OPINION

Ciliary signalling in cancer

Abstract

Although tumours initiate from oncogenic changes in a cancer cell, subsequent tumour progression and therapeutic response depend on interactions between the cancer cells and the tumour microenvironment (TME). The primary monocilium, or cilium, provides a spatially localized platform for signalling by Hedgehog, Notch, WNT and some receptor tyrosine kinase pathways and mechanosensation. Changes in ciliation of cancer cells and/or cells of the TME during tumour development enforce asymmetric intercellular signalling in the TME. Growing evidence indicates that some oncogenic signalling pathways as well as some targeted anticancer therapies induce ciliation, while others repress it. The links between the genomic profile of cancer cells, drug treatment and ciliary signalling in the TME likely affect tumour growth and therapeutic response.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Ciliary structure.
Fig. 2: Ciliary assembly and disassembly cycles.
Fig. 3: Ciliary signalling systems within tumours.
Fig. 4: Paracellular signalling defects involving cilia.

References

  1. 1.

    Reiter, J. F. & Leroux, M. R. Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 18, 533–547 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  2. 2.

    Rosenbaum, J. L. & Witman, G. B. Intraflagellar transport. Nat. Rev. Mol. Cell Biol. 3, 813–825 (2002).

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Pazour, G. J. & Rosenbaum, J. L. Intraflagellar transport and cilia-dependent diseases. Trends Cell Biol. 12, 551–555 (2002).

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Quarmby, L. M. Cellular deflagellation. Int. Rev. Cytol. 233, 47–91 (2004).

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Wang, Q., Pan, J. & Snell, W. J. Intraflagellar transport particles participate directly in cilium-generated signaling in Chlamydomonas. Cell 125, 549–562 (2006).

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Pan, J., Misamore, M. J., Wang, Q. & Snell, W. J. Protein transport and signal transduction during fertilization in chlamydomonas. Traffic 4, 452–459 (2003).

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Dutcher, S. K. The awesome power of dikaryons for studying flagella and basal bodies in Chlamydomonas reinhardtii. Cytoskeleton 71, 79–94 (2014).

    PubMed  Article  Google Scholar 

  8. 8.

    Awata, J. et al. NPHP4 controls ciliary trafficking of membrane proteins and large soluble proteins at the transition zone. J. Cell Sci. 127, 4714–4727 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. 9.

    Quarmby, L. M. & Parker, J. D. Cilia and the cell cycle? J. Cell Biol. 169, 707–710 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. 10.

    Pan, J., Seeger-Nukpezah, T. & Golemis, E. A. The role of the cilium in normal and abnormal cell cycles: emphasis on renal cystic pathologies. Cell. Mol. Life Sci. 70, 1849–1874 (2013).

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Korobeynikov, V., Deneka, A. Y. & Golemis, E. A. Mechanisms for nonmitotic activation of Aurora-A at cilia. Biochem. Soc. Trans. 45, 37–49 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  12. 12.

    Ishikawa, H. & Marshall, W. F. Ciliogenesis: building the cell’s antenna. Nat. Rev. Mol. Cell Biol. 12, 222–234 (2011).

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Goto, H., Inaba, H. & Inagaki, M. Mechanisms of ciliogenesis suppression in dividing cells. Cell. Mol. Life Sci. 74, 881–890 (2017).

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Sung, C. H. & Leroux, M. R. The roles of evolutionarily conserved functional modules in cilia-related trafficking. Nat. Cell Biol. 15, 1387–1397 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. 15.

    Phua, S. C. et al. Dynamic remodeling of membrane composition drives cell cycle through primary cilia excision. Cell 168, 264–279.e15 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. 16.

    Sanchez, I. & Dynlacht, B. D. Cilium assembly and disassembly. Nat. Cell Biol. 18, 711–717 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. 17.

    Keeling, J., Tsiokas, L. & Maskey, D. Cellular mechanisms of ciliary length control. Cells 5, 6 (2016).

    PubMed Central  Article  CAS  Google Scholar 

  18. 18.

    Nikonova, A. S., Astsaturov, I., Serebriiskii, I. G., Dunbrack, R. L. Jr & Golemis, E. A. Aurora A kinase (AURKA) in normal and pathological cell division. Cell. Mol. Life Sci. 70, 661–687 (2013).

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Cholewa, B. D., Liu, X. & Ahmad, N. The role of polo-like kinase 1 in carcinogenesis: cause or consequence? Cancer Res. 73, 6848–6855 (2013).

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Benzing, T. & Walz, G. Cilium-generated signaling: a cellular GPS? Curr. Opin. Nephrol. Hypertens. 15, 245–249 (2006).

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Singla, V. & Reiter, J. F. The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science 313, 629–633 (2006).

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Bangs, F. & Anderson, K. V. Primary cilia and mammalian Hedgehog signaling. Cold Spring Harbor Persp. Biol. 9, a028175 (2017).

    Google Scholar 

  23. 23.

    Rohatgi, R., Milenkovic, L. & Scott, M. P. Patched1 regulates hedgehog signaling at the primary cilium. Science 317, 372–376 (2007).

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Corbit, K. C. et al. Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018–1021 (2005).

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Li, J. L. et al. DLL4-Notch signaling mediates tumor resistance to anti-VEGF therapy in vivo. Cancer Res. 71, 6073–6083 (2011).

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Korkaya, H. & Wicha, M. S. HER-2, notch, and breast cancer stem cells: targeting an axis of evil. Clin. Cancer Res. 15, 1845–1847 (2009).

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Ezratty, E. J. et al. A role for the primary cilium in Notch signaling and epidermal differentiation during skin development. Cell 145, 1129–1141 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. 28.

    Stasiulewicz, M. et al. A conserved role for Notch signaling in priming the cellular response to Shh through ciliary localisation of the key Shh transducer Smo. Development 142, 2291–2303 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. 29.

    Kong, J. H. et al. Notch activity modulates the responsiveness of neural progenitors to sonic hedgehog signaling. Dev. Cell 33, 373–387 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. 30.

    Wallingford, J. B. & Mitchell, B. Strange as it may seem: the many links between Wnt signaling, planar cell polarity, and cilia. Genes Dev. 25, 201–213 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. 31.

    Hankey, W., Frankel, W. L. & Groden, J. Functions of the APC tumor suppressor protein dependent and independent of canonical WNT signaling: implications for therapeutic targeting. Cancer Metastasis Rev. 37, 159–172 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. 32.

    Corbit, K. C. et al. Kif3a constrains beta-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat. Cell Biol. 10, 70–76 (2008).

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Simons, M. et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat. Genet. 37, 537–543 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. 34.

    Ocbina, P. J., Tuson, M. & Anderson, K. V. Primary cilia are not required for normal canonical Wnt signaling in the mouse embryo. PloS ONE 4, e6839 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. 35.

    Ross, A. J. et al. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat. Genet. 37, 1135–1140 (2005).

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Gerdes, J. M. et al. Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nat. Genet. 39, 1350–1360 (2007).

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Schneider, L. et al. PDGFRαα signaling is regulated through the primary cilium in fibroblasts. Curr. Biol. 15, 1861–1866 (2005).

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Schneider, L. et al. Directional cell migration and chemotaxis in wound healing response to PDGF-AA are coordinated by the primary cilium in fibroblasts. Cell Physiol. Biochem. 25, 279–292 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  39. 39.

    Schneider, L. et al. The Na+/H+ exchanger NHE1 is required for directional migration stimulated via PDGFR-alpha in the primary cilium. J. Cell Biol. 185, 163–176 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. 40.

    Umberger, N. L. & Caspary, T. Ciliary transport regulates PDGF-AA/αα signaling via elevated mammalian target of rapamycin signaling and diminished PP2A activity. Mol. Biol. Cell 26, 350–358 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Boehlke, C. et al. Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat. Cell Biol. 12, 1115–1122 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. 42.

    Christensen, S. T., Morthorst, S. K., Mogensen, J. B. & Pedersen, L. B. Primary cilia and coordination of receptor tyrosine kinase (RTK) and transforming growth factor beta (TGF-beta) signaling. Cold Spring Harbor Persp. Biol. 9, a028167 (2017).

    Google Scholar 

  43. 43.

    Zhu, D., Shi, S., Wang, H. & Liao, K. Growth arrest induces primary-cilium formation and sensitizes IGF-1-receptor signaling during differentiation induction of 3T3-L1 preadipocytes. J. Cell Sci. 122, 2760–2768 (2009).

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Clement, C. A. et al. TGF-beta signaling is associated with endocytosis at the pocket region of the primary cilium. Cell Rep. 3, 1806–1814 (2013).

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Seeger-Nukpezah, T. & Golemis, E. A. The extracellular matrix and ciliary signaling. Curr. Opin. Cell Biol. 24, 652–661 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. 46.

    McMurray, R. J., Wann, A. K., Thompson, C. L., Connelly, J. T. & Knight, M. M. Surface topography regulates wnt signaling through control of primary cilia structure in mesenchymal stem cells. Sci. Rep. 3, 3545 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. 47.

    Wann, A. K. et al. Primary cilia mediate mechanotransduction through control of ATP-induced Ca2+ signaling in compressed chondrocytes. FASEB J. 26, 1663–1671 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  48. 48.

    Chen, J. C., Hoey, D. A., Chua, M., Bellon, R. & Jacobs, C. R. Mechanical signals promote osteogenic fate through a primary cilia-mediated mechanism. FASEB J. 30, 1504–1511 (2016).

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Hilgendorf, K. I., Johnson, C. T. & Jackson, P. K. The primary cilium as a cellular receiver: organizing ciliary GPCR signaling. Curr. Opin. Cell Biol. 39, 84–92 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50.

    Hopkins, B. D., Goncalves, M. D. & Cantley, L. C. Obesity and cancer mechanisms: cancer metabolism. J. Clin. Oncol. 34, 4277–4283 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  51. 51.

    Iyengar, N. M., Gucalp, A., Dannenberg, A. J. & Hudis, C. A. Obesity and cancer mechanisms: tumor microenvironment and inflammation. J. Clin. Oncol. 34, 4270–4276 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. 52.

    Bangs, F. K., Schrode, N., Hadjantonakis, A. K. & Anderson, K. V. Lineage specificity of primary cilia in the mouse embryo. Nat. Cell Biol. 17, 113–122 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. 53.

    Dieckmann, N. M., Frazer, G. L., Asano, Y., Stinchcombe, J. C. & Griffiths, G. M. The cytotoxic T lymphocyte immune synapse at a glance. J. Cell Sci. 129, 2881–2886 (2016).

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Finetti, F., Paccani, S. R., Rosenbaum, J. & Baldari, C. T. Intraflagellar transport: a new player at the immune synapse. Trends Immunol. 32, 139–145 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  55. 55.

    McDermott, K. M., Liu, B. Y., Tlsty, T. D. & Pazour, G. J. Primary cilia regulate branching morphogenesis during mammary gland development. Curr. Biol. 20, 731–737 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  56. 56.

    Garcia-Zaragoza, E. et al. Intraepithelial paracrine Hedgehog signaling induces the expansion of ciliated cells that express diverse progenitor cell markers in the basal epithelium of the mouse mammary gland. Dev. Biol. 372, 28–44 (2012).

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Yuan, K. et al. Primary cilia are decreased in breast cancer: analysis of a collection of human breast cancer cell lines and tissues. J. Histochem. Cytochem. 58, 857–870 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  58. 58.

    Menzl, I. et al. Loss of primary cilia occurs early in breast cancer development. Cilia 3, 7 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Hassounah, N. B. et al. Inhibition of ciliogenesis promotes Hedgehog signaling, tumorigenesis, and metastasis in breast cancer. Mol. Cancer Res. 15, 1421–1430 (2017).

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Seeley, E. S., Carriere, C., Goetze, T., Longnecker, D. S. & Korc, M. Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. Cancer Res. 69, 422–430 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  61. 61.

    Schimmack, S. et al. Epithelial to stromal re-distribution of primary cilia during pancreatic carcinogenesis. PLoS ONE 11, e0164231 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  62. 62.

    Emoto, K. et al. Presence of primary cilia in cancer cells correlates with prognosis of pancreatic ductal adenocarcinoma. Hum. Pathol. 45, 817–825 (2014).

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Cano, D. A., Murcia, N. S., Pazour, G. J. & Hebrok, M. Orpk mouse model of polycystic kidney disease reveals essential role of primary cilia in pancreatic tissue organization. Development 131, 3457–3467 (2004).

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Cano, D. A., Sekine, S. & Hebrok, M. Primary cilia deletion in pancreatic epithelial cells results in cyst formation and pancreatitis. Gastroenterology 131, 1856–1869 (2006).

    PubMed  Article  CAS  Google Scholar 

  65. 65.

    Hassounah, N. B. et al. Primary cilia are lost in preinvasive and invasive prostate cancer. PLoS ONE 8, e68521 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  66. 66.

    Egeberg, D. L. et al. Primary cilia and aberrant cell signaling in epithelial ovarian cancer. Cilia 1, 15 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  67. 67.

    Ho, L. et al. Primary cilia attenuate hedgehog signalling in neoplastic chondrocytes. Oncogene 32, 5388–5396 (2013).

    PubMed  Article  CAS  Google Scholar 

  68. 68.

    Plotnikova, O. V., Golemis, E. A. & Pugacheva, E. N. Cell cycle-dependent ciliogenesis and cancer. Cancer Res. 68, 2058–2061 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  69. 69.

    Han, Y. G. et al. Dual and opposing roles of primary cilia in medulloblastoma development. Nat. Med. 15, 1062–1065 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. 70.

    Wong, S. Y. et al. Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat. Med. 15, 1055–1061 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  71. 71.

    Niewiadomski, P. et al. Gli protein activity is controlled by multisite phosphorylation in vertebrate Hedgehog signaling. Cell Rep. 6, 168–181 (2014).

    PubMed  Article  CAS  Google Scholar 

  72. 72.

    Berman, D. M. et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425, 846–851 (2003).

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Thayer, S. P. et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425, 851–856 (2003).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  74. 74.

    Bailey, J. M. et al. Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin. Cancer Res. 14, 5995–6004 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  75. 75.

    Tape, C. J. et al. Oncogenic KRAS regulates tumor cell signaling via stromal reciprocation. Cell 165, 910–920 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  76. 76.

    O’Toole, S. A. et al. Hedgehog overexpression is associated with stromal interactions and predicts for poor outcome in breast cancer. Cancer Res. 71, 4002–4014 (2011).

    PubMed  Article  CAS  Google Scholar 

  77. 77.

    Shaw, A., Gipp, J. & Bushman, W. The Sonic Hedgehog pathway stimulates prostate tumor growth by paracrine signaling and recapitulates embryonic gene expression in tumor myofibroblasts. Oncogene 28, 4480–4490 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  78. 78.

    Buller, N. V. et al. Stromal Indian hedgehog signaling is required for intestinal adenoma formation in mice. Gastroenterology 148, 170–180.e6 (2015).

    PubMed  Article  CAS  Google Scholar 

  79. 79.

    Pan, J., Wang, Q. & Snell, W. J. An aurora kinase is essential for flagellar disassembly in Chlamydomonas. Dev. Cell 6, 445–451 (2004).

    PubMed  Article  CAS  Google Scholar 

  80. 80.

    Pugacheva, E. N., Jablonski, S. A., Hartman, T. R., Henske, E. P. & Golemis, E. A. HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 129, 1351–1363 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  81. 81.

    Nikonova, A. S. et al. Nedd9 restrains renal cystogenesis in Pkd1−/− mice. Proc. Natl Acad. Sci. USA 111, 12859–12864 (2014).

    PubMed  Article  CAS  Google Scholar 

  82. 82.

    Nikonova, A. S., Gaponova, A. V., Kudinov, A. E. & Golemis, E. A. CAS proteins in health and disease: an update. IUBMB Life 66, 387–395 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  83. 83.

    Xu, J. et al. VHL Inactivation Induces HEF1 and Aurora kinase A. J. Am. Soc. Nephrol. 21, 2041–2046 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  84. 84.

    Dere, R., Perkins, A. L., Bawa-Khalfe, T., Jonasch, D. & Walker, C. L. β-catenin links von Hippel-Lindau to aurora kinase A and loss of primary cilia in renal cell carcinoma. J. Am. Soc. Nephrol. 26, 553–564 (2015).

    PubMed  Article  CAS  Google Scholar 

  85. 85.

    Kobayashi, T. et al. HDAC2 promotes loss of primary cilia in pancreatic ductal adenocarcinoma. EMBO Rep. 18, 334–343 (2017).

    PubMed  Article  CAS  Google Scholar 

  86. 86.

    Tucker, R. W., Scher, C. D. & Stiles, C. D. Centriole deciliation associated with the early response of 3T3 cells to growth factors but not to SV40. Cell 18, 1065–1072 (1979).

    PubMed  Article  CAS  Google Scholar 

  87. 87.

    Jacoby, M. et al. INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse. Nat. Genet. 41, 1027–1031 (2009).

    PubMed  Article  CAS  Google Scholar 

  88. 88.

    Kasahara, K. et al. EGF receptor kinase suppresses ciliogenesis through activation of USP8 deubiquitinase. Nat. Commun. 9, 758 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  89. 89.

    Nielsen, B. S. et al. PDGFRβ and oncogenic mutant PDGFRα D842V promote disassembly of primary cilia through a PLCγ- and AURKA-dependent mechanism. J. Cell Sci. 128, 3543–3549 (2015).

    PubMed  Article  CAS  Google Scholar 

  90. 90.

    Morrissy, A. S. et al. Divergent clonal selection dominates medulloblastoma at recurrence. Nature 529, 351–357 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  91. 91.

    Jones, D. T. et al. Dissecting the genomic complexity underlying medulloblastoma. Nature 488, 100–105 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  92. 92.

    Bonilla, X. et al. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat. Genet. 48, 398–406 (2016).

    PubMed  Article  CAS  Google Scholar 

  93. 93.

    Cao, M. & Zhong, Q. Cilia in autophagy and cancer. Cilia 5, 4 (2015).

    PubMed  Article  CAS  Google Scholar 

  94. 94.

    Wang, S., Livingston, M. J., Su, Y. & Dong, Z. Reciprocal regulation of cilia and autophagy via the MTOR and proteasome pathways. Autophagy 11, 607–616 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  95. 95.

    Tang, Z. et al. Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature 502, 254–257 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  96. 96.

    Pampliega, O. et al. Functional interaction between autophagy and ciliogenesis. Nature 502, 194–200 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  97. 97.

    Gerhardt, C., Leu, T., Lier, J. M. & Ruther, U. The cilia-regulated proteasome and its role in the development of ciliopathies and cancer. Cilia 5, 14 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  98. 98.

    Liu, Y. P. et al. Ciliopathy proteins regulate paracrine signaling by modulating proteasomal degradation of mediators. J. Clin. Invest. 124, 2059–2070 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  99. 99.

    Kasahara, K. et al. Ubiquitin-proteasome system controls ciliogenesis at the initial step of axoneme extension. Nat. Commun. 5, 5081 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  100. 100.

    Legare, S., Chabot, C. & Basik, M. SPEN, a new player in primary cilia formation and cell migration in breast cancer. Breast Cancer Res. 19, 104 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Kim, S., Lee, K., Choi, J. H., Ringstad, N. & Dynlacht, B. D. Nek2 activation of Kif24 ensures cilium disassembly during the cell cycle. Nat. Commun. 6, 8087 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  102. 102.

    Rocha, C. et al. Tubulin glycylases are required for primary cilia, control of cell proliferation and tumor development in colon. EMBO J. 33, 2247–2260 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  103. 103.

    Conduit, S. E. et al. A compartmentalized phosphoinositide signaling axis at cilia is regulated by INPP5E to maintain cilia and promote Sonic Hedgehog medulloblastoma. Oncogene 36, 5969–5984 (2017).

    PubMed  Article  CAS  Google Scholar 

  104. 104.

    Yang, N. et al. INTU is essential for oncogenic Hh signaling through regulating primary cilia formation in basal cell carcinoma. Oncogene 36, 4997–5005 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  105. 105.

    Willemarck, N. et al. Aberrant activation of fatty acid synthesis suppresses primary cilium formation and distorts tissue development. Cancer Res. 70, 9453–9462 (2010).

    PubMed  Article  CAS  Google Scholar 

  106. 106.

    Overgaard, C. E. et al. Deciliation is associated with dramatic remodeling of epithelial cell junctions and surface domains. Mol. Biol. Cell 20, 102–113 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  107. 107.

    Toriyama, M. et al. The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery. Nat. Genet. 48, 648–656 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  108. 108.

    Johnson, C. A. & Collis, S. J. Ciliogenesis and the DNA damage response: a stressful relationship. Cilia 5, 19 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  109. 109.

    Slaats, G. G. et al. Nephronophthisis-associated CEP164 regulates cell cycle progression, apoptosis and epithelial-to-mesenchymal transition. PLoS Genet. 10, e1004594 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  110. 110.

    Choi, H. J. et al. NEK8 links the ATR-regulated replication stress response and S phase CDK activity to renal ciliopathies. Mol. Cell 51, 423–439 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  111. 111.

    Litchfield, K. et al. Rare disruptive mutations in ciliary function genes contribute to testicular cancer susceptibility. Nat. Commun. 7, 13840 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  112. 112.

    Walentek, P. Ciliary transcription factors in cancer — how understanding ciliogenesis can promote the detection and prognosis of cancer types. J. Pathol. 239, 6–9 (2016).

    PubMed  Article  CAS  Google Scholar 

  113. 113.

    Harlander, S. et al. Combined mutation in Vhl, Trp53 and Rb1 causes clear cell renal cell carcinoma in mice. Nat. Med. 23, 869–877 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  114. 114.

    Rannestad, J. The regeneration of cilia in partially deciliated Tetrahymena. J. Cell Biol. 63, 1009–1017 (1974).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  115. 115.

    Propst, S., Banerjee, S., Kelleher, J. K. & Margulis, L. Inhibition of cilia regeneration by antineoplastic agents: delay of band migration by vinblastine (NSC-49842), griseofulvin (NSC-34533), and -peltatin (NSC-24819). Cancer Chemother. Rep. 56, 557–558 (1972).

    PubMed  CAS  Google Scholar 

  116. 116.

    Stubblefield, E. & Brinkley, B. R. Cilia formation in Chinese hamster fibroblasts in vitro as a response to colcemid treatment. J. Cell Biol. 30, 645–652 (1966).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  117. 117.

    Boisvieux-Ulrich, E., Laine, M. C. & Sandoz, D. In vitro effects of taxol on ciliogenesis in quail oviduct. J. Cell Sci. 92, 9–20 (1989).

    PubMed  Google Scholar 

  118. 118.

    Sharma, N., Kosan, Z. A., Stallworth, J. E., Berbari, N. F. & Yoder, B. K. Soluble levels of cytosolic tubulin regulate ciliary length control. Mol. Biol. Cell 22, 806–816 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  119. 119.

    Liewer, S. & Huddleston, A. Alisertib: a review of pharmacokinetics, efficacy and toxicity in patients with hematologic malignancies and solid tumors. Expert Opin. Investig. Drugs 27, 105–112 (2018).

    PubMed  Article  CAS  Google Scholar 

  120. 120.

    Seeger-Nukpezah, T. et al. The centrosomal kinase Plk1 localizes to the transition zone of primary cilia and induces phosphorylation of nephrocystin-1. PLoS ONE 7, e38838 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  121. 121.

    Lee, K. H. et al. Identification of a novel Wnt5a-CK1varepsilon-Dvl2-Plk1-mediated primary cilia disassembly pathway. EMBO J. 31, 3104–3117 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  122. 122.

    Talati, C., Griffiths, E. A., Wetzler, M. & Wang, E. S. Polo-like kinase inhibitors in hematologic malignancies. Crit. Rev. Oncol. Hematol. 98, 200–210 (2016).

    PubMed  Article  Google Scholar 

  123. 123.

    Plotnikova, O. V. et al. INPP5E interacts with AURKA, linking phosphoinositide signaling to primary cilium stability. J. Cell Sci. 128, 364–372 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  124. 124.

    Khan, N. A. et al. Identification of drugs that restore primary cilium expression in cancer cells. Oncotarget 7, 9975–9992 (2016).

    PubMed  PubMed Central  Google Scholar 

  125. 125.

    Miyata, Y., Nakamoto, H. & Neckers, L. The therapeutic target Hsp90 and cancer hallmarks. Curr. Pharm. Des. 19, 347–365 (2013).

    PubMed  Article  CAS  Google Scholar 

  126. 126.

    Nikonova, A. S. et al. Ganetespib limits ciliation and cystogenesis in autosomal-dominant polycystic kidney disease (ADPKD). FASEB J. https://doi.org/10.1096/fj.201700909R (2018).

  127. 127.

    Koene, R. J., Prizment, A. E., Blaes, A. & Konety, S. H. Shared risk factors in cardiovascular disease and cancer. Circulation 133, 1104–1114 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  128. 128.

    Krebber, A. M. et al. Prevalence of depression in cancer patients: a meta-analysis of diagnostic interviews and self-report instruments. Psychooncology 23, 121–130 (2014).

    PubMed  Article  CAS  Google Scholar 

  129. 129.

    Eng, J. W. et al. A nervous tumor microenvironment: the impact of adrenergic stress on cancer cells, immunosuppression, and immunotherapeutic response. Cancer Immunol. Immunother. 63, 1115–1128 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  130. 130.

    Hamamoto, A. et al. Modulation of primary cilia length by melanin-concentrating hormone receptor 1. Cell Signal. 28, 572–584 (2016).

    PubMed  Article  CAS  Google Scholar 

  131. 131.

    Shiwaku, H., Umino, A., Umino, M. & Nishikawa, T. Phencyclidine-induced dysregulation of primary cilia in the rodent brain. Brain Res. 1674, 62–69 (2017).

    PubMed  Article  CAS  Google Scholar 

  132. 132.

    Miyoshi, K. et al. Lack of dopaminergic inputs elongates the primary cilia of striatal neurons. PLoS ONE 9, e97918 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  133. 133.

    Avasthi, P. et al. A chemical screen identifies class a g-protein coupled receptors as regulators of cilia. ACS Chem. Biol. 7, 911–919 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  134. 134.

    Boisvieux-Ulrich, E., Laine, M. C. & Sandoz, D. In vitro effects of benzodiazepines on ciliogenesis in the quail oviduct. Cell. Motil. Cytoskeleton 8, 333–344 (1987).

    PubMed  Article  CAS  Google Scholar 

  135. 135.

    Kieran, M. W. et al. Phase I study of oral sonidegib (LDE225) in pediatric brain and solid tumors and a phase II study in children and adults with relapsed medulloblastoma. Neuro Oncol. 19, 1542–1552 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  136. 136.

    Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  137. 137.

    Sekulic, A. et al. Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N. Engl. J. Med. 366, 2171–2179 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  138. 138.

    Rimkus, T. K., Carpenter, R. L., Qasem, S., Chan, M. & Lo, H. W. Targeting the Sonic Hedgehog signaling pathway: review of Smoothened and GLI inhibitors. Cancers 8, 22 (2016).

    PubMed Central  Article  CAS  Google Scholar 

  139. 139.

    Kool, M. et al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell 25, 393–405 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  140. 140.

    Zhao, X. et al. A transposon screen identifies loss of primary cilia as a mechanism of resistance to SMO inhibitors. Cancer Discov. 7, 1436–1449 (2017).

    PubMed  Article  CAS  Google Scholar 

  141. 141.

    Catenacci, D. V. et al. Randomized phase Ib/II study of gemcitabine plus placebo or vismodegib, a Hedgehog pathway inhibitor, in patients with metastatic pancreatic cancer. J. Clin. Oncol. 33, 4284–4292 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  142. 142.

    Nolan-Stevaux, O. et al. GLI1 is regulated through Smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation. Genes Dev. 23, 24–36 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  143. 143.

    Rhim, A. D. et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25, 735–747 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  144. 144.

    Ozdemir, B. C. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25, 719–734 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  145. 145.

    Stathis, A. et al. Phase I trial of the oral smoothened inhibitor sonidegib in combination with paclitaxel in patients with advanced solid tumors. Invest. New Drugs 35, 766–772 (2017).

    PubMed  Article  CAS  Google Scholar 

  146. 146.

    Di Mauro, C. et al. Hedgehog signalling pathway orchestrates angiogenesis in triple-negative breast cancers. Br. J. Cancer 116, 1425–1435 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  147. 147.

    Larsen, A. R. et al. Repurposing the antihelmintic mebendazole as a hedgehog inhibitor. Mol. Cancer Ther. 14, 3–13 (2015).

    PubMed  Article  CAS  Google Scholar 

  148. 148.

    De Witt, M. et al. Repurposing mebendazole as a replacement for vincristine for the treatment of brain tumors. Mol. Med. 23, 50–56 (2017).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  149. 149.

    Wang, J. & Barr, M. M. Ciliary extracellular vesicles: txt msg organelles. Cell. Mol. Neurobiol. 36, 449–457 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  150. 150.

    Nager, A. R. et al. An actin network dispatches ciliary GPCRs into extracellular vesicles to modulate signaling. Cell 168, 252–263.e14 (2017).

    PubMed  Article  CAS  Google Scholar 

  151. 151.

    Fooksman, D. R. et al. Functional anatomy of T cell activation and synapse formation. Annu. Rev. Immunol. 28, 79–105 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  152. 152.

    Prosser, S. L. & Morrison, C. G. Centrin2 regulates CP110 removal in primary cilium formation. J. Cell Biol. 208, 693–701 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  153. 153.

    Finetti, F. et al. Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse. Nat. Cell Biol. 11, 1332–1339 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  154. 154.

    Lau, C. I., Barbarulo, A., Solanki, A., Saldana, J. I. & Crompton, T. The kinesin motor protein Kif7 is required for T cell development and normal MHC expression on thymic epithelial cells (TEC) in the thymus. Oncotarget 8, 24163–24176 (2017).

    PubMed  PubMed Central  Google Scholar 

  155. 155.

    Mukhopadhyay, S. et al. TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia. Genes Dev. 24, 2180–2193 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  156. 156.

    Noda, K., Kitami, M., Kitami, K., Kaku, M. & Komatsu, Y. Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development. Proc. Natl Acad. Sci. USA 113, E2589–E2597 (2016).

    PubMed  Article  CAS  Google Scholar 

  157. 157.

    Outeda, P. et al. Polycystin signaling is required for directed endothelial cell migration and lymphatic development. Cell Rep. 7, 634–644 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  158. 158.

    Lee, J. E. & Gleeson, J. G. A systems-biology approach to understanding the ciliopathy disorders. Genome Med. 3, 59 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  159. 159.

    Yuan, S. & Sun, Z. Expanding horizons: ciliary proteins reach beyond cilia. Annu. Rev. Genet. 47, 353–376 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  160. 160.

    Wheway, G. et al. An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes. Nat. Cell Biol. 17, 1074–1087 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  161. 161.

    Brooks, E. R. & Wallingford, J. B. Multiciliated cells. Curr. Biol. 24, R973–982 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  162. 162.

    Yaghi, A. & Dolovich, M. B. Airway epithelial cell cilia and obstructive lung disease. Cells 5, 40 (2016).

    PubMed Central  Article  CAS  Google Scholar 

  163. 163.

    Tilley, A. E., Walters, M. S., Shaykhiev, R. & Crystal, R. G. Cilia dysfunction in lung disease. Annu. Rev. Physiol. 77, 379–406 (2015).

    PubMed  Article  CAS  Google Scholar 

  164. 164.

    Horani, A., Ferkol, T. W., Dutcher, S. K. & Brody, S. L. Genetics and biology of primary ciliary dyskinesia. Paediatr. Respir. Rev. 18, 18–24 (2016).

    PubMed  Google Scholar 

  165. 165.

    Jensen, V. L. et al. Formation of the transition zone by Mks5/Rpgrip1L establishes a ciliary zone of exclusion (CIZE) that compartmentalises ciliary signalling proteins and controls PIP2 ciliary abundance. EMBO J. 34, 2537–2556 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  166. 166.

    Spektor, A., Tsang, W. Y., Khoo, D. & Dynlacht, B. D. Cep97 and CP110 suppress a cilia assembly program. Cell 130, 678–690 (2007).

    PubMed  Article  CAS  Google Scholar 

  167. 167.

    Xu, Q. et al. Phosphatidylinositol phosphate kinase PIPKIγ and phosphatase INPP5E coordinate initiation of ciliogenesis. Nat. Commun. 7, 10777 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  168. 168.

    Mojarad, B. A. et al. CEP19 cooperates with FOP and CEP350 to drive early steps in the ciliogenesis programme. Open Biol. 7, 170114 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  169. 169.

    Kanie, T. et al. The CEP19-RABL2 GTPase complex binds IFT-B to initiate intraflagellar transport at the ciliary base. Dev. Cell 42, 22–36.e12 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  170. 170.

    Plotnikova, O. V. et al. Calmodulin activation of Aurora-A kinase (AURKA) is required during ciliary disassembly and in mitosis. Mol. Biol. Cell 23, 2658–2670 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  171. 171.

    Riparbelli, M. G., Cabrera, O. A., Callaini, G. & Megraw, T. L. Unique properties of Drosophila spermatocyte primary cilia. Biol. Open 2, 1137–1147 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  172. 172.

    Shinohara, K. et al. Absence of radial spokes in mouse node cilia is required for rotational movement but confers ultrastructural instability as a trade-off. Dev. Cell 35, 236–246 (2015).

    PubMed  Article  CAS  Google Scholar 

  173. 173.

    Jensen, C. G., Davison, E. A., Bowser, S. S. & Rieder, C. L. Primary cilia cycle in PtK1 cells: effects of colcemid and taxol on cilia formation and resorption. Cell. Motil. Cytoskeleton 7, 187–197 (1987).

    PubMed  Article  CAS  Google Scholar 

  174. 174.

    Kavoi, B. M., Makanya, A. N. & Kiama, S. G. Anticancer drug vinblastine sulphate induces transient morphological changes on the olfactory mucosa of the rabbit. Anat. Histol Embryol. 41, 374–387 (2012).

    PubMed  Article  CAS  Google Scholar 

  175. 175.

    Wang, S., Wei, Q., Dong, G. & Dong, Z. ERK-mediated suppression of cilia in cisplatin-induced tubular cell apoptosis and acute kidney injury. Biochim. Biophys. Acta 1832, 1582–1590 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  176. 176.

    Huang, J. et al. Trichostatin A reduces cisplatin-induced ototoxicity through the STAT6 signaling pathway. Int. J. Mol. Med. 36, 493–500 (2015).

    PubMed  Article  CAS  Google Scholar 

  177. 177.

    Mount, R. J., Takeno, S., Wake, M. & Harrison, R. V. Carboplatin ototoxicity in the chinchilla: lesions of the vestibular sensory epithelium. Acta Otolaryngol. Suppl. 519, 60–65 (1995).

    PubMed  Article  CAS  Google Scholar 

  178. 178.

    Kim, J. et al. Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell 17, 388–399 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  179. 179.

    Valencia-Gattas, M., Conner, G. E. & Fregien, N. L. Gefitinib, an EGFR tyrosine kinase inhibitor, prevents smoke-mediated ciliated airway epithelial cell loss and promotes their recovery. PLoS ONE 11, e0160216 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  180. 180.

    Takahashi, K., Nagai, T., Chiba, S., Nakayama, K. & Mizuno, K. Glucose deprivation induces primary cilium formation through mTORC1 inactivation. J. Cell Sci. https://doi.org/10.1242/jcs.208769 (2018).

    Article  PubMed  Google Scholar 

  181. 181.

    Wang, H. et al. Hsp90α forms a stable complex at the cilium neck for the interaction of signalling molecules in IGF-1 receptor signalling. J. Cell Sci. 128, 100–108 (2015).

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly regret that length limits prevented them from citing additional strong and pertinent studies. This work was supported by awards from the National Natural Science Foundation of China (81402145 and 81672582), the Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars (BK20160013), the Top Talent of Innovative Research Team of Jiangsu Province, the Jiangsu Recruitment Program of Leading Creative and Entrepreneurial Talents and the Six Talent Peak Project from Government of Jiangsu Province 2015-SWYY-019 (to H.L.); by a subsidy of the Russian government to support the Program of Competitive Growth of Kazan Federal University (to A.A.K.); and by R01 DK108195 (to E.A.G.) and P30 CA006927 (to Fox Chase Cancer Center).

Reviewer information

Nature Reviews Cancer thanks L. B. Pedersen, Q. Zhong and the anonymous reviewer for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

All authors researched data for the article, substantially contributed to the discussion of content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Erica A. Golemis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Kiseleva, A.A. & Golemis, E.A. Ciliary signalling in cancer. Nat Rev Cancer 18, 511–524 (2018). https://doi.org/10.1038/s41568-018-0023-6

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing