Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

OPINION

Adapting to stress — chaperome networks in cancer

Abstract

In this Opinion article, we aim to address how cells adapt to stress and the repercussions chronic stress has on cellular function. We consider acute and chronic stress-induced changes at the cellular level, with a focus on a regulator of cellular stress, the chaperome, which is a protein assembly that encompasses molecular chaperones, co-chaperones and other co-factors. We discuss how the chaperome takes on distinct functions under conditions of stress that are executed in ways that differ from the one-on-one cyclic, dynamic functions exhibited by distinct molecular chaperones. We argue that through the formation of multimeric stable chaperome complexes, a state of chaperome hyperconnectivity, or networking, is gained. The role of these chaperome networks is to act as multimolecular scaffolds, a particularly important function in cancer, where they increase the efficacy and functional diversity of several cellular processes. We predict that these concepts will change how we develop and implement drugs targeting the chaperome to treat cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chaperome connectivity from normal cellular states to conditions characterized by increasing stress.
Fig. 2: Functional gains from formation of multimeric chaperome scaffolding platforms under cellular stress.
Fig. 3: Chaperome networks use redundancy to protect from temporary or partial impairment.

Similar content being viewed by others

References

  1. Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Adapting proteostasis for disease intervention. Science 319, 916–919 (2008).

    Article  PubMed  CAS  Google Scholar 

  2. Lindquist, S. Protein folding sculpting evolutionary change. Cold Spring Harb. Symp. Quant. Biol. 74, 103–108 (2009).

    Article  PubMed  CAS  Google Scholar 

  3. Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).

    Article  PubMed  CAS  Google Scholar 

  4. Laskey, R. A., Honda, B. M., Mills, A. D. & Finch, J. T. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature 275, 416–420 (1978).

    Article  PubMed  CAS  Google Scholar 

  5. Barraclough, R. & Ellis, R. J. Protein synthesis in chloroplasts. IX. Assembly of newly-synthesized large subunits into ribulose bisphosphate carboxylase in isolated intact pea chloroplasts. Biochim. Biophys. Acta 608, 19–31 (1980).

    Article  PubMed  CAS  Google Scholar 

  6. Goloubinoff, P., Gatenby, A. A. & Lorimer, G. H. GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337, 44–47 (1989).

    Article  PubMed  CAS  Google Scholar 

  7. Labbadia, J. & Morimoto, R. I. The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 84, 435–464 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Horwich, A. L. Molecular chaperones in cellular protein folding: the birth of a field. Cell 157, 285–288 (2014).

    Article  PubMed  CAS  Google Scholar 

  9. Miller, S. B., Mogk, A. & Bukau, B. Spatially organized aggregation of misfolded proteins as cellular stress defense strategy. J. Mol. Biol. 427, 1564–1574 (2015).

    Article  PubMed  CAS  Google Scholar 

  10. Sontag, E. M., Samant, R. S. & Frydman, J. Mechanisms and functions of spatial protein quality control. Annu. Rev. Biochem. 86, 97–122 (2017).

    Article  PubMed  CAS  Google Scholar 

  11. Ritossa, F. New puffing pattern induced by temperature shock and Dnp in Drosophila. Experientia 18, 571–573 (1962).

    Article  CAS  Google Scholar 

  12. Ritossa, F. M. Experimental activation of specific loci in polytene chromosomes of Drosophila. Exp. Cell Res. 35, 601–607 (1964).

    Article  PubMed  CAS  Google Scholar 

  13. Richter, K., Haslbeck, M. & Buchner, J. The heat shock response: life on the verge of death. Mol. Cell 40, 253–266 (2010).

    Article  PubMed  CAS  Google Scholar 

  14. Finka, A. & Goloubinoff, P. Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis. Cell Stress Chaperones 18, 591–605 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Finka, A., Mattoo, R. U. & Goloubinoff, P. Meta-analysis of heat- and chemically upregulated chaperone genes in plant and human cells. Cell Stress Chaperones 16, 15–31 (2011).

    Article  PubMed  CAS  Google Scholar 

  16. Wang, X. et al. Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 127, 803–815 (2006).

    Article  PubMed  CAS  Google Scholar 

  17. Taldone, T., Ochiana, S. O., Patel, P. D. & Chiosis, G. Selective targeting of the stress chaperome as a therapeutic strategy. Trends Pharmacol. Sci. 35, 48–59 (2014).

    Article  CAS  Google Scholar 

  18. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  PubMed  CAS  Google Scholar 

  19. Brehme, M. et al. A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Rep. 9, 1135–1150 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Allan, R. K. & Ratajczak, T. Versatile TPR domains accommodate different modes of target protein recognition and function. Cell Stress Chaperones 16, 353–367 (2011).

    Article  PubMed  CAS  Google Scholar 

  21. Hadizadeh Esfahani, A., Sverchkova, A., Saez-Rodriguez, J., Schuppert, A. A. & Brehme, M. A systematic atlas of chaperome deregulation topologies across the human cancer landscape. PLoS Comput. Biol. 14, e1005890 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ellis, R. J. Molecular chaperones: assisting assembly in addition to folding. Trends Biochem. Sci. 31, 395–401 (2006).

    Article  PubMed  CAS  Google Scholar 

  23. Ellis, R. J. Assembly chaperones: a perspective. Phil. Trans. R. Soc. B Biol. Sci. 368, 20110398 (2013).

    Article  CAS  Google Scholar 

  24. Burgess, R. J. & Zhang, Z. Histone chaperones in nucleosome assembly and human disease. Nat. Struct. Mol. Biol. 20, 14–22 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Makhnevych, T. & Houry, W. A. The role of Hsp90 in protein complex assembly. Biochim. Biophys. Acta 1823, 674–682 (2012).

    Article  PubMed  CAS  Google Scholar 

  26. Palotai, R., Szalay, M. S. & Csermely, P. Chaperones as integrators of cellular networks: changes of cellular integrity in stress and diseases. IUBMB Life 60, 10–18 (2008).

    Article  PubMed  CAS  Google Scholar 

  27. Echtenkamp, F. J. et al. Global functional map of the p23 molecular chaperone reveals an extensive cellular network. Mol. Cell 43, 229–241 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Gong, Y. et al. An atlas of chaperone-protein interactions in Saccharomyces cerevisiae: implications to protein folding pathways in the cell. Mol. Syst. Biol. 5, 275 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. McClellan, A. J. et al. Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131, 121–135 (2007).

    Article  PubMed  CAS  Google Scholar 

  30. Jamuczak, A. E., Eyers, C. E., Schwartz, J. M., Grant, C. M. & Hubbard, S. J. Quantitative proteomics and network analysis of SSA1 and SSB1 deletion mutants reveals robustness of chaperone HSP70 network in Saccharomyces cerevisiae. Proteomics 15, 3126–3139 (2015).

    Article  CAS  Google Scholar 

  31. Gyurko, D. M., Soti, C., Stetak, A. & Csermely, P. System level mechanisms of adaptation, learning, memory formation and evolvability: the role of chaperone and other networks. Curr. Protein Pept. Sci. 15, 171–188 (2014).

    Article  PubMed  CAS  Google Scholar 

  32. Echeverria, P. C., Bernthaler, A., Dupuis, P., Mayer, B. & Picard, D. An interaction network predicted from public data as a discovery tool: application to the Hsp90 molecular chaperone machine. PLoS ONE 6, e26044 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Taipale, M. et al. A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways. Cell 158, 434–448 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Harper, J. W. & Bennett, E. J. Proteome complexity and the forces that drive proteome imbalance. Nature 537, 328–338 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Rodina, A. et al. The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature 538, 397–401 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Barna, M. et al. Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature 456, 971–U979 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Elkon, R. et al. Myc coordinates transcription and translation to enhance transformation and suppress invasiveness. EMBO Rep. 16, 1723–1736 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Farkas, Z. et al. Hsp70-associated chaperones have a critical role in buffering protein production costs. eLife 7, e29845 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Trepel, J., Mollapour, M., Giaccone, G. & Neckers, L. Targeting the dynamic HSP90 complex in cancer. Nat. Rev. Cancer 10, 537–549 (2010).

    Article  PubMed  CAS  Google Scholar 

  40. Barrott, J. J. & Haystead, T. A. Hsp90, an unlikely ally in the war on cancer. FEBS J. 280, 1381–1396 (2013).

    Article  PubMed  CAS  Google Scholar 

  41. Whitesell, L. & Lindquist, S. L. HSP90 and the chaperoning of cancer. Nat. Rev. Cancer 5, 761–772 (2005).

    Article  PubMed  CAS  Google Scholar 

  42. Ambati, S. R. et al. Pre-clinical efficacy of PU-H71, a novel HSP90 inhibitor, alone and in combination with bortezomib in Ewing sarcoma. Mol. Oncol. 8, 323–336 (2014).

    Article  PubMed  CAS  Google Scholar 

  43. Moulick, K. et al. Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nat. Chem. Biol. 7, 818–826 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Dunn, D. M. et al. c-Abl mediated tyrosine phosphorylation of Aha1 activates its co-chaperone function in cancer cells. Cell Rep. 12, 1006–1018 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Zuehlke, A. & Johnson, J. L. Hsp90 and co-chaperones twist the functions of diverse client proteins. Biopolymers 93, 211–217 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Wong, D. S. & Jay, D. G. Emerging roles of extracellular Hsp90 in cancer. Adv. Cancer Res. 129, 141–163 (2016).

    Article  PubMed  Google Scholar 

  47. Bachman, A. B. et al. Phosphorylation induced cochaperone unfolding promotes kinase recruitment and client class-specific Hsp90 phosphorylation. Nat. Commun. 9, 265 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Dahmer, M. K., Housley, P. R. & Pratt, W. B. Effects of molybdate and endogenous inhibitors on steroid-receptor inactivation, transformation, and translocation. Annu. Rev. Physiol. 46, 67–81 (1984).

    Article  PubMed  CAS  Google Scholar 

  49. Csermely, P. et al. ATP induces a conformational change of the 90-kDa heat shock protein (hsp90). J. Biol. Chem. 268, 1901–1907 (1993).

    PubMed  CAS  Google Scholar 

  50. Hutchison, K. A., Stancato, L. F., Jove, R. & Pratt, W. B. The protein-protein complex between pp60v-src and hsp90 is stabilized by molybdate, vanadate, tungstate, and an endogenous cytosolic metal. J. Biol. Chem. 267, 13952–13957 (1992).

    PubMed  CAS  Google Scholar 

  51. Kamal, A. et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425, 407–410 (2003).

    Article  PubMed  CAS  Google Scholar 

  52. Shachrai, I., Zaslaver, A., Alon, U. & Dekel, E. Cost of unneeded proteins in E. coli is reduced after several generations in exponential growth. Mol. Cell 38, 758–767 (2010).

    Article  PubMed  CAS  Google Scholar 

  53. Matthews, J. M. Protein Dimerization and Oligomerization in Biology Vol. 747 (Springer Science+Business Media, 2012).

  54. Matthews, J. M. & Sunde, M. Dimers, oligomers, everywhere. Adv. Exp. Med. Biol. 747, 1–18 (2012).

    Article  PubMed  CAS  Google Scholar 

  55. Tai, W., Guzman, M. L. & Chiosis, G. The epichaperome: the power of many as the power of one. Oncoscience 3, 266–267 (2016).

    PubMed  PubMed Central  Google Scholar 

  56. Wallace, E. W. et al. Reversible, specific, active aggregates of endogenous proteins assemble upon heat stress. Cell 162, 1286–1298 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Mackenzie, R. J. et al. Absolute protein quantification of the yeast chaperome under conditions of heat shock. Proteomics 16, 2128–2140 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Chadli, A., Ladjimi, M. M., Baulieu, E. E. & Catelli, M. G. Heat-induced oligomerization of the molecular chaperone Hsp90. Inhibition by ATP and geldanamycin and activation by transition metal oxyanions. J. Biol. Chem. 274, 4133–4139 (1999).

    Article  PubMed  CAS  Google Scholar 

  59. Lepvrier, E. et al. Hsp90 oligomerization process: how can p23 drive the chaperone machineries? Biochim. Biophys. Acta 1854, 1412–1424 (2015).

    Article  PubMed  CAS  Google Scholar 

  60. Ehrnsperger, M., Graber, S., Gaestel, M. & Buchner, J. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J. 16, 221–229 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Benaroudj, N., Batelier, G., Triniolles, F. & Ladjimi, M. M. Self-association of the molecular chaperone Hsc70. Biochemistry 34, 15282–15290 (1995).

    Article  PubMed  CAS  Google Scholar 

  62. Shirasu, K. & Schulze-Lefert, P. Complex formation, promiscuity and multi-functionality: protein interactions in disease-resistance pathways. Trends Plant Sci. 8, 252–258 (2003).

    Article  PubMed  CAS  Google Scholar 

  63. Good, M. C., Zalatan, J. G. & Lim, W. A. Scaffold proteins: hubs for controlling the flow of cellular information. Science 332, 680–686 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Cooper, M. G. The Cell: A Molecular Approach (Sinauer Associates, 2000).

  65. Hartson, S. D. & Matts, R. L. Approaches for defining the Hsp90-dependent proteome. Biochim. Biophys. Acta 1823, 656–667 (2012).

    Article  PubMed  CAS  Google Scholar 

  66. Weidenauer, L., Wang, T., Joshi, S., Chiosis, G. & Quadroni, M. Proteomic interrogation of HSP90 and the insights for medical research. Expert Rev. Proteomics 14, 1105–1117 (2017).

    Article  PubMed  CAS  Google Scholar 

  67. Goldstein, R. L. et al. Pharmacoproteomics identifies combinatorial therapy targets for diffuse large B cell lymphoma. J. Clin. Invest. 125, 4559–4571 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Guo, A. et al. HSP90 stabilizes B cell receptor kinases in a multi-client interactome: PU-H71 induces CLL apoptosis in a cytoprotective microenvironment. Oncogene 36, 3441–3449 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Kucine, N. et al. Tumor-specific HSP90 inhibition as a therapeutic approach in JAK-mutant acute lymphoblastic leukemias. Blood 126, 2479–2483 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Koppikar, P. et al. Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy. Nature 489, 155–U222 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Marubayashi, S. et al. HSP90 is a therapeutic target in JAK2-dependent myeloproliferative neoplasms in mice and humans. J. Clin. Invest. 120, 3578–3593 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Tsai, C. L. et al. Stress-induced phosphoprotein-1 maintains the stability of JAK2 in cancer cells. Oncotarget 7, 50548–50563 (2016).

    PubMed  PubMed Central  Google Scholar 

  73. Zong, H. et al. A hyperactive signalosome in acute myeloid leukemia drives addiction to a tumor-specific Hsp90 species. Cell Rep. 13, 2159–2173 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Nayar, U. et al. Targeting the Hsp90-associated viral oncoproteome in gammaherpesvirus-associated malignancies. Blood 122, 2837–2847 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Ojala, P. M. Naughty chaperone as a target for viral cancer. Blood 122, 2767–2768 (2013).

    Article  PubMed  CAS  Google Scholar 

  76. Baquero-Perez, B. & Whitehouse, A. Hsp70 isoforms are essential for the formation of Kaposi’s sarcoma-associated herpesvirus replication and transcription compartments. PLoS Pathog. 11, e1005274 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Anderson, I. et al. Heat shock protein 90 controls HIV-1 reactivation from latency. Proc. Natl Acad. Sci. USA 111, E1528–E1537 (2014).

    Article  PubMed  CAS  Google Scholar 

  78. Culjkovic-Kraljacic, B. et al. Combinatorial targeting of nuclear export and translation of RNA inhibits aggressive B cell lymphomas. Blood 127, 858–868 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Cerchietti, L. C. et al. A purine scaffold Hsp90 inhibitor destabilizes BCL-6 and has specific antitumor activity in BCL-6-dependent B cell lymphomas. Nat. Med. 15, 1369–1376 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Schwartz, H. et al. Combined HSP90 and kinase inhibitor therapy: insights from The Cancer Genome Atlas. Cell Stress Chaperones 20, 729–741 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Jarosz, D. F., Taipale, M. & Lindquist, S. Protein homeostasis and the phenotypic manifestation of genetic diversity: principles and mechanisms. Annu. Rev. Genet. 44, 189–216 (2010).

    Article  PubMed  CAS  Google Scholar 

  82. Bernards, R. A. Missing link in genotype-directed cancer therapy. Cell 151, 465–468 (2012).

    Article  PubMed  CAS  Google Scholar 

  83. Lu, X., Xiao, L., Wang, L. & Ruden, D. M. Hsp90 inhibitors and drug resistance in cancer: the potential benefits of combination therapies of Hsp90 inhibitors and other anti-cancer drugs. Biochem. Pharmacol. 83, 995–1004 (2012).

    Article  PubMed  CAS  Google Scholar 

  84. Whitesell, L. & Lin, N. U. HSP90 as a platform for the assembly of more effective cancer chemotherapy. Biochim. Biophys. Acta 1823, 756–766 (2012).

    Article  PubMed  CAS  Google Scholar 

  85. Meyer, S. C. Mechanisms of resistance to JAK2 inhibitors in myeloproliferative neoplasms. Hematol. Oncol. Clin. North Am. 31, 627–642 (2017).

    Article  PubMed  Google Scholar 

  86. Neckers, L. & Workman, P. Hsp90 molecular chaperone inhibitors: are we there yet? Clin. Cancer Res. 18, 64–76 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Lackner, D. H., Schmidt, M. W., Wu, S., Wolf, D. A. & Bahler, J. Regulation of transcriptome, translation, and proteome in response to environmental stress in fission yeast. Genome Biol. 13, R25 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Hammond, C. M., Stromme, C. B., Huang, H., Patel, D. J. & Groth, A. Histone chaperone networks shaping chromatin function. Nat. Rev. Mol. Cell Biol. 18, 141–158 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Khurana, N. & Bhattacharyya, S. Hsp90, the concertmaster: tuning transcription. Front. Oncol. 5, 100 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Isaacs, J. S. Hsp90 as a “chaperone” of the epigenome: insights and opportunities for cancer therapy. Adv. Cancer Res. 129, 107–140 (2016).

    Article  PubMed  Google Scholar 

  91. Echtenkamp, F. J. et al. Hsp90 and p23 molecular chaperones control chromatin architecture by maintaining the functional pool of the RSC chromatin remodeler. Mol. Cell 64, 888–899 (2016).

    Article  PubMed  CAS  Google Scholar 

  92. Manjarrez, J. R., Sun, L., Prince, T. & Matts, R. L. Hsp90-dependent assembly of the DBC2/RhoBTB2-Cullin3 E3-ligase complex. PLoS ONE 9, e90054 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Patra, B. et al. A genome wide dosage suppressor network reveals genomic robustness. Nucleic Acids Res. 45, 255–270 (2017).

    Article  PubMed  CAS  Google Scholar 

  94. Albert, R., Jeong, H. & Barabasi, A. L. Error and attack tolerance of complex networks. Nature 406, 378–382 (2000).

    Article  PubMed  CAS  Google Scholar 

  95. Kitano, H. Biological robustness. Nat. Rev. Genet. 5, 826–837 (2004).

    Article  PubMed  CAS  Google Scholar 

  96. Felix, M. A. & Barkoulas, M. Pervasive robustness in biological systems. Nat. Rev. Genet. 16, 483–496 (2015).

    Article  PubMed  CAS  Google Scholar 

  97. Bandyopadhyay, S. et al. Rewiring of genetic networks in response to DNA damage. Science 330, 1385–1389 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Navlakha, S., He, X., Faloutsos, C. & Bar-Joseph, Z. Topological properties of robust biological and computational networks. J. R. Soc. Interface 11, 20140283 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Murphy, M. E. The HSP70 family and cancer. Carcinogenesis 34, 1181–1188 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Sherman, M. Y. & Gabai, V. L. Hsp70 in cancer: back to the future. Oncogene 34, 4153–4161 (2015).

    Article  PubMed  CAS  Google Scholar 

  101. Brodsky, J. L. & Chiosis, G. Hsp70 molecular chaperones: emerging roles in human disease and identification of small molecule modulators. Curr. Top. Med. Chem. 6, 1215–1225 (2006).

    Article  PubMed  CAS  Google Scholar 

  102. Assimon, V. A., Gillies, A. T., Rauch, J. N. & Gestwicki, J. E. Hsp70 protein complexes as drug targets. Curr. Pharm. Des. 19, 404–417 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Rerole, A. L., Jego, G. & Garrido, C. Hsp70: anti-apoptotic and tumorigenic protein. Methods Mol. Biol. 787, 205–230 (2011).

    Article  PubMed  CAS  Google Scholar 

  104. Lambert, J. P. et al. Mapping differential interactomes by affinity purification coupled with data-independent mass spectrometry acquisition. Nat. Methods 10, 1239–1245 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Jinwal, U. K. et al. Imbalance of Hsp70 family variants fosters tau accumulation. FASEB J. 27, 1450–1459 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Gano, J. J. & Simon, J. A. A proteomic investigation of ligand-dependent HSP90 complexes reveals CHORDC1 as a novel ADP-dependent HSP90-interacting protein. Mol. Cell. Proteomics 9, 255–270 (2010).

    Article  PubMed  CAS  Google Scholar 

  107. Smith, J. R. et al. Restricting direct interaction of CDC37 with HSP90 does not compromise chaperoning of client proteins. Oncogene 34, 15–26 (2015).

    Article  PubMed  CAS  Google Scholar 

  108. Butler, L. M., Ferraldeschi, R., Armstrong, H. K., Centenera, M. M. & Workman, P. Maximizing the therapeutic potential of HSP90 inhibitors. Mol. Cancer Res. 13, 1445–1451 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Garcia-Carbonero, R., Carnero, A. & Paz-Ares, L. Inhibition of HSP90 molecular chaperones: moving into the clinic. Lancet Oncol. 14, e358–e369 (2013).

    Article  PubMed  CAS  Google Scholar 

  110. Alarcon, S. V. et al. Tumor-intrinsic and tumor-extrinsic factors impacting hsp90- targeted therapy. Curr. Mol. Med. 12, 1125–1141 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Jhaveri, K., Taldone, T., Modi, S. & Chiosis, G. Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim. Biophys. Acta 1823, 742–755 (2012).

    Article  PubMed  CAS  Google Scholar 

  112. Lehner, B. Molecular mechanisms of epistasis within and between genes. Trends Genet. 27, 323–331 (2011).

    Article  PubMed  CAS  Google Scholar 

  113. Collins, S. R., Weissman, J. S. & Krogan, N. J. From information to knowledge: new technologies for defining gene function. Nat. Methods 6, 721–723 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Ashworth, A., Lord, C. J. & Reis-Filho, J. S. Genetic interactions in cancer progression and treatment. Cell 145, 30–38 (2011).

    Article  PubMed  CAS  Google Scholar 

  115. Kim, G. et al. FDA approval summary: olaparib monotherapy in patients with deleterious germline BRCA-mutated advanced ovarian cancer treated with three or more lines of chemotherapy. Clin. Cancer Res. 21, 4257–4261 (2015).

    Article  PubMed  CAS  Google Scholar 

  116. Redig, A. J. & Janne, P. A. Basket trials and the evolution of clinical trial design in an era of genomic medicine. J. Clin. Oncol. 33, 975–977 (2015).

    Article  PubMed  CAS  Google Scholar 

  117. Smith, D. L. et al. The HSP90 inhibitor ganetespib potentiates the antitumor activity of EGFR tyrosine kinase inhibition in mutant and wild-type non-small cell lung cancer. Target. Oncol. 10, 235–245 (2015).

    Article  PubMed  Google Scholar 

  118. Caldas-Lopes, E. et al. Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc. Natl Acad. Sci. USA 106, 8368–8373 (2009).

    Article  PubMed  Google Scholar 

  119. Menezes, D. L. et al. The novel oral Hsp90 inhibitor NVP-HSP990 exhibits potent and broad-spectrum antitumor activities in vitro and in vivo. Mol. Cancer Ther. 11, 730–739 (2012).

    Article  PubMed  CAS  Google Scholar 

  120. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01393509 (2018).

  121. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01269593 (2018).

  122. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03166085 (2017).

  123. Lee, M. J. et al. Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell 149, 780–794 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Kanamaru, C. et al. Retinal toxicity induced by small-molecule Hsp90 inhibitors in beagle dogs. J. Toxicol. Sci. 39, 59–69 (2014).

    Article  PubMed  CAS  Google Scholar 

  125. Zhou, D. et al. A rat retinal damage model predicts for potential clinical visual disturbances induced by Hsp90 inhibitors. Toxicol. Appl. Pharmacol. 273, 401–409 (2013).

    Article  PubMed  CAS  Google Scholar 

  126. Shrestha, L. & Young, J. C. Function and chemotypes of human Hsp70 chaperones. Curr. Top. Med. Chem. 16, 2812–2828 (2016).

    Article  PubMed  CAS  Google Scholar 

  127. Li, X., Shao, H., Taylor, I. R. & Gestwicki, J. E. Targeting allosteric control mechanisms in heat shock protein 70 (Hsp70). Curr. Top. Med. Chem. 16, 2729–2740 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Goloudina, A. R., Demidov, O. N. & Garrido, C. Inhibition of HSP70: a challenging anti-cancer strategy. Cancer Lett. 325, 117–124 (2012).

    Article  PubMed  CAS  Google Scholar 

  129. Stiegler, S. C. et al. A chemical compound inhibiting the Aha1-Hsp90 chaperone complex. J. Biol. Chem. 292, 17073–17083 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  130. Jhaveri, K. et al. Heat shock protein 90 inhibitors in the treatment of cancer: current status and future directions. Expert Opin. Investig. Drugs 23, 611–628 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Prince, T. L. et al. Client proteins and small molecule inhibitors display distinct binding preferences for constitutive and stress-induced HSP90 isoforms and their conformationally restricted mutants. PLoS ONE 10, e0141786 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Woodford, M. R. et al. Impact of posttranslational modifications on the anticancer activity of Hsp90 inhibitors. Adv. Cancer Res. 129, 31–50 (2016).

    Article  PubMed  Google Scholar 

  133. Mollapour, M. & Neckers, L. Post-translational modifications of Hsp90 and their contributions to chaperone regulation. Biochim. Biophys. Acta 1823, 648–655 (2012).

    Article  PubMed  CAS  Google Scholar 

  134. Taldone, T. et al. Experimental and structural testing module to analyze paralogue-specificity and affinity in the Hsp90 inhibitors series. J. Med. Chem. 56, 6803–6818 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Sattin, S. et al. Activation of Hsp90 enzymatic activity and conformational dynamics through rationally designed allosteric ligands. Chemistry 21, 13598–13608 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Schopf, F. H., Biebl, M. M. & Buchner, J. The HSP90 chaperone machinery. Nat. Rev. Mol. Cell Biol. 18, 345–360 (2017).

    Article  PubMed  CAS  Google Scholar 

  137. Krukenberg, K. A., Street, T. O., Lavery, L. A. & Agard, D. A. Conformational dynamics of the molecular chaperone Hsp90. Q. Rev. Biophys. 44, 229–255 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Gooljarsingh, L. T. et al. A biochemical rationale for the anticancer effects of Hsp90 inhibitors: slow, tight binding inhibition by geldanamycin and its analogues. Proc. Natl Acad. Sci. USA 103, 7625–7630 (2006).

    Article  PubMed  CAS  Google Scholar 

  139. Beebe, K. et al. Posttranslational modification and conformational state of heat shock protein 90 differentially affect binding of chemically diverse small molecule inhibitors. Oncotarget 4, 1065–1074 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Tsaytler, P. A., Krijgsveld, J., Goerdayal, S. S., Rudiger, S. & Egmond, M. R. Novel Hsp90 partners discovered using complementary proteomic approaches. Cell Stress Chaperones 14, 629–638 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Matts, R. L. et al. A systematic protocol for the characterization of Hsp90 modulators. Bioorg. Med. Chem. 19, 684–692 (2011).

    Article  PubMed  CAS  Google Scholar 

  142. Copeland, R. A. The drug-target residence time model: a 10-year retrospective. Nat. Rev. Drug Discov. 15, 87–95 (2016).

    Article  PubMed  CAS  Google Scholar 

  143. de Witte, W. E., Danhof, M., van der Graaf, P. H. & de Lange, E. C. In vivo target residence time and kinetic selectivity: the association rate constant as determinant. Trends Pharmacol. Sci. 37, 831–842 (2016).

    Article  PubMed  CAS  Google Scholar 

  144. Patel, H. J., Modi, S., Chiosis, G. & Taldone, T. Advances in the discovery and development of heat-shock protein 90 inhibitors for cancer treatment. Expert Opin. Drug Dis. 6, 559–587 (2011).

    Article  CAS  Google Scholar 

  145. Shrestha, L., Bolaender, A., Patel, H. J. & Taldone, T. Heat shock protein (HSP) drug discovery and development: targeting heat shock proteins in disease. Curr. Top. Med. Chem. 16, 2753–2764 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Ebong, I. O. et al. Heterogeneity and dynamics in the assembly of the heat shock protein 90 chaperone complexes. Proc. Natl Acad. Sci. USA 108, 17939–17944 (2011).

    Article  PubMed  Google Scholar 

  147. Zuehlke, A. D. et al. An Hsp90 co-chaperone protein in yeast is functionally replaced by site-specific posttranslational modification in humans. Nat. Commun. 8, 15328 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Voos, W. Chaperone-protease networks in mitochondrial protein homeostasis. Biochim. Biophys. Acta 1833, 388–399 (2013).

    Article  PubMed  CAS  Google Scholar 

  149. Sabnis, A. J. et al. Combined chemical-genetic approach identifies cytosolic HSP70 dependence in rhabdomyosarcoma. Proc. Natl Acad. Sci. USA 113, 9015–9020 (2016).

    Article  PubMed  CAS  Google Scholar 

  150. Altieri, D. C. Mitochondrial HSP90s and tumor cell metabolism. Autophagy 9, 244–245 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Patel, P. D. et al. Paralog-selective Hsp90 inhibitors define tumor-specific regulation of HER2. Nat. Chem. Biol. 9, 677–684 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Lee, A. S. Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential. Nat. Rev. Cancer 14, 263–276 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Carvalho, A. S., Rodriguez, M. S. & Matthiesen, R. Review and literature mining on proteostasis factors and cancer. Methods Mol. Biol. 1449, 71–84 (2016).

    Article  PubMed  CAS  Google Scholar 

  154. Brandvold, K. R. & Morimoto, R. I. The chemical biology of molecular chaperones — implications for modulation of proteostasis. J. Mol. Biol. 427, 2931–2947 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Gandolfi, S. et al. The proteasome and proteasome inhibitors in multiple myeloma. Cancer Metastasis Rev. 36, 561–584 (2017).

    Article  PubMed  CAS  Google Scholar 

  156. Li, Z., Hartl, F. U. & Bracher, A. Structure and function of Hip, an attenuator of the Hsp70 chaperone cycle. Nat. Struct. Mol. Biol. 20, 929–935 (2013).

    Article  PubMed  CAS  Google Scholar 

  157. Pratt, W. B. & Toft, D. O. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr. Rev. 18, 306–360 (1997).

    PubMed  CAS  Google Scholar 

  158. Davies, A. E. & Kaplan, K. B. Hsp90-Sgt1 and Skp1 target human Mis12 complexes to ensure efficient formation of kinetochore-microtubule binding sites. J. Cell Biol. 189, 261–274 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Gurard-Levin, Z. A., Quivy, J. P. & Almouzni, G. Histone chaperones: assisting histone traffic and nucleosome dynamics. Annu. Rev. Biochem. 83, 487–517 (2014).

    Article  PubMed  CAS  Google Scholar 

  160. Rosenzweig, R. & Glickman, M. H. Chaperone-driven proteasome assembly. Biochem. Soc. T. 36, 807–812 (2008).

    Article  CAS  Google Scholar 

  161. Chang, H. C. & Lindquist, S. Conservation of Hsp90 macromolecular complexes in Saccharomyces cerevisiae. J. Biol. Chem. 269, 24983–24988 (1994).

    PubMed  CAS  Google Scholar 

  162. Meacham, G. C. et al. Mutations in the yeast Hsp40 chaperone protein Ydj1 cause defects in Axl1 biogenesis and pro-a-factor processing. J. Biol. Chem. 274, 34396–34402 (1999).

    Article  PubMed  CAS  Google Scholar 

  163. Dey, B., Caplan, A. J. & Boschelli, F. The Ydj1 molecular chaperone facilitates formation of active p60v-src in yeast. Mol. Biol. Cell 7, 91–100 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Liu, X. D., Morano, K. A. & Thiele, D. J. The yeast Hsp110 family member, SSE1, is an Hsp90 cochaperone. J. Biol. Chem. 274, 26654–26660 (1999).

    Article  PubMed  CAS  Google Scholar 

  165. Lamoth, F., Juvvadi, P. R., Soderblom, E. J., Moseley, M. A. & Steinbach, W. J. Hsp70 and the cochaperone StiA (Hop) orchestrate Hsp90-mediated caspofungin tolerance in Aspergillus fumigatus. Antimicrob. Agents Chemother. 59, 4727–4733 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Nathan, D. F. & Lindquist, S. Mutational analysis of Hsp90 function: interactions with a steroid receptor and a protein kinase. Mol. Cell. Biol. 15, 3917–3925 (1995).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Piper, P. W. et al. Sensitivity to Hsp90-targeting drugs can arise with mutation to the Hsp90 chaperone, cochaperones and plasma membrane ATP binding cassette transporters of yeast. Eur. J. Biochem. 270, 4689–4695 (2003).

    Article  PubMed  CAS  Google Scholar 

  168. Lee, J. R. et al. Heat-shock dependent oligomeric status alters the function of a plant-specific thioredoxin-like protein, AtTDX. Proc. Natl Acad. Sci. USA 106, 5978–5983 (2009).

    Article  PubMed  Google Scholar 

  169. Lee, S. S. et al. Enhancement of chaperone activity of plant-specific thioredoxin through gamma-ray mediated conformational change. Int. J. Mol. Sci. 16, 27302–27312 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Thompson, A. D., Bernard, S. M., Skiniotis, G. & Gestwicki, J. E. Visualization and functional analysis of the oligomeric states of Escherichia coli heat shock protein 70 (Hsp70/DnaK). Cell Stress Chaperones 17, 313–327 (2012).

    Article  PubMed  CAS  Google Scholar 

  171. Angelidis, C. E., Lazaridis, I. & Pagoulatos, G. N. Aggregation of hsp70 and hsc70 in vivo is distinct and temperature-dependent and their chaperone function is directly related to non-aggregated forms. Eur. J. Biochem. 259, 505–512 (1999).

    Article  PubMed  CAS  Google Scholar 

  172. Araujo, T. L. et al. Conformational changes in human Hsp70 induced by high hydrostatic pressure produce oligomers with ATPase activity but without chaperone activity. Biochemistry 53, 2884–2889 (2014).

    Article  PubMed  CAS  Google Scholar 

  173. Freiden, P. J., Gaut, J. R. & Hendershot, L. M. Interconversion of three differentially modified and assembled forms of BiP. EMBO J. 11, 63–70 (1992).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Hatayama, T., Yasuda, K. & Yasuda, K. Association of HSP105 with HSC70 in high molecular mass complexes in mouse FM3A cells. Biochem. Biophys. Res. Commun. 248, 395–401 (1998).

    Article  PubMed  CAS  Google Scholar 

  175. Bruey, J. M. et al. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat. Cell Biol. 2, 645–652 (2000).

    Article  PubMed  CAS  Google Scholar 

  176. Bruey, J. M. et al. Differential regulation of HSP27 oligomerization in tumor cells grown in vitro and in vivo. Oncogene 19, 4855–4863 (2000).

    Article  PubMed  CAS  Google Scholar 

  177. Charette, S. J., Lavoie, J. N., Lambert, H. & Landry, J. Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol. Cell. Biol. 20, 7602–7612 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Garrido, C. Size matters: of the small HSP27 and its large oligomers. Cell Death Differ. 9, 483–485 (2002).

    Article  PubMed  CAS  Google Scholar 

  179. Yonehara, M., Minami, Y., Kawata, Y., Nagai, J. & Yahara, I. Heat-induced chaperone activity of HSP90. J. Biol. Chem. 271, 2641–2645 (1996).

    Article  PubMed  CAS  Google Scholar 

  180. Nemoto, T. & Sato, N. Oligomeric forms of the 90-kDa heat shock protein. Biochem. J. 330, 989–995 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Nemoto, T. K., Ono, T. & Tanaka, K. Substrate-binding characteristics of proteins in the 90 kDa heat shock protein family. Biochem. J. 354, 663–670 (2001).

    PubMed  PubMed Central  CAS  Google Scholar 

  182. Lepvrier, E. et al. Hsp90 oligomers interacting with the Aha1 cochaperone: an outlook for the Hsp90 chaperone machineries. Anal. Chem. 87, 7043–7051 (2015).

    Article  PubMed  CAS  Google Scholar 

  183. Lanks, K. W. Temperature-dependent oligomerization of hsp85 in vitro. J. Cell. Physiol. 140, 601–607 (1989).

    Article  PubMed  CAS  Google Scholar 

  184. Song, D. et al. Antitumor activity and molecular effects of the novel heat shock protein 90 inhibitor, IPI-504, in pancreatic cancer. Mol. Cancer Ther. 7, 3275–3284 (2008).

    Article  PubMed  CAS  Google Scholar 

  185. Vogen, S. et al. Radicicol-sensitive peptide binding to the N-terminal portion of GRP94. J. Biol. Chem. 277, 40742–40750 (2002).

    Article  PubMed  CAS  Google Scholar 

  186. Gaspar, M. E. & Csermely, P. Rigidity and flexibility of biological networks. Brief Funct. Genomics 11, 443–456 (2012).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

G.C. is supported by the US National Institutes of Health (NIH) (R01 CA172546, R01 CA155226, P01 CA186866, P30 CA08748 and P50 CA192937), the Mr. William H. Goodwin and Mrs. Alice Goodwin and the Commonwealth Foundation for Cancer Research and the Experimental Therapeutics Center of the Memorial Sloan Kettering Cancer Center; T.W. is supported by the Lymphoma Research Foundation; T.L.S.A. is supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (17/01130-6); and J.L.B. is supported by the Cystic Fibrosis Foundation Therapeutics (BRODSK13XX0) and by the NIH (grants GM75061 and DK79307).

Reviewer information

Nature Reviews Cancer thanks R. Kaufman and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

S.J., T.W., T.L.S.A. and S.S. researched data for the article and contributed to the writing of the article and to the review of the manuscript. T.W., T.L.S.A. and G.C. designed the figures and their content. J.L.B. edited the manuscript and provided specific text. G.C. designed the content of the manuscript, researched data for the article and wrote, edited and reviewed the manuscript.

Corresponding author

Correspondence to Gabriela Chiosis.

Ethics declarations

Competing interests

G.C. has partial ownership in Samus Therapeutics Inc., which develops chaperome inhibitors. S.J., T.W., T.L.S.A., S.S. and J.L.B. declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, S., Wang, T., Araujo, T.L.S. et al. Adapting to stress — chaperome networks in cancer. Nat Rev Cancer 18, 562–575 (2018). https://doi.org/10.1038/s41568-018-0020-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-018-0020-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing