touched and moved by STAT3. Sci. STKE 2006, pe30 (2006).

    PubMed  Google Scholar 

  80. Calon, A. et al. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell 22, 571–584 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ng, D. C. et al. Stat3 regulates microtubules by antagonizing the depolymerization activity of stathmin. J. Cell Biol. 172, 245–257 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yang, H. et al. STAT3 inhibition enhances the therapeutic efficacy of immunogenic chemotherapy by stimulating type 1 interferon production by cancer cells. Cancer Res. 75, 3812–3822 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Wolfle, S. J. et al. PD-L1 expression on tolerogenic APCs is controlled by STAT-3. Eur. J. Immunol. 41, 413–424 (2011).

    Article  PubMed  CAS  Google Scholar 

  84. Niu, G. et al. Overexpression of a dominant-negative signal transducer and activator of transcription 3 variant in tumor cells leads to production of soluble factors that induce apoptosis and cell cycle arrest. Cancer Res. 61, 3276–3280 (2001).

    CAS  PubMed  Google Scholar 

  85. Lee, H. et al. A requirement of STAT3 DNA binding precludes Th-1 immunostimulatory gene expression by NF-κB in tumors. Cancer Res. 71, 3772–3780 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wynn, T. A. & Barron, L. Macrophages: master regulators of inflammation and fibrosis. Semin. Liver Dis. 30, 245–257 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Campana, L. et al. The STAT3-IL-10-IL-6 pathway is a novel regulator of macrophage efferocytosis and phenotypic conversion in sterile liver injury. J. Immunol. 200, 1169–1187 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Giurisato, E. et al. Myeloid ERK5 deficiency suppresses tumor growth by blocking protumor macrophage polarization via STAT3 inhibition. Proc. Natl Acad. Sci. USA 115, E2801–E2810 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yang, J. et al. Tumor-associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox-2 signaling pathway. Stem Cells 31, 248–258 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Takaishi, K. et al. Involvement of M2-polarized macrophages in the ascites from advanced epithelial ovarian carcinoma in tumor progression via Stat3 activation. Cancer Sci. 101, 2128–2136 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Takeda, K. et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10, 39–49 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Yan, D., Wang, H. W., Bowman, R. L. & Joyce, J. A. STAT3 and STAT6 signaling pathways synergize to promote cathepsin secretion from macrophages via IRE1α activation. Cell Rep. 16, 2914–2927 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lee, Y.-J. et al. Macrophage PD-L1 strikes back: PD-1/PD-L1 interaction drives macrophages toward regulatory subsets. Adv. Biosci. Biotechnol. 4, 35967 (2013).

    Google Scholar 

  95. Mace, T. A. et al. Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res. 73, 3007–3018 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vasquez-Dunddel, D. et al. STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J. Clin. Invest. 123, 1580–1589 (2013). This article uses MDSCs derived from patients with head and neck squamous cell carcinoma to demonstrate that STAT3 directly affects MDSC arginase expression to support the immunosuppressive effects of MDSCs on T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hossain, D. M. et al. TLR9-targeted STAT3 silencing abrogates immunosuppressive activity of myeloid-derived suppressor cells from prostate cancer patients. Clin. Cancer Res. 21, 3771–3782 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dabritz, J., Judd, L. M., Chalinor, H. V., Menheniott, T. R. & Giraud, A. S. Altered gp130 signalling ameliorates experimental colitis via myeloid cell-specific STAT3 activation and myeloid-derived suppressor cells. Sci. Rep. 6, 20584 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sumida, K. et al. IL-11 induces differentiation of myeloid-derived suppressor cells through activation of STAT3 signalling pathway. Sci. Rep. 5, 13650 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Khaled, Y. S., Ammori, B. J. & Elkord, E. Increased levels of granulocytic myeloid-derived suppressor cells in peripheral blood and tumour tissue of pancreatic cancer patients. J. Immunol. Res. 2014, 879897 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Laouar, Y., Welte, T., Fu, X. Y. & Flavell, R. A. STAT3 is required for Flt3L-dependent dendritic cell differentiation. Immunity 19, 903–912 (2003). This paper identifies STAT3 as a key regulator of FLT3L-mediated development and generation of dendritic cells and their precursor cells.

    Article  CAS  PubMed  Google Scholar 

  102. Flanagan, S. E. et al. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nat. Genet. 46, 812–814 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Camporeale, A. et al. STAT3 activity is necessary and sufficient for the development of immune-mediated myocarditis in mice and promotes progression to dilated cardiomyopathy. EMBO Mol. Med. 5, 572–590 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nieves, E. C. et al. STAT3 expression in host myeloid cells controls graft-versus-host disease severity. Biol. Blood Marrow Transplant. 23, 1622–1630 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang, T. et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat. Med. 10, 48–54 (2004).

    Article  PubMed  CAS  Google Scholar 

  106. Nefedova, Y. et al. Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J. Immunol. 172, 464–474 (2004). This study shows that JAK–STAT3 signalling promotes the generation of immunosuppressive immature dendritic cells.

    Article  CAS  PubMed  Google Scholar 

  107. Gabrilovich, D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat. Rev. Immunol. 4, 941–952 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Kortylewski, M. et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat. Med. 11, 1314–1321 (2005). This landmark study describes STAT3 as an important signalling node in haematopoietic cells and finds that STAT3 is responsible for suppressing immune-mediated antitumour function in mouse models.

    Article  CAS  PubMed  Google Scholar 

  109. Aden, K. et al. Epithelial IL-23R signaling licenses protective IL-22 responses in intestinal inflammation. Cell Rep. 16, 2208–2218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Panopoulos, A. D. et al. STAT3 governs distinct pathways in emergency granulopoiesis and mature neutrophils. Blood 108, 3682–3690 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhang, H. et al. STAT3 controls myeloid progenitor growth during emergency granulopoiesis. Blood 116, 2462–2471 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gotthardt, D. et al. Loss of STAT3 in murine NK cells enhances NK cell-dependent tumor surveillance. Blood 124, 2370–2379 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Jerez, A. et al. STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T cell large granular lymphocyte leukemia. Blood 120, 3048–3057 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kucuk, C. et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from gammadelta-T or NK cells. Nat. Commun. 6, 6025 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Pickert, G. et al. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J. Exp. Med. 206, 1465–1472 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Backert, I. et al. STAT3 activation in Th17 and Th22 cells controls IL-22-mediated epithelial host defense during infectious colitis. J. Immunol. 193, 3779–3791 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Atreya, R. et al. Blockade of interleukin 6 trans signaling suppresses T cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nat. Med. 6, 583–588 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Herrmann, A. et al. CTLA4 aptamer delivers STAT3 siRNA to tumor-associated and malignant T cells. J. Clin. Invest. 124, 2977–2987 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Yue, C. et al. STAT3 in CD8+T cells inhibits their tumor accumulation by downregulating CXCR3/CXCL10 Axis. Cancer Immunol. Res. 3, 864–870 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Schmetterer, K. G. et al. STAT3 governs hyporesponsiveness and granzyme B-dependent suppressive capacity in human CD4 + T cells. FASEB J. 29, 759–771 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Austin, J. W., Lu, P., Majumder, P., Ahmed, R. & Boss, J. M. STAT3, STAT4, NFATc1, and CTCF regulate PD-1 through multiple novel regulatory regions in murine T cells. J. Immunol. 192, 4876–4886 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Celada, L. J. et al. PD-1 up-regulation on CD4+ T cells promotes pulmonary fibrosis through STAT3-mediated IL-17A and TGF-β1 production. Sci. Transl Med. 10, eaar8356 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Hsu, P. et al. IL-10 potentiates differentiation of human induced regulatory T cells via STAT3 and Foxo1. J. Immunol. 195, 3665–3674 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Zorn, E. et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood 108, 1571–1579 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kortylewski, M. et al. Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment. Cancer Cell 15, 114–123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Avery, D. T. et al. B cell-intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans. J. Exp. Med. 207, 155–171 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Meyer-Bahlburg, A. et al. Heterozygous signal transducer and activator of transcription 3 mutations in hyper-IgE syndrome result in altered B cell maturation. J. Allergy Clin. Immunol. 129, 559–562 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Tangye, S. G., Cook, M. C. & Fulcher, D. A. Insights into the role of STAT3 in human lymphocyte differentiation as revealed by the hyper-IgE syndrome. J. Immunol. 182, 21–28 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Fornek, J. L. et al. Critical role for Stat3 in T-dependent terminal differentiation of IgG B cells. Blood 107, 1085–1091 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Herrmann, A. et al. CTLA4 promotes Tyk2-STAT3-dependent B cell oncogenicity. Cancer Res. 77, 5118–5128 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhang, C. et al. CD5 binds to interleukin-6 and induces a feed-forward loop with the transcription factor STAT3 in B cells to promote cancer. Immunity 44, 913–923 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Sanz-Moreno, V. et al. ROCK and JAK1 signaling cooperate to control actomyosin contractility in tumor cells and stroma. Cancer Cell 20, 229–245 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Laklai, H. et al. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat. Med. 22, 497–505 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Nagathihalli, N. S. et al. Signal transducer and activator of transcription 3, mediated remodeling of the tumor microenvironment results in enhanced tumor drug delivery in a mouse model of pancreatic cancer. Gastroenterology 149, 1932–1943 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. O’Donoghue, R. J. et al. Genetic partitioning of interleukin-6 signalling in mice dissociates Stat3 from Smad3-mediated lung fibrosis. EMBO Mol. Med. 4, 939–951 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Augsten, M. Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front. Oncol. 4, 62 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Xing, F., Saidou, J. & Watabe, K. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front. Biosci. (Landmark Ed.) 15, 166–179 (2010).

    Article  CAS  Google Scholar 

  139. Albrengues, J. et al. Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated fibroblasts. Nat. Commun. 6, 10204 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Yang, X. et al. FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling. Cancer Res. 76, 4124–4135 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Cheng, Y. et al. Cancer-associated fibroblasts induce PDL1+ neutrophils through the IL6-STAT3 pathway that foster immune suppression in hepatocellular carcinoma. Cell Death Dis. 9, 422 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Tao, L. et al. Cancer-associated fibroblasts treated with cisplatin facilitates chemoresistance of lung adenocarcinoma through IL-11/IL-11R/STAT3 signaling pathway. Sci. Rep. 6, 38408 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yu, H., Kortylewski, M. & Pardoll, D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat. Rev. Immunol. 7, 41–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Liu, Y. et al. STAT3-regulated exosomal miR-21 promotes angiogenesis and is involved in neoplastic processes of transformed human bronchial epithelial cells. Cancer Lett. 370, 125–135 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Zhao, J. et al. LncRNA PVT1 promotes angiogenesis via activating the STAT3/VEGFA axis in gastric cancer. Oncogene 37, 4094–4109 (2018).

    Article  CAS  PubMed  Google Scholar 

  146. Wu, X. et al. IL-17 promotes tumor angiogenesis through Stat3 pathway mediated upregulation of VEGF in gastric cancer. Tumour Biol. 37, 5493–5501 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Yan, Q. et al. ANGPTL1 interacts with Integrin α1β1 to suppress HCC angiogenesis and metastasis by inhibiting JAK2/STAT3 signaling. Cancer Res. 77, 5831–5845 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. de la Iglesia, N. et al. Identification of a PTEN-regulated STAT3 brain tumor suppressor pathway. Genes Dev. 22, 449–462 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Ecker, A. et al. The dark and the bright side of Stat3: proto-oncogene and tumor-suppressor. Front. Biosci. (Landmark Ed) 14, 2944–2958 (2009).

    Article  CAS  Google Scholar 

  150. Lee, J. et al. Signal transducer and activator of transcription 3 (STAT3) protein suppresses adenoma-to-carcinoma transition in Apcmin/+ mice via regulation of Snail-1 (SNAI) protein stability. J. Biol. Chem. 287, 18182–18189 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Musteanu, M. et al. Stat3 is a negative regulator of intestinal tumor progression in Apc(Min) mice. Gastroenterology 138, 1003–1011 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Couto, J. P. et al. STAT3 negatively regulates thyroid tumorigenesis. Proc. Natl Acad. Sci. USA 109, E2361–E2370 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Grabner, B. et al. Disruption of STAT3 signalling promotes KRAS-induced lung tumorigenesis. Nat. Commun. 6, 6285 (2015). In KRAS mutant lung adenocarcinoma, lung tissue-specific inactivation of STAT3 in mice results in increased tumour burden, and low STAT3 levels correlate with poor patient survival.

    Article  CAS  PubMed  Google Scholar 

  154. Gao, S. P. et al. Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J. Clin. Invest. 117, 3846–3856 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kopparam, J. et al. RIP4 inhibits STAT3 signaling to sustain lung adenocarcinoma differentiation. Cell Death Differ. 24, 1761–1771 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Haura, E. B., Zheng, Z., Song, L., Cantor, A. & Bepler, G. Activated epidermal growth factor receptor-Stat-3 signaling promotes tumor survival in vivo in non-small cell lung cancer. Clin. Cancer Res. 11, 8288–8294 (2005).

    Article  CAS  PubMed  Google Scholar 

  157. Brooks, G. D. et al. IL6 trans-signaling promotes KRAS-driven lung carcinogenesis. Cancer Res. 76, 866–876 (2016). This study demonstrates that inhibition of IL-6 trans -signalling ameliorates lung cancer pathogenesis.

    Article  CAS  PubMed  Google Scholar 

  158. D’Amico, S. et al. STAT3 is a master regulator of epithelial identity and KRAS-driven tumorigenesis. Genes Dev. 32, 1175–1187 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Pencik, J. et al. STAT3 regulated ARF expression suppresses prostate cancer metastasis. Nat. Commun. 6, 7736 (2015). This study shows that the gene encoding ARF is a direct STAT3 target and that genetic ablation of STAT3 signalling disrupts the ARF–MDM2–p53 tumour suppressor axis to bypass mechanisms of cellular senescence in a model of prostate cancer.

    Article  CAS  PubMed  Google Scholar 

  160. Ernst, M. & Putoczki, T. L. Molecular pathways: IL11 as a tumor-promoting cytokine-translational implications for cancers. Clin. Cancer Res. 20, 5579–5588 (2014).

    Article  CAS  PubMed  Google Scholar 

  161. Jones, S. A., Scheller, J. & Rose-John, S. Therapeutic strategies for the clinical blockade of IL-6/gp130 signaling. J. Clin. Invest. 121, 3375–3383 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Buchert, M., Burns, C. J. & Ernst, M. Targeting JAK kinase in solid tumors: emerging opportunities and challenges. Oncogene 35, 939–951 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Sakamoto, K. et al. Janus kinase 1 is essential for inflammatory cytokine signaling and mammary gland remodeling. Mol. Cell. Biol. 36, 1673–1690 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Van Rompaey, L. et al. Preclinical characterization of GLPG0634, a selective inhibitor of JAK1, for the treatment of inflammatory diseases. J. Immunol. 191, 3568–3577 (2013).

    Article  PubMed  CAS  Google Scholar 

  165. Phillips, T. J. et al. Phase 1 study of the PI3Kdelta inhibitor INCB040093+/- JAK1 inhibitor itacitinib in relapsed/refractory B cell lymphoma. Blood 132, 293–306 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Gadina, M. et al. Translational and clinical advances in JAK-STAT biology: the present and future of jakinibs. J. Leukoc. Biol. 104, 499–514 (2018).

    Article  CAS  PubMed  Google Scholar 

  167. Beebe, J. D., Liu, J. Y. & Zhang, J. T. Two decades of research in discovery of anticancer drugs targeting STAT3, how close are we? Pharmacol. Ther. 191, 74–91 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. Lieu, K. G. et al. The rabies virus interferon antagonist P protein interacts with activated STAT3 and inhibits Gp130 receptor signaling. J. Virol. 87, 8261–8265 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zhang, Q. et al. Serum-resistant CpG-STAT3 decoy for targeting survival and immune checkpoint signaling in acute myeloid leukemia. Blood 127, 1687–1700 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hong, D. et al. AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Sci. Transl Med. 7, 314ra185 (2015). This paper establishes not only the feasibility of specific targeting of STAT3 in tumour models but also that systemic anti-STAT3 therapy impairs the cell-autonomous processes that are required for the survival and growth of malignant cells as well as limiting their ability to elicit anticancer immune responses.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Kroemer, G., Galluzzi, L. & Zitvogel, L. STAT3 inhibition for cancer therapy: cell-autonomous effects only? Oncoimmunology 5, e1126063 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Nelson, E. A., Sharma, S. V., Settleman, J. & Frank, D. A. A chemical biology approach to developing STAT inhibitors: molecular strategies for accelerating clinical translation. Oncotarget 2, 518–524 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Xiang, M. et al. Gene expression-based discovery of atovaquone as a STAT3 inhibitor and anticancer agent. Blood 128, 1845–1853 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Li, Y. et al. Suppression of cancer relapse and metastasis by inhibiting cancer stemness. Proc. Natl Acad. Sci. USA 112, 1839–1844 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Locken, H., Clamor, C. & Muller, K. Napabucasin and related heterocycle-fused naphthoquinones as STAT3 inhibitors with antiproliferative activity against cancer cells. J. Nat. Prod. 81, 1636–1644 (2018).

    Article  PubMed  CAS  Google Scholar 

  176. Jonker, D. J. et al. The NCIC CTG and AGITG CO.23 trial: a phase III randomized study of BBI608 plus best supportive care (BSC) versus placebo (PBO) plus BSC in patients (Pts) with pretreated advanced colorectal carcinoma (CRC) [abstract]. J. Clin. Oncol. 32 (Suppl. 15), TPS3660 (2014).

    Article  Google Scholar 

  177. Akira, S. et al. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell 77, 63–71 (1994).

    Article  CAS  PubMed  Google Scholar 

  178. Alorro, M. G. et al. Generation of an inducible mouse model to reversibly silence Stat3. Genesis 55, e23023 (2017).

    Article  CAS  Google Scholar 

  179. Sirkisoon, S. R. et al. Interaction between STAT3 and GLI1/tGLI1 oncogenic transcription factors promotes the aggressiveness of triple-negative breast cancers and HER2-enriched breast cancer. Oncogene 37, 2502–2514 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zhang, J. X. et al. Unique genome-wide map of TCF4 and STAT3 targets using ChIP-seq reveals their association with new molecular subtypes of glioblastoma. Neuro Oncol. 15, 279–289 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Tripathi, S. K. et al. Genome-wide analysis of STAT3-mediated transcription during early human Th17 cell differentiation. Cell Rep. 19, 1888–1901 (2017).

    Article  CAS  PubMed  Google Scholar 

  182. Yang, J. et al. Novel roles of unphosphorylated STAT3 in oncogenesis and transcriptional regulation. Cancer Res. 65, 939–947 (2005).

    CAS  PubMed  Google Scholar 

  183. Yang, J. & Stark, G. R. Roles of unphosphorylated STATs in signaling. Cell Res. 18, 443–451 (2008).

    Article  CAS  PubMed  Google Scholar 

  184. Yuan, Z. L., Guan, Y. J., Chatterjee, D. & Chin, Y. E. Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science 307, 269–273 (2005).

    Article  CAS  PubMed  Google Scholar 

  185. Lee, J. L., Wang, M. J. & Chen, J. Y. Acetylation and activation of STAT3 mediated by nuclear translocation of CD44. J. Cell Biol. 185, 949–957 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Nie, Y. et al. STAT3 inhibition of gluconeogenesis is downregulated by SirT1. Nat. Cell Biol. 11, 492–500 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Limagne, E. et al. Sirtuin-1 activation controls tumor growth by impeding Th17 differentiation via STAT3 deacetylation. Cell Rep. 19, 746–759 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Dasgupta, M., Dermawan, J. K., Willard, B. & Stark, G. R. STAT3-driven transcription depends upon the dimethylation of K49 by EZH2. Proc. Natl Acad. Sci. USA 112, 3985–3990 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Yang, J. et al. Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes. Proc. Natl Acad. Sci. USA 107, 21499–21504 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kim, E. et al. Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell 23, 839–852 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Zhou, Z. et al. SUMOylation and SENP3 regulate STAT3 activation in head and neck cancer. Oncogene 35, 5826–5838 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Holtick, U., Scheulen, M. E., von Bergwelt-Baildon, M. S. & Weihrauch, M. R. Toll-like receptor 9 agonists as cancer therapeutics. Expert Opin. Investig. Drugs 20, 361–372 (2011).

    Article  CAS  PubMed  Google Scholar 

  193. Redell, M. S., Ruiz, M. J., Alonzo, T. A., Gerbing, R. B. & Tweardy, D. J. Stat3 signaling in acute myeloid leukemia: ligand-dependent and -independent activation and induction of apoptosis by a novel small-molecule Stat3 inhibitor. Blood 117, 5701–5709 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Xu, X., Kasembeli, M. M., Jiang, X., Tweardy, B. J. & Tweardy, D. J. Chemical probes that competitively and selectively inhibit Stat3 activation. PLOS ONE 4, e4783 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Horiguchi, A. et al. STAT3 inhibitor WP1066 as a novel therapeutic agent for renal cell carcinoma. Br. J. Cancer 102, 1592–1599 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hussain, S. F. et al. A novel small molecule inhibitor of signal transducers and activators of transcription 3 reverses immune tolerance in malignant glioma patients. Cancer Res. 67, 9630–9636 (2007).

    Article  CAS  PubMed  Google Scholar 

  197. Iwamaru, A. et al. A novel inhibitor of the STAT3 pathway induces apoptosis in malignant glioma cells both in vitro and in vivo. Oncogene 26, 2435–2444 (2007).

    Article  CAS  PubMed  Google Scholar 

  198. Sau, S., Mondal, S. K., Kashaw, S. K., Iyer, A. K. & Banerjee, R. Combination of cationic dexamethasone derivative and STAT3 inhibitor (WP1066) for aggressive melanoma: a strategy for repurposing a phase I clinical trial drug. Mol. Cell Biochem. 436, 119–136 (2017).

    Article  CAS  PubMed  Google Scholar 

  199. Chung, S. Y. et al. Two novel SHP-1 agonists, SC-43 and SC-78, are more potent than regorafenib in suppressing the in vitro stemness of human colorectal cancer cells. Cell Death Discov. 5, 25 (2018).

    Google Scholar 

  200. Tai, W. T. et al. Discovery of novel Src homology region 2 domain-containing phosphatase 1 agonists from sorafenib for the treatment of hepatocellular carcinoma. Hepatology 59, 190–201 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Health and Medical Research Council (NHMRC) Australia (GNT1079257 and GNT1125951), United States Department of Defense (CA150132), Grant-in-Aid from the Cancer Council Victoria (GNT1145028 and GNT1143036) and funds from the Operational Infrastructure Support Program provided by the Victorian Government. A.C. is a Career Development Fellow (GTN1062247) and M.E. is a Research Fellow of the NHMRC (GNT1079257).

Reviewer information

Nature Reviews Cancer thanks D. Frank and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, substantially contributed to the discussion of content and wrote, reviewed and edited the manuscript.

Corresponding authors

Correspondence to Daniel Gough or Matthias Ernst.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Acute phase response

An orchestrated response to tissue injury, infection or inflammation that involves the induction of acute phase proteins by the liver.

Trans-signalling

A process relevant to interleukin-6 (IL-6), and possibly IL-11, whereby enzymatic cleaving of the extracellular domain of the corresponding cognate α-receptors enables formation of soluble ligand–receptor complexes, which can bind to and activate any cell expressing GP130 irrespective of the presence of the native α-receptor chains.

Para-inflammation

An adaptive response to tissue stress or malfunction that is characterized by subclinical reversible inflammation that is manifested by excessive signal transducer and activator of transcription 3 (STAT3) and nuclear factor-κB (NF-κB) activity.

Electron transport chain

(ETC). A series of five protein complexes traversing the mitochondrial inner membrane required for the efficient generation of ATP through oxidative phosphorylation.

Autophagy

A process that is essential to the recycling of unneeded or damaged cellular components during conditions of nutrient stress elicited by many perturbations including cellular transformation and wound healing.

Autolysosomes

Structures that are formed by the fusion of the autophagosome with the lysosome to facilitate digestion of the contents.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huynh, J., Chand, A., Gough, D. et al. Therapeutically exploiting STAT3 activity in cancer — using tissue repair as a road map. Nat Rev Cancer 19, 82–96 (2019). https://doi.org/10.1038/s41568-018-0090-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-018-0090-8

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer