OPINION

Eco-evolutionary causes and consequences of temporal changes in intratumoural blood flow

Abstract

Temporal changes in blood flow are commonly observed in malignant tumours, but the evolutionary causes and consequences are rarely considered. We propose that stochastic temporal variations in blood flow and microenvironmental conditions arise from the eco-evolutionary dynamics of tumour angiogenesis in which cancer cells, as individual units of selection, can influence and respond only to local environmental conditions. This leads to new vessels arising from the closest available vascular structure regardless of the size or capacity of this parental vessel. These dynamics produce unstable vascular networks with unpredictable spatial and temporal variations in blood flow and microenvironmental conditions. Adaptations of evolving populations to temporally varying environments in nature include increased diversity, greater motility and invasiveness, and highly plastic phenotypes, allowing for broad metabolic adaptability and rapid shifts to high rates of proliferation and profound quiescence. These adaptive strategies, when adopted in cancer cells, promote many commonly observed phenotypic properties including those found in the stem phenotype and in epithelial-to-mesenchymal transition. Temporal variations in intratumoural blood flow, which occur through the promotion of cancer cell phenotypes that facilitate both metastatic spread and resistance to therapy, may have substantial clinical consequences.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Multiscalar spatial and temporal variations in vascular flow lead to heterogeneous cell densities and properties.
Fig. 2: The evolutionary constraints on tumour angiogenesis.
Fig. 3: Key dynamics that result from variations in intratumoural blood flow.

References

  1. 1.

    Pienta, K. J., McGregor, N., Axelrod, R. & Axelrod, D. E. Ecological therapy for cancer: defining tumors using an ecosystem paradigm suggests new opportunities for novel cancer treatments. Transl Oncol. 1, 158–164 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Greaves, M. Evolutionary determinants of cancer. Cancer Discov. 5, 806–820 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  3. 3.

    Pries, A. R. & Secomb, T. W. Making microvascular networks work: angiogenesis, remodeling, and pruning. Physiology (Bethesda) 29, 446–455 (2014).

    Google Scholar 

  4. 4.

    Pries, A. R., Reglin, B. & Secomb, T. W. Structural adaptation of microvascular networks: functional roles of adaptive responses. Am. J. Physiol. Heart Circ. Physiol. 281, H1015–H1025 (2001).

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Sherwood, L., & Cengage Learning (Firm). Human physiology: From Cells to Systems. 7th edn (Brooks/Cole, Cengage Learning, 2010).

    Google Scholar 

  6. 6.

    Mankoff, D. A., Dunnwald, L. K., Partridge, S. C. & Specht, J. M. Blood flow-metabolism mismatch: good for the tumor, bad for the patient. Clin. Cancer Res. 15, 5294–5296 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Betof, A. S. et al. Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise. J. Natl Cancer Inst. 107, djv040 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. 8.

    Brizel, D. M. et al. A comparison of tumor and normal tissue microvascular hematocrits and red cell fluxes in a rat window chamber model. Int. J. Radiat. Oncol. Biol. Phys. 25, 269–276 (1993).

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Dewhirst, M. W. et al. Microvascular studies on the origins of perfusion-limited hypoxia. Br. J. Cancer Suppl. 27, S247–S251 (1996).

    PubMed  PubMed Central  CAS  Google Scholar 

  10. 10.

    Yu, B. et al. Measuring tumor cycling hypoxia and angiogenesis using a side-firing fiber optic probe. J. Biophotonics 7, 552–564 (2014).

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Eskey, C. J., Koretsky, A. P., Domach, M. M. & Jain, R. K. 2H-nuclear magnetic resonance imaging of tumor blood flow: spatial and temporal heterogeneity in a tissue-isolated mammary adenocarcinoma. Cancer Res. 52, 6010–6019 (1992).

    PubMed  CAS  Google Scholar 

  12. 12.

    Gatenby, R. A. & Brown, J. Mutations, evolution and the central role of a self-defined fitness function in the initiation and progression of cancer. Biochim. Biophys. Acta 1867, 162–166 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  13. 13.

    Gatenby, R. Cancer biology and Mr. Darwin. Biochim. Biophys. Acta 1867, 67–68 (2017).

    PubMed  CAS  Google Scholar 

  14. 14.

    Gillies, R. J., Schornack, P. A., Secomb, T. W. & Raghunand, N. Causes and effects of heterogeneous perfusion in tumors. Neoplasia 1, 197–207 (1999).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. 15.

    Gilead, A., Meir, G. & Neeman, M. The role of angiogenesis, vascular maturation, regression and stroma infiltration in dormancy and growth of implanted MLS ovarian carcinoma spheroids. Int. J. Cancer 108, 524–531 (2004).

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Semenza, G. L. Hypoxia and cancer. Cancer Metastasis Rev. 26, 223–224 (2007).

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Kato, Y. et al. Acidic extracellular microenvironment and cancer. Cancer Cell. Int. 13, 89 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. 18.

    Ergon, T. & Ergon, R. When three traits make a line: evolution of phenotypic plasticity and genetic assimilation through linear reaction norms in stochastic environments. J. Evol. Biol. 30, 486–500 (2017).

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Kivela, S. M., Valimaki, P. & Gotthard, K. Evolution of alternative insect life histories in stochastic seasonal environments. Ecol. Evol. 6, 5596–5613 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Schreiber, S. J. The evolution of patch selection in stochastic environments. Am. Nat. 180, 17–34 (2012).

    PubMed  Article  Google Scholar 

  21. 21.

    Via, S. & Lande, R. Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution 39, 505–522 (1985).

    PubMed  Article  Google Scholar 

  22. 22.

    Muller, J., Hense, B. A., Fuchs, T. M., Utz, M. & Potzsche, C. Bet-hedging in stochastically switching environments. J. Theor. Biol. 336, 144–157 (2013).

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Nichol, D., Robertson-Tessi, M., Jeavons, P. & Anderson, A. R. Stochasticity in the genotype-phenotype map: implications for the robustness and persistence of bet-hedging. Genetics 204, 1523–1539 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Schwinning, S. & Sala, O. E. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141, 211–220 (2004).

    PubMed  Article  Google Scholar 

  25. 25.

    Gordon, C. E. Movement patterns of wintering grassland sparrows in Arizona. Auk 117, 748–759 (2000).

    Article  Google Scholar 

  26. 26.

    Basanta, D. & Anderson, A. R. A. Homeostasis back and forth: an ecoevolutionary perspective of cancer. Cold Spring Harb. Perspect. Med. 7, a028332 (2017).

    PubMed  Article  Google Scholar 

  27. 27.

    Heeger, D. J. & Ress, D. What does fMRI tell us about neuronal activity? Nat. Rev. Neurosci. 3, 142–151 (2002).

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Merlo, L. M., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6, 924–935 (2006).

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Maley, C. C. et al. Classifying the evolutionary and ecological features of neoplasms. Nat. Rev. Cancer 17, 605–619 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. 30.

    Rieger, H. & Welter, M. Integrative models of vascular remodeling during tumor growth. Wiley Interdiscip. Rev. Syst. Biol. Med. 7, 113–129 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. 31.

    Barker, G. & Odling-Smee, F. J. in Entangled Life: Organisms and Environment in the Biological and Social Sciences: History, Philosophy and Theory of the Life Sciences (eds Desjardins, G. E., Barker, G. & Pearce, T.) 187–211 (Springer, 2014).

  32. 32.

    Odling-Smee, F. J., Laland, K. N. & Feldman, M. W. Niche Construction: the Neglected Process in Evolution (Princeton Univ. Press, 2003).

  33. 33.

    You, L. et al. Spatial versus non-spatial eco-evolutionary dynamics in a tumor growth model. J. Theor. Biol. 435, 78–97 (2017).

    PubMed  Article  Google Scholar 

  34. 34.

    Laland, K. N., Odling-Smee, F. J. & Feldman, M. W. Evolutionary consequences of niche construction and their implications for ecology. Proc. Natl Acad. Sci. USA 96, 10242–10247 (1999).

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Fukumura, D. & Jain, R. K. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc. Res. 74, 72–84 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. 36.

    Secomb, T. W., Dewhirst, M. W. & Pries, A. R. Structural adaptation of normal and tumour vascular networks. Basic Clin. Pharmacol. Toxicol. 110, 63–69 (2013).

    Article  CAS  Google Scholar 

  37. 37.

    Macklin, P. et al. Multiscale modelling and nonlinear simulation of vascular tumour growth. J. Math. Biol. 58, 765–798 (2009).

    PubMed  Article  Google Scholar 

  38. 38.

    Liou, G. Y. & Storz, P. Reactive oxygen species in cancer. Free Radic. Res. 44, 479–496 (2010).

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Khramtsov, V. V. & Gillies, R. J. Janus-faced tumor microenvironment and redox. Antioxid. Redox Signal. 21, 723–729 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. 40.

    Skala, M. C., Fontanella, A., Lan, L., Izatt, J. A. & Dewhirst, M. W. Longitudinal optical imaging of tumor metabolism and hemodynamics. J. Biomed. Opt. 15, 011112 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. 41.

    Wang, J. W. et al. Quantitative assessment of tumor blood flow changes in a murine breast cancer model after adriamycin chemotherapy using contrast-enhanced destruction-replenishment sonography. J. Ultrasound Med. 32, 683–690 (2013).

    PubMed  Article  Google Scholar 

  42. 42.

    Milosevic, M. F., Fyles, A. W. & Hill, R. P. The relationship between elevated interstitial fluid pressure and blood flow in tumors: a bioengineering analysis. Int. J. Radiat. Oncol. Biol. Phys. 43, 1111–1123 (1999).

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Jain, R. K. Determinants of tumor blood flow: a review. Cancer Res. 48, 2641–2658 (1988).

    PubMed  CAS  Google Scholar 

  44. 44.

    Pahernik, S. et al. Quantitative imaging of tumour blood flow by contrast-enhanced magnetic resonance imaging. Br. J. Cancer 85, 1655–1663 (2001).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. 45.

    Matsumoto, S., Yasui, H., Mitchell, J. B. & Krishna, M. C. Imaging cycling tumor hypoxia. Cancer Res. 70, 10019–10023 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. 46.

    Herman, A. B., Savage, V. M. & West, G. B. A quantitative theory of solid tumor growth, metabolic rate and vascularization. PLoS ONE 6, e22973 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. 47.

    Cairns, R. A., Kalliomaki, T. & Hill, R. P. Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors. Cancer Res. 61, 8903–8908 (2001).

    PubMed  CAS  Google Scholar 

  48. 48.

    Dewhirst, M. W. Relationships between cycling hypoxia, HIF-1, angiogenesis and oxidative stress. Radiat. Res. 172, 653–665 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. 49.

    Zhang, G., Palmer, G. M., Dewhirst, M. W. & Fraser, C. L. A dual-emissive-materials design concept enables tumour hypoxia imaging. Nat. Mater. 8, 747–751 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50.

    Buckling, A., Brockhurst, M. A., Travisano, M. & Rainey, P. B. Experimental adaptation to high and low quality environments under different scales of temporal variation. J. Evol. Biol. 20, 296–300 (2006).

    Article  Google Scholar 

  51. 51.

    Trotter, M. J., Chaplin, D. J. & Olive, P. L. Use of a carbocyanine dye as a marker of functional vasculature in murine tumours. Br. J. Cancer 59, 706–709 (1989).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. 52.

    Durand, R. E. & LePard, N. E. Contribution of transient blood flow to tumour hypoxia in mice. Acta Oncol. 34, 317–323 (1995).

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Durand, R. E. & Aquino-Parsons, C. Clinical relevance of intermittent tumour blood flow. Acta Oncol. 40, 929–936 (2001).

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Durand, R. E. Intermittent blood flow in solid tumours — an under-appreciated source of ‘drug resistance’. Cancer Metastasis Rev. 20, 57–61 (2001).

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Wong, T. Z. et al. PET of hypoxia and perfusion with 62Cu-ATSM and 62Cu-PTSM using a 62Zn/62Cu generator. AJR Am. J. Roentgenol. 190, 427–432 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Benjaminsen, I. C., Brurberg, K. G., Ruud, E. B. & Rofstad, E. K. Assessment of extravascular extracellular space fraction in human melanoma xenografts by DCE-MRI and kinetic modeling. Magn. Reson. Imaging 26, 160–170 (2008).

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Brurberg, K. G., Benjaminsen, I. C., Dorum, L. M. & Rofstad, E. K. Fluctuations in tumor blood perfusion assessed by dynamic contrast-enhanced MRI. Magn. Reson. Med. 58, 473–481 (2007).

    PubMed  Article  Google Scholar 

  58. 58.

    Cardenas-Navia, L. I. et al. The pervasive presence of fluctuating oxygenation in tumors. Cancer Res. 68, 5812–5819 (2008).

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Helmlinger, G., Yuan, F., Dellian, M. & Jain, R. K. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat. Med. 3, 177–182 (1997).

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Fontanella, A. N. et al. Quantitative mapping of hemodynamics in the lung, brain, and dorsal window chamber-grown tumors using a novel, automated algorithm. Microcirculation 20, 724–735 (2013).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Neeman, M., Dafni, H., Bukhari, O., Braun, R. D. & Dewhirst, M. W. In vivo BOLD contrast MRI mapping of subcutaneous vascular function and maturation: validation by intravital microscopy. Magn. Reson. Med. 45, 887–898 (2001).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  62. 62.

    Menon, R. S. et al. BOLD based functional MRI at 4 Tesla includes a capillary bed contribution: echo-planar imaging correlates with previous optical imaging using intrinsic signals. Magn. Reson. Med. 33, 453–459 (1995).

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Nevo, U. et al. Diffusion anisotropy MRI for quantitative assessment of recovery in injured rat spinal cord. Magn. Reson. Med. 45, 1–9 (2001).

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Duyn, J. H. et al. 3-Dimensional functional imaging of human brain using echo-shifted FLASH MRI. Magn. Reson. Med. 32, 150–155 (1994).

    PubMed  Article  CAS  Google Scholar 

  65. 65.

    Baudelet, C. & Gallez, B. Effect of anesthesia on the signal intensity in tumors using BOLD-MRI: comparison with flow measurements by Laser Doppler flowmetry and oxygen measurements by luminescence-based probes. Magn. Reson. Imaging 22, 905–912 (2004).

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Goncalves, M. R. et al. Decomposition of spontaneous fluctuations in tumour oxygenation using BOLD MRI and independent component analysis. Br. J. Cancer 113, 1168–1177 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  67. 67.

    Yasui, H. et al. Low-field magnetic resonance imaging to visualize chronic and cycling hypoxia in tumor-bearing mice. Cancer Res. 70, 6427–6436 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  68. 68.

    Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  69. 69.

    Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. 70.

    Abzhanov, A. Darwin’s finches: analysis of beak morphological changes during evolution. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.emo119 (2009).

    Article  PubMed  Google Scholar 

  71. 71.

    Ibrahim-Hashim, A. et al. Defining cancer subpopulations by adaptive strategies rather than molecular properties provides novel insights into intratumoral evolution. Cancer Res. 77, 2242–2254 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  72. 72.

    Lloyd, M. C. et al. Darwinian dynamics of intratumoral heterogeneity: not solely random mutations but also variable environmental selection forces. Cancer Res. 76, 3136–3144 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  73. 73.

    Estrella, V. et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 73, 1524–1535 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  74. 74.

    Thorn, C. C., Freeman, T. C., Scott, N., Guillou, P. J. & Jayne, D. G. Laser microdissection expression profiling of marginal edges of colorectal tumours reveals evidence of increased lactate metabolism in the aggressive phenotype. Gut 58, 404–412 (2009).

    PubMed  Article  CAS  Google Scholar 

  75. 75.

    Robertson-Tessi, M., Gillies, R. J., Gatenby, R. A. & Anderson, A. R. Impact of metabolic heterogeneity on tumor growth, invasion, and treatment outcomes. Cancer Res. 75, 1567–1579 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  76. 76.

    Mitsui, H. et al. Gene expression profiling of the leading edge of cutaneous squamous cell carcinoma: IL-24-driven MMP-7. J. Invest. Dermatol. 134, 1418–1427 (2014).

    PubMed  Article  CAS  Google Scholar 

  77. 77.

    Georgiou, L. et al. Angiogenesis and p53 at the invading tumor edge: prognostic markers for colorectal cancer beyond stage. J. Surg. Res. 131, 118–123 (2006).

    PubMed  Article  CAS  Google Scholar 

  78. 78.

    Brown, G. P., Shilton, C., Phillips, B. L. & Shine, R. Invasion, stress, and spinal arthritis in cane toads. Proc. Natl Acad. Sci. USA 104, 17698–17700 (2007).

    PubMed  Article  Google Scholar 

  79. 79.

    Martin, C. H. Context dependence in complex adaptive landscapes: frequency and trait-dependent selection surfaces within an adaptive radiation of Caribbean pupfishes. Evolution 70, 1265–1282 (2016).

    PubMed  Article  Google Scholar 

  80. 80.

    Grime, J. P. & Pierce, S. The Evolutionary Strategies That Shape Ecosystems (Wiley-Blackwell, 2012).

  81. 81.

    Lytle, D. A. Disturbance regimes and life-history evolution. Am. Nat. 157, 525–536 (2001).

    PubMed  CAS  Google Scholar 

  82. 82.

    Nunney, L. Adapting to a changing environment: modeling the interaction of directional selection and plasticity. J. Hered. 107, 15–24 (2016).

    PubMed  Article  Google Scholar 

  83. 83.

    Merila, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7, 1–14 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Crozier, L. G. & Hutchings, J. A. Plastic and evolutionary responses to climate change in fish. Evol. Appl. 7, 68–87 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Gravenmier, C. A., Siddique, M. & Gatenby, R. A. Adaptation to stochastic temporal variations in intratumoral blood flow: the Warburg effect as a bet hedging strategy. Bull. Math. Biol. 80, 954–970 (2018).

    PubMed  Article  CAS  Google Scholar 

  86. 86.

    Hendry, A. P. Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics. J. Hered. 107, 25–41 (2016).

    PubMed  Article  Google Scholar 

  87. 87.

    Giesel, J. T. Reproductive strategeies as adaptations to life in temprally heterogeneous environments. Annu. Rev. Ecol. Syst. 7, 57–79 (1976).

    Article  Google Scholar 

  88. 88.

    Condon, C., Cooper, B. S., Yeaman, S. & Angilletta, M. J. Jr. Temporal variation favors the evolution of generalists in experimental populations of Drosophila melanogaster. Evolution 68, 720–728 (2014).

    PubMed  Article  Google Scholar 

  89. 89.

    Egevang, C. et al. Tracking of Arctic terns Sterna paradisaea reveals longest animal migration. Proc. Natl Acad. Sci. USA 107, 2078–2081 (2010).

    PubMed  Article  Google Scholar 

  90. 90.

    Yilmaz, M. & Christofori, G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 28, 15–33 (2009).

    PubMed  Article  Google Scholar 

  91. 91.

    Haase, V. H. Oxygen regulates epithelial-to-mesenchymal transition: insights into molecular mechanisms and relevance to disease. Kidney Int. 76, 492–499 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  92. 92.

    Tilmon, K. J. Specialization, Speciation, and Radiation: the Evolutionary Biology of Herbivorous Insects (Univ. of California Press, 2008).

  93. 93.

    Hoffmann, A. A. & Hercus, M. J. Environmental stress as an evolutionary force. BioScience 50, 217–226 (2000).

    Article  Google Scholar 

  94. 94.

    Audo, M. C. & Diehl, W. Effect of quantity and quality of environmental stress on multilocus heterozygosity — growth relationships in Eisenia fetida (Annelida: Oligochaeta). Heredity 75, 98–105 (1995).

    Article  Google Scholar 

  95. 95.

    Kanarek, A. R. & Webb, C. T. Allee effects, adaptive evolution, and invasion success. Evol. Appl. 3, 122–135 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Brown, C. R. & Brown, M. B. Intense natural selection on body size and wing and tail asymmetry in cliff swallows during severe weather. Evolution 52, 1461–1475 (1998).

    PubMed  Article  Google Scholar 

  97. 97.

    Prentis, P. J., Wilson, J. R., Dormontt, E. E., Richardson, D. M. & Lowe, A. J. Adaptive evolution in invasive species. Trends Plant Sci 13, 288–294 (2008).

    PubMed  Article  CAS  Google Scholar 

  98. 98.

    Blacher, P., Huggins, T. J. & Bourke, A. F. G. Evolution of ageing, costs of reproduction and the fecundity-longevity trade-off in eusocial insects. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2017.0380 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Aktipis, C. A., Boddy, A. M., Gatenby, R. A., Brown, J. S. & Maley, C. C. Life history trade-offs in cancer evolution. Nat. Rev. Cancer 13, 883–892 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  100. 100.

    Wadsworth, C. B., Woods, W. A. Jr, Hahn, D. A. & Dopman, E. B. One phase of the dormancy developmental pathway is critical for the evolution of insect seasonality. J. Evol. Biol. 26, 2359–2368 (2013).

    PubMed  Article  CAS  Google Scholar 

  101. 101.

    Diniz, D. F. A., de Albuquerque, C. M. R., Oliva, L. O., de Melo-Santos, M. A. V. & Ayres, C. F. J. Diapause and quiescence: dormancy mechanisms that contribute to the geographical expansion of mosquitoes and their evolutionary success. Parasit. Vectors 10, 310 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Chen, E. H., Hou, Q. L., Wei, D. D., Jiang, H. B. & Wang, J. J. Phenotypic plasticity, trade-offs and gene expression changes accompanying dietary restriction and switches in Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Sci. Rep. 7, 1988 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  103. 103.

    Jia, D., Jolly, M. K., Kulkarni, P. & Levine, H. Phenotypic plasticity and cell fate decisions in cancer: insights from dynamical systems theory. Cancers (Basel) 9, E70 (2017).

    Article  Google Scholar 

  104. 104.

    Gade, T. P. F. et al. Ischemia induces quiescence and autophagy dependence in hepatocellular carcinoma. Radiology 283, 702–710 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Wang, X. et al. Exit from quiescence displays a memory of cell growth and division. Nat. Commun. 8, 321 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  106. 106.

    Kassen, R. The experimental evolution of specialists, generalists, and the maintenance of diversity. J. Evol. Biol. 15, 173–190 (2002).

    Article  Google Scholar 

  107. 107.

    Vamosi, J. C., Armbruster, W. S. & Renner, S. S. Evolutionary ecology of specialization: insights from phylogenetic analysis. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2014.2004 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Van Tienderen, P. H. Evolution of generalists and specialists in spatially heterogeneous environments. Evolution 45, 1317–1331 (1991).

    PubMed  Article  Google Scholar 

  109. 109.

    Johnson, K. P., Malenke, J. R. & Clayton, D. H. Competition promotes the evolution of host generalists in obligate parasites. Proc. Biol. Sci. 276, 3921–3926 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Folmes, C. D., Dzeja, P. P., Nelson, T. J. & Terzic, A. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 11, 596–606 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  111. 111.

    Vander Heiden, M. G. & DeBerardinis, R. J. Understanding the intersections between metabolism and cancer biology. Cell 168, 657–669 (2017).

    PubMed Central  Article  CAS  Google Scholar 

  112. 112.

    Chaudhury, B. et al. Heterogeneity in intratumoral regions with rapid gadolinium washout correlates with estrogen receptor status and nodal metastasis. J. Magn. Reson. Imaging 42, 1421–1430 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Lloyd, M. C. et al. Vascular measurements correlate with estrogen receptor status. BMC Cancer 14, 279 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Brown, J. S., Arel, Y., Abramsky, Z. & Kotler, B. P. Patch use by gerbils (Gerbillus allenbyi) in sandy and rock habitats. J. Mammol. 73, 821–829 (1992).

    Article  Google Scholar 

  115. 115.

    Brown, J. S., Kotler, B. P. & Mitchell, W. A. Competition between birds and mammals: a comparison of giving-up densities between crested larks and gerbils. Evol. Ecol. 11, 757–771 (1997).

    Article  Google Scholar 

  116. 116.

    Berger-Tal, O. & Saltz, D. Conservation Behavior: Applying Behavioral Ecology to Wildlife Conservation and Management (Cambridge Univ. Press, 2016).

  117. 117.

    Steinmetz, R., Garshelis, D. L., Chutipong, W. & Seuaturien, N. Foraging ecology and coexistence of Asiatic bears and sun bears in a seasonal tropical forest in southeast Asia. J. Mammol. 94, 1–18 (2014).

    Article  Google Scholar 

  118. 118.

    Kneitel, J. M. & Chase, J. M. Trade-offs in community ecology: linking spatial scales and species coexistence. Ecol. Lett. 7, 69–80 (2004).

    Article  Google Scholar 

  119. 119.

    Swierniak, A., Krzeslak, M., Student, S. & Rzeszowska-Wolny, J. Development of a population of cancer cells: observation and modeling by a mixed spatial evolutionary games approach. J. Theor. Biol. 405, 94–103 (2016).

    PubMed  Article  Google Scholar 

  120. 120.

    Marvier, M., Kareiva, P. & Neubert, M. G. Habitat destruction, fragmentation, and disturbance promote invasion by habitat generalists in a multispecies metapopulation. Risk Anal. 24, 869–878 (2004).

    PubMed  Article  Google Scholar 

  121. 121.

    Sriswasdi, S., Yang, C. C. & Iwasaki, W. Generalist species drive microbial dispersion and evolution. Nat. Commun. 8, 1162 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  122. 122.

    Ebenhard, T. Colonization in metapopulations: a review of theory and observations. Biol. J. Linnean Soc. 42, 105121 (1991).

    Article  Google Scholar 

  123. 123.

    Lehuede, C., Dupuy, F., Rabinovitch, R., Jones, R. G. & Siegel, P. M. Metabolic plasticity as a determinant of tumor growth and metastasis. Cancer Res. 76, 5201–5208 (2016).

    PubMed  Article  CAS  Google Scholar 

  124. 124.

    McLeman, R. A. & Hunter, L. M. Migration in the context of vulnerability and adaptation to climate change: insights from analogues. Wiley Interdiscip. Rev. Clim. Change 1, 450–461 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Lin, X., Yao, Y., Wang, B., Emlen, D. J. & Lavine, L. C. Ecological trade-offs between migration and reproduction are mediated by the nutrition-sensitive insulin-signaling pathway. Int. J. Biol. Sci. 12, 607–616 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  126. 126.

    Cannito, S. et al. Redox mechanisms switch on hypoxia-dependent epithelial-mesenchymal transition in cancer cells. Carcinogenesis 29, 2267–2278 (2008).

    PubMed  Article  CAS  Google Scholar 

  127. 127.

    Chen, S. et al. Conversion of epithelial-to-mesenchymal transition to mesenchymal-to-epithelial transition is mediated by oxygen concentration in pancreatic cancer cells. Oncol. Lett. 15, 7144–7152 (2018).

    PubMed  PubMed Central  Google Scholar 

  128. 128.

    Moen, I. et al. Hyperoxic treatment induces mesenchymal-to-epithelial transition in a rat adenocarcinoma model. PLoS ONE 4, e6381 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  129. 129.

    Bleuven, C. & Landry, C. R. Molecular and cellular bases of adaptation to a changing environment in microorganisms. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2016.1458 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  130. 130.

    Sandberg, T. E., Lloyd, C. J., Palsson, B. O. & Feist, A. M. Laboratory evolution to alternating substrate environments yields distinct phenotypic and genetic adaptive strategies. Appl. Environ. Microbiol. 83, e00410–17 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  131. 131.

    Linde, N., Fluegen, G. & Aguirre-Ghiso, J. A. The relationship between dormant cancer cells and their microenvironment. Adv. Cancer Res. 132, 45–71 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  132. 132.

    Lorz, A., Botesteanu, D. A. & Levy, D. Modeling cancer cell growth dynamics in vitro in response to antimitotic drug treatment. Front. Oncol. 7, 189 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  133. 133.

    Kabraji, S. et al. AKT1(low) quiescent cancer cells persist after neoadjuvant chemotherapy in triple negative breast cancer. Breast Cancer Res. 19, 88 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  134. 134.

    Lozupone, F. & Fais, S. Cancer cell cannibalism: a primeval option to survive. Curr. Mol. Med. 15, 836–841 (2015).

    PubMed  Article  CAS  Google Scholar 

  135. 135.

    Michalopoulou, E., Bulusu, V. & Kamphorst, J. J. Metabolic scavenging by cancer cells: when the going gets tough, the tough keep eating. Br. J. Cancer 115, 635–640 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  136. 136.

    Cantor, J. R. & Sabatini, D. M. Cancer cell metabolism: one hallmark, many faces. Cancer Discov. 2, 881–898 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  137. 137.

    DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. & Thompson, C. B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11–20 (2008).

    PubMed  Article  CAS  Google Scholar 

  138. 138.

    Cai, C. et al. Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cancer Res. 71, 6503–6513 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  139. 139.

    Singh, A. & Settleman, J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29, 4741–4751 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  140. 140.

    Chen, W., Dong, J., Haiech, J., Kilhoffer, M. C. & Zeniou, M. Cancer stem cell quiescence and plasticity as major challenges in cancer therapy. Stem Cells Int. 2016, 1740936 (2016).

    PubMed  PubMed Central  Google Scholar 

  141. 141.

    Feramisco, J. R., Gross, M., Kamata, T., Rosenberg, M. & Sweet, R. W. Microinjection of the oncogene form of the human H-ras (T-24) protein results in rapid proliferation of quiescent cells. Cell 38, 109–117 (1984).

    PubMed  Article  CAS  Google Scholar 

  142. 142.

    Fabian, A., Barok, M., Vereb, G. & Szollosi, J. Die hard: are cancer stem cells the Bruce Willises of tumor biology? Cytometry A 75, (67–74 (2009).

    Google Scholar 

  143. 143.

    Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3, 362–374 (2003).

    PubMed  Article  CAS  Google Scholar 

  144. 144.

    Cairns, R. A. & Hill, R. P. Acute hypoxia enhances spontaneous lymph node metastasis in an orthotopic murine model of human cervical carcinoma. Cancer Res. 64, 2054–2061 (2004).

    PubMed  Article  CAS  Google Scholar 

  145. 145.

    Rofstad, E. K., Galappathi, K., Mathiesen, B. & Ruud, E. B. Fluctuating and diffusion-limited hypoxia in hypoxia-induced metastasis. Clin. Cancer Res. 13, 1971–1978 (2007).

    PubMed  Article  CAS  Google Scholar 

  146. 146.

    Rofstad, E. K., Gaustad, J. V., Egeland, T. A., Mathiesen, B. & Galappathi, K. Tumors exposed to acute cyclic hypoxic stress show enhanced angiogenesis, perfusion and metastatic dissemination. Int. J. Cancer 127, 1535–1546 (2010).

    PubMed  Article  CAS  Google Scholar 

  147. 147.

    Hsieh, C. H. et al. NADPH oxidase subunit 4-mediated reactive oxygen species contribute to cycling hypoxia-promoted tumor progression in glioblastoma multiforme. PLoS ONE 6, e23945 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  148. 148.

    Brurberg, K. G., Skogmo, H. K., Graff, B. A., Olsen, D. R. & Rofstad, E. K. Fluctuations in pO2 in poorly and well-oxygenated spontaneous canine tumors before and during fractionated radiation therapy. Radiother. Oncol. 77, 220–226 (2005).

    PubMed  Article  Google Scholar 

  149. 149.

    Brurberg, K. G., Thuen, M., Ruud, E. B. & Rofstad, E. K. Fluctuations in pO2 in irradiated human melanoma xenografts. Radiat. Res. 165, 16–25 (2006).

    PubMed  Article  CAS  Google Scholar 

  150. 150.

    Chaplin, D. J., Olive, P. L. & Durand, R. E. Intermittent blood flow in a murine tumor: radiobiological effects. Cancer Res. 47, 597–601 (1987).

    PubMed  CAS  Google Scholar 

  151. 151.

    Pigott, K. H., Hill, S. A., Chaplin, D. J. & Saunders, M. I. Microregional fluctuations in perfusion within human tumours detected using laser Doppler flowmetry. Radiother. Oncol. 40, 45–50 (1996).

    PubMed  Article  CAS  Google Scholar 

  152. 152.

    Saad, F. et al. Impact of bone-targeted therapies in chemotherapy-naive metastatic castration-resistant prostate cancer patients treated with abiraterone acetate: post hoc analysis of study COU-AA-302. Eur. Urol. 68, 570–577 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  153. 153.

    Reynolds, T. Y., Rockwell, S. & Glazer, P. M. Genetic instability induced by the tumor microenvironment. Cancer Res. 56, 5754–5757 (1996).

    PubMed  CAS  Google Scholar 

  154. 154.

    Weinmann, M., Jendrossek, V., Guner, D., Goecke, B. & Belka, C. Cyclic exposure to hypoxia and reoxygenation selects for tumor cells with defects in mitochondrial apoptotic pathways. FASEB J. 18, 1906–1908 (2004).

    PubMed  Article  CAS  Google Scholar 

  155. 155.

    Louie, E. et al. Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation. Breast Cancer Res. 12, R94 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  156. 156.

    Nishida, N., Yano, H., Nishida, T., Kamura, T. & Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag. 2, 213–219 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  157. 157.

    Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    PubMed  Article  CAS  Google Scholar 

  158. 158.

    Bergers, G. & Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer 8, 592–603 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  159. 159.

    Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).

    PubMed  Article  CAS  Google Scholar 

  160. 160.

    Ambrosetti, D. et al. The two glycolytic markers GLUT1 and MCT1 correlate with tumor grade and survival in clear-cell renal cell carcinoma. PLoS ONE 13, e0193477 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the following grants from US National Institutes of Health (NIH) National Cancer Institute (NCI): U54CA143970-01, R01CA187532, RO1CA077575 and R01CA170595.

Reviewer information

Nature Reviews Cancer thanks R. M. H. Merks, J. W. Pepper and the anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

All authors researched data for the article, substantially contributed to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Robert A. Gatenby.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gillies, R.J., Brown, J.S., Anderson, A.R.A. et al. Eco-evolutionary causes and consequences of temporal changes in intratumoural blood flow. Nat Rev Cancer 18, 576–585 (2018). https://doi.org/10.1038/s41568-018-0030-7

Download citation

Further reading