Review Article | Published:

A causal mechanism for childhood acute lymphoblastic leukaemia

Nature Reviews Cancer (2018) | Download Citation


In this Review, I present evidence supporting a multifactorial causation of childhood acute lymphoblastic leukaemia (ALL), a major subtype of paediatric cancer. ALL evolves in two discrete steps. First, in utero initiation by fusion gene formation or hyperdiploidy generates a covert, pre-leukaemic clone. Second, in a small fraction of these cases, the postnatal acquisition of secondary genetic changes (primarily V(D)J recombination-activating protein (RAG) and activation-induced cytidine deaminase (AID)-driven copy number alterations in the case of ETS translocation variant 6 (ETV6)–runt-related transcription factor 1 (RUNX1)+ ALL) drives conversion to overt leukaemia. Epidemiological and modelling studies endorse a dual role for common infections. Microbial exposures earlier in life are protective but, in their absence, later infections trigger the critical secondary mutations. Risk is further modified by inherited genetics, chance and, probably, diet. Childhood ALL can be viewed as a paradoxical consequence of progress in modern societies, where behavioural changes have restrained early microbial exposure. This engenders an evolutionary mismatch between historical adaptations of the immune system and contemporary lifestyles. Childhood ALL may be a preventable cancer.

  • Subscribe to Nature Reviews Cancer for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

  • Correction 30 May 2018

    The article as originally published cited the incorrect paper as reference 123. The correct reference is Kroll, M. E., Draper, G. J., Stiller, C. A. & Murphy, M. F. G. Childhood leukemia incidence in Britain, 1974–2000: time trends and possible relation to influenza epidemics. J. Natl Cancer Inst. 98, 417–420 (2006). This has been corrected in the online and print versions of the article.


  1. 1.

    Parkin, D. M. et al. (eds). International incidence of childhood cancer (IARC Scientific Publications, Lyon, 1988).

  2. 2.

    Pinkel, D. in White Blood. Personal journeys with childhood leukaemia (ed. Greaves, M.) 13–46 (World Scientific, Singapore, 2008).

  3. 3.

    Inaba, H., Greaves, M. & Mullighan, C. G. Acute lymphoblastic leukaemia. Lancet 381, 1943–1955 (2013).

  4. 4.

    Essig, S. et al. Risk of late effects of treatment in children newly diagnosed with standard-risk acute lymphoblastic leukaemia: a report from the Childhood Cancer Survivor Study cohort. Lancet Oncol. 15, 841–851 (2014).

  5. 5.

    Winther, J. F. & Schmiegelow, K. How safe is a standard-risk child with ALL? Lancet Oncol. 15, 782–783 (2014).

  6. 6.

    Bhatia, S. & Robison, L. L. in Hematology and Oncology of Infancy and Childhood (eds Orkin, S. H. et al.) 1239–1256 (Elsevier, Philadelphia, 2015).

  7. 7.

    Greaves, M. Infection, immune responses and the aetiology of childhood leukaemia. Nat. Rev. Cancer 6, 193–203 (2006).Before the current Review, this was the most recent comprehensive review of the delayed infection hypothesis for BCP-ALL.

  8. 8.

    UK Childhood Cancer Study Investigators. The United Kingdom Childhood Cancer Study: objectives, materials and methods. Br. J. Cancer 82, 1073–1102 (2000).

  9. 9.

    Metayer, C. et al. The Childhood Leukemia International Consortium. Cancer Epidemiol. 37, 336–347 (2013).

  10. 10.

    Preston, D. L. et al. Cancer incidence in atomic bomb survivors. Part III: Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat. Res. 137 (Suppl.), S68–S97 (1994).

  11. 11.

    Doll, R. & Wakeford, R. Risk of childhood cancer from fetal irradiation. Br. J. Radiol. 70, 130–139 (1997).

  12. 12.

    Bartley, K., Metayer, C., Selvin, S., Ducore, J. & Buffler, P. Diagnostic X-rays and risk of childhood leukaemia. Int. J. Epidemiol. 39, 1628–1637 (2010).

  13. 13.

    Ward, G. The infective theory of acute leukaemia. Br. J. Child Dis. 14, 10–20 (1917).

  14. 14.

    Schulz, T. F. & Neil, J. C. in Leukemia (eds Henderson, E. S., Lister, T. A. & Greaves, M. F.) 200–225 (Saunders, Philadelphia, 2002).

  15. 15.

    Kinlen, L. Evidence for an infective cause of childhood leukaemia: comparison of a Scottish New Town with nuclear reprocessing sites in Britain. Lancet 2, 1323–1327 (1988).

  16. 16.

    Kinlen, L. Childhood leukaemia, nuclear sites, and population mixing. Br. J. Cancer 104, 12–18 (2011). This is a review of the Kinlen population-mixing hypothesis for childhood leukaemia.

  17. 17.

    Greaves, M. F. Speculations on the cause of childhood acute lymphoblastic leukemia. Leukemia 2, 120–125 (1988).

  18. 18.

    Torow, N. & Hornef, M. W. The neonatal window of opportunity: setting the stage for life-long host-microbial interaction and immune homeostasis. J. Immunol. 198, 557–563 (2017).

  19. 19.

    Lim, E. S. et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 21, 1228–1234 (2015).

  20. 20.

    Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012).

  21. 21.

    Biesbroek, G. et al. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children. Am. J. Respir. Crit. Care Med. 190, 1283–1292 (2014).

  22. 22.

    Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T cell generation. Nature 504, 451–455 (2013).

  23. 23.

    Wills-Karp, M., Santeliz, J. & Karp, C. L. The germless theory of allergic disease: revisiting the hygiene hypothesis. Nat. Rev. Immunol. 1, 69–75 (2001).

  24. 24.

    Greaves, M. Darwinian medicine: a case for cancer. Nat. Rev. Cancer 7, 213–221 (2007).

  25. 25.

    Elinav, E. et al. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer 13, 759–771 (2013).

  26. 26.

    de Visser, K. E., Eichten, A. & Coussens, L. M. Paradoxical roles of the immune system during cancer development. Nat. Rev. Cancer 6, 24–37 (2006).

  27. 27.

    Wiemels, J. L. & Greaves, M. Structure and possible mechanisms of TEL-AML1 gene fusions in childhood acute lymphoblastic leukemia. Cancer Res. 59, 4075–4082 (1999).

  28. 28.

    Rowley, J. D., Le Beau, M. M. & Rabbitts, T. H. (eds) Chromosomal Translocations and Genome Rearrangements in Cancer (Springer International Publishing, Switzerland, 2015).

  29. 29.

    Greaves, M. F., Maia, A. T., Wiemels, J. L. & Ford, A. M. Leukemia in twins: lessons in natural history. Blood 102, 2321–2333 (2003).

  30. 30.

    Wolman, I. J. Parallel responses to chemotherapy in identical twin infants with concordant leukemia. J. Pediatr. 60, 91–96 (1962).

  31. 31.

    Clarkson, B. & Boyse, E. A. Possible explanation of the high concordance for acute leukaemia in monozygotic twins. Lancet 1, 699–701 (1971).

  32. 32.

    Strong, S. J. & Corney, G. The Placenta in Twin Pregnancy (Pergamon Press, Oxford, 1967).

  33. 33.

    Ford, A. M. et al. In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature 363, 358–360 (1993).This is the first description of comparative genomics of ALL in twins with evidence for in utero origin.

  34. 34.

    Alpar, D. et al. Clonal origins of ETV6-RUNX1+ acute lymphoblastic leukemia: studies in monozygotic twins. Leukemia 29, 839–846 (2015).

  35. 35.

    Bateman, C. M. et al. Acquisition of genome-wide copy number alterations in monozygotic twins with acute lymphoblastic leukemia. Blood 115, 3553–3558 (2010).

  36. 36.

    Cazzaniga, G. et al. Developmental origins and impact of BCR-ABL1 fusion and IKZF1 deletions in monozygotic twins with Ph+ acute lymphoblastic leukemia. Blood 118, 5559–5565 (2011).

  37. 37.

    Ma, Y. et al. Developmental timing of mutations revealed by whole-genome sequencing of twins with acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA 110, 7429–7433 (2013).This study presents data from whole-genome sequencing of leukaemia in twin pairs.

  38. 38.

    Andersson, A. K. et al. The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias. Nat. Genet. 47, 330–337 (2015).

  39. 39.

    Dobbins, S. E. et al. The silent mutational landscape of infant MLL-AF4 pro-B acute lymphoblastic leukemia. Genes Chromosomes Cancer 52, 954–960 (2013).

  40. 40.

    Bateman, C. M. et al. Evolutionary trajectories of hyperdiploid ALL in monozygotic twins. Leukemia 29, 58–65 (2015).

  41. 41.

    Hong, D. et al. Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science 319, 336–339 (2008).This study identifies putative pre-leukaemic stem cells in ALL.

  42. 42.

    Shlush, L. I. et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506, 328–333 ()2014).

  43. 43.

    Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

  44. 44.

    Gale, K. B. et al. Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc. Natl Acad. Sci. USA 94, 13950–13954 (1997).This is the first study to identify leukaemia fusion genes in neonatal blood spots.

  45. 45.

    Wiemels, J. L. et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet 354, 1499–1503 (1999).

  46. 46.

    Hjalgrim, L. L. et al. Presence of clone-specific markers at birth in children with acute lymphoblastic leukaemia. Br. J. Cancer 87, 994–999 (2002).

  47. 47.

    McHale, C. M. et al. Prenatal origin of TEL-AML1-positive acute lymphoblastic leukemia in children born in California. Genes Chromosomes Cancer 37, 36–43 (2003).

  48. 48.

    Wiemels, J. L., Ford, A. M., Van Wering, E. R., Postma, A. & Greaves, M. Protracted and variable latency of acute lymphoblastic leukemia after TEL-AML1 gene fusion in utero. Blood 94, 1057–1062 (1999).

  49. 49.

    Maia, A. T. et al. Protracted postnatal natural histories in childhood leukemia. Genes Chromosomes Cancer 39, 335–340 (2004).

  50. 50.

    Mori, H. et al. Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc. Natl Acad. Sci. USA 99, 8242–8247 (2002). This study identifies a high rate of pre-leukaemic clone initiation before birth.

  51. 51.

    Lausten-Thomsen, U. et al. Prevalence of t(12;21)[ETV6-RUNX1]-positive cells in healthy neonates. Blood 117, 186–189 (2011).

  52. 52.

    Zuna, J. et al. ETV6/RUNX1 (TEL/AML1) is a frequent prenatal first hit in childhood leukemia. Blood 117, 368–369 (2011).

  53. 53.

    Skorvaga, M. et al. Incidence of common preleukemic gene fusions in umbilical cord blood in Slovak population. PLoS ONE 9, e91116 (2014).

  54. 54.

    Schafer, D. et al. Five percent of healthy newborns have an ETV6-RUNX1 fusion as revealed by DNA-based GIPFEL screening. Blood 131, 821–826 (2018).

  55. 55.

    Beckwith, J. B. & Perrin, E. V. In situ neuroblastomas: a contribution to the natural history of neural crest tumors. Am. J. Pathol. 43, 1089–1104 (1963).

  56. 56.

    Charles, A. K., Brown, K. W. & Berry, P. J. Microdissecting the genetic events in nephrogenic rests and Wilms’ tumor development. Am. J. Pathol. 153, 991–1000 (1998).

  57. 57.

    Yagi, T. et al. Detection of clonotypic IGH and TCR rearrangements in the neonatal blood spots of infants and children with B cell precursor acute lymphoblastic leukemia. Blood 96, 264–268 (2000).

  58. 58.

    Taub, J. W. et al. High frequency of leukemic clones in newborn screening blood samples of children with B-precursor acute lymphoblastic leukemia. Blood 99, 2992–2996 (2002).

  59. 59.

    Fasching, K. et al. Presence of clone-specific antigen receptor gene rearrangements at birth indicates an in utero origin of diverse types of early childhood acute lymphoblastic leukemia. Blood 95, 2722–2724 (2000).

  60. 60.

    Maia, A. T. et al. Identification of preleukemic precursors of hyperdiploid acute lymphoblastic leukemia in cord blood. Genes Chromosomes Cancer 40, 38–43 (2004).

  61. 61.

    Paulsson, K. et al. The genomic landscape of high hyperdiploid childhood acute lymphoblastic leukemia. Nat. Genet. 47, 672–676 (2015). This study presents data on the genomics of the hyperdiploid subset of BCP-ALL.

  62. 62.

    Papaemmanuil, E. et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat. Genet. 46, 116–125 (2014). This study presents data on the genomics of ETV6–RUNX1 + BCP-ALL.

  63. 63.

    Mullighan, C. G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446, 758–764 (2007). This study identifies recurrent CNAs in ALL.

  64. 64.

    Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

  65. 65.

    Anderson, K. et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469, 356–361 (2011).

  66. 66.

    Waanders, E. et al. The origin and nature of tightly clustered BTG1 deletions in precursor B cell acute lymphoblastic leukemia support a model of multiclonal evolution. PLoS Genet. 8, e1002533 (2012).

  67. 67.

    Roberts, S. A. et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 45, 970–976 (2013).

  68. 68.

    Kharazmi, E. et al. Familial risks for childhood acute lymphocytic leukaemia in Sweden and Finland: far exceeding the effects of known germline variants. Br. J. Haematol. 159, 585–588 (2012).

  69. 69.

    Sinnett, D., Krajinovic, M. & Labuda, D. Genetic susceptibility to childhood acute lymphoblastic leukemia. Leuk. Lymphoma 38, 447–462 (2000).

  70. 70.

    Vijayakrishnan, J. & Houlston, R. S. Candidate gene association studies and risk of childhood acute lymphoblastic leukemia: a systematic review and meta-analysis. Haematologica 95, 1405–1414 (2010).

  71. 71.

    Moriyama, T., Relling, M. V. & Yang, J. J. Inherited genetic variation in childhood acute lymphoblastic leukemia. Blood 125, 3988–3995 (2015). This is a review of GWAS studies in ALL.

  72. 72.

    Studd, J. B. et al. Genetic and regulatory mechanism of susceptibility to high-hyperdiploid acute lymphoblastic leukaemia at 10p21.2. Nat. Commun. 8, 14616 (2017).

  73. 73.

    Sud, A., Kinnersley, B. & Houlston, R. S. Genome-wide association studies of cancer: current insights and future perspectives. Nat. Rev. Cancer 17, 692–704 (2017).

  74. 74.

    Walsh, K. M. et al. A heritable missense polymorphism in CDKN2A confers strong risk of childhood acute lymphoblastic leukemia and is preferentially selected during clonal evolution. Cancer Res. 75, 4884–4894 (2015).

  75. 75.

    Xu, H. et al. Inherited coding variants at the CDKN2A locus influence susceptibility to acute lymphoblastic leukaemia in children. Nat. Commun. 6, 7553 (2015).

  76. 76.

    Taylor, G. M. et al. Strong association of the HLA-DP6 supertype with childhood leukaemia is due to a single allele, DPB1*0601. Leukemia 23, 863–869 (2009).

  77. 77.

    Urayama, K. Y. et al. HLA-DP genetic variation, proxies for early life immune modulation and childhood acute lymphoblastic leukemia risk. Blood 120, 3039–3047 (2012).

  78. 78.

    Urayama, K. Y. et al. SNP association mapping across the extended major histocompatibility complex and risk of B cell precursor acute lymphoblastic leukemia in children. PLoS ONE 8, e72557 (2013).

  79. 79.

    Cloppenborg, T. et al. Immunosurveillance of childhood ALL: polymorphic interferon-gamma alleles are associated with age at diagnosis and clinical risk groups. Leukemia 19, 44–48 (2005).

  80. 80.

    Miedema, K. G. et al. Polymorphisms in the TLR6 gene associated with the inverse association between childhood acute lymphoblastic leukemia and atopic disease. Leukemia 26, 1203–1210 (2012).

  81. 81.

    Almalte, Z. et al. Novel associations between activating killer-cell immunoglobulin-like receptor genes and childhood leukemia. Blood 118, 1323–1328 (2011).

  82. 82.

    Shah, S. et al. A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia. Nat. Genet. 45, 1226–1231 (2013).

  83. 83.

    Noetzli, L. et al. Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nat. Genet. 47, 535–538 (2015).

  84. 84.

    Holmfeldt, L. et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat. Genet. 45, 242–252 (2013).

  85. 85.

    Lee, P., Bhansali, R., Izraeli, S., Hijiya, N. & Crispino, J. D. The biology, pathogenesis and clinical aspects of acute lymphoblastic leukemia in children with Down syndrome. Leukemia 30, 1816–1823 (2016).

  86. 86.

    Lane, A. A. et al. Triplication of a 21q22 region contributes to B cell transformation through HMGN1 overexpression and loss of histone H3 Lys27 trimethylation. Nat. Genet. 46, 618–623 (2014).

  87. 87.

    Lichtenstein, P. et al. Environmental and heritable factors in the causation of cancer. N. Engl. J. Med. 343, 78–85 (2000).

  88. 88.

    Rudant, J. et al. ARID5B, IKZF1 and non-genetic factors in the etiology of childhood acute lymphoblastic leukemia: the ESCALE study. PLoS ONE 10, e0121348 (2015).

  89. 89.

    Yan, C. T. et al. IgH class switching and translocations use a robust non-classical end-joining pathway. Nature 449, 478–482 (2007).

  90. 90.

    Paashuis-Lew, Y. R. & Heddle, J. A. Spontaneous mutation during fetal development and post-natal growth. Mutagenesis 13, 613–617 (1998).

  91. 91.

    Vilenchik, M. M. & Knudson, A. G. Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc. Natl Acad. Sci. USA 100, 12871–12876 (2003).

  92. 92.

    Marshall, G. M. et al. The prenatal origins of cancer. Nat. Rev. Cancer 14, 277–289 (2014).

  93. 93.

    Rook, G. A. W. (ed.) The Hygiene Hypothesis and Darwinian Medicine (Birkhäuser, Basel, 2009).

  94. 94.

    Goodman, R. A., Osterholm, M. T., Granoff, D. M. & Pickering, L. K. Infectious diseases and child day care. Pediatrics 74, 134–139 (1984).

  95. 95.

    Gilham, C. et al. Day care in infancy and risk of childhood acute lymphoblastic leukaemia: findings from a UK case-control study. Br. Med. J. 330, 1294–1297 (2005).

  96. 96.

    Ma, X. et al. Daycare attendance and risk of childhood acute lymphoblastic leukaemia. Br. J. Cancer 86, 1419–1424 (2002).

  97. 97.

    Kamper-Jørgensen, M. et al. Childcare in the first 2 years of life reduces the risk of childhood acute lymphoblastic leukemia. Leukemia 22, 189–193 (2007).

  98. 98.

    Ajrouche, R. et al. Childhood acute lymphoblastic leukaemia and indicators of early immune stimulation: the Estelle study (SFCE). Br. J. Cancer 112, 1017–1026 (2015).

  99. 99.

    Rudant, J. et al. Childhood acute lymphoblastic leukemia and indicators of early immune stimulation: a Childhood Leukemia International Consortium study. Am. J. Epidemiol. 181, 549–562 (2015).

  100. 100.

    Urayama, K. Y., Buffler, P. A., Gallagher, E. R., Ayoob, J. M. & Ma, X. A meta-analysis of the association between day-care attendance and childhood acute lymphoblastic leukaemia. Int. J. Epidemiol. 39, 718–732 (2010). This is a meta-analysis of studies reporting the protective effect of day care attendance in infancy on total ALL and BCP-ALL occurrence.

  101. 101.

    Neglia, J. P. et al. Patterns of infection and day care utilization and risk factors of childhood acute lymphoblastic leukemia. Br. J. Cancer 82, 234–240 (2000).

  102. 102.

    Simpson, J., Smith, A., Ansell, P. & Roman, E. Childhood leukaemia and infectious exposure: a report from the United Kingdom Childhood Cancer Study (UKCCS). Eur. J. Cancer 43, 2396–2403 (2007).

  103. 103.

    Rudant, J. et al. Childhood acute leukemia, early common infections, and allergy: the ESCALE Study. Am. J. Epidemiol. 172, 1015–1027 (2010).

  104. 104.

    Lin, J. N. et al. Risk of leukaemia in children infected with enterovirus: a nationwide, retrospective, population-based, Taiwanese-registry, cohort study. Lancet Oncol. 16, 1335–1343 (2015).

  105. 105.

    Urayama, K. Y. et al. Early life exposure to infections and risk of childhood acute lymphoblastic leukemia. Int. J. Cancer 128, 1632–1643 (2011).

  106. 106.

    Chan, L. C. et al. Is the timing of exposure to infection a major determinant of acute lymphoblastic leukaemia in Hong Kong? Paediatr. Perinat. Epidemiol. 16, 154–165 (2002).

  107. 107.

    Dockerty, J. D., Draper, G., Vincent, T., Rowan, S. D. & Bunch, K. J. Case-control study of parental age, parity and socioeconomic level in relation to childhood cancers. Int. J. Epidemiol. 30, 1428–1437 (2001).

  108. 108.

    Ma, X. et al. Vaccination history and risk of childhood leukaemia. Int. J. Epidemiol. 34, 1100–1109 (2005).

  109. 109.

    Shu, X. O. et al. Chloramphenicol use and childhood leukaemia in Shanghai. Lancet 2, 934–937 (1987).

  110. 110.

    Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).

  111. 111.

    Greenbaum, S. et al. Cesarean delivery and childhood malignancies: a single-center, population-based cohort study. J. Pediatr. (2018).

  112. 112.

    Wang, R. et al. Cesarean section and risk of childhood acute lymphoblastic leukemia in a population-based, record-linkage study in California. Am. J. Epidemiol. 185, 96–105 (2017).

  113. 113.

    Marcotte, E. L. et al. Caesarean delivery and risk of childhood leukaemia: a pooled analysis from the Childhood Leukemia International Consortium (CLIC). Lancet Haematol. 3, e176–e185 (2016).

  114. 114.

    Sevelsted, A., Stokholm, J., Bonnelykke, K. & Bisgaard, H. Cesarean section and chronic immune disorders. Pediatrics 135, e92–e98 (2015).

  115. 115.

    Penders, J. et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118, 511–521 (2006).

  116. 116.

    Amitay, E. L. & Keinan-Boker, L. Breastfeeding and childhood leukemia incidence: a meta-analysis and systematic review. JAMA Pediatr. 169, e151025 (2015). This is a review of epidemiological evidence supporting a protective effect of protracted breastfeeding on ALL occurrence.

  117. 117.

    Shu, X. O. et al. Breast-feeding and risk of childhood acute leukemia. J. Natl Cancer Inst. 91, 1765–1772 (1999).

  118. 118.

    UK Childhood Cancer Study Investigators. Breastfeeding and childhood cancer. Br. J. Cancer 85, 1685–1694 (2001).

  119. 119.

    Heath, C. W. Jr & Hasterlik, R. J. Leukemia among children in a suburban community. Am. J. Med. 34, 796–812 (1963).

  120. 120.

    Francis, S. S., Selvin, S., Yang, W., Buffler, P. A. & Wiemels, J. L. Unusual space-time patterning of the fallon, Nevada leukemia cluster: evidence of an infectious etiology. Chem. Biol. Interact. 196, 102–109 (2012). This is a report of the most striking space–time cluster of childhood BCP-ALL to date.

  121. 121.

    Cazzaniga, G. et al. Possible role of pandemic AH1N1 swine flu virus in a childhood leukemia cluster. Leukemia 31, 1819–1821 (2017).This is the first report linking a space–time cluster of childhood BCP-ALL with a specific viral infection.

  122. 122.

    Kulldorff, M. & Nagarwalla, N. Spatial disease clusters: detection and inference. Stat. Med. 14, 799–810 (1995).

  123. 123.

    Kroll, M. E., Draper, G. J., Stiller, C. A., & Murphy, M. F. G. Childhood leukemia incidence in Britain, 1974–2000: time trends and possible relation to influenza epidemics. J. Natl Cancer Inst. 98, 417–420 (2006).

  124. 124.

    Francis, S. S. et al. In utero cytomegalovirus infection and development of childhood acute lymphoblastic leukemia. Blood 129, 1680–1684 (2017).

  125. 125.

    Ford, A. M. et al. The TEL-AML1 leukemia fusion gene dysregulates the TGFb pathway in early B lineage progenitor cells. J. Clin. Invest. 119, 826–836 (2009).

  126. 126.

    Swaminathan, S. et al. Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia. Nat. Immunol. 16, 766–774 (2015). This study models the link between infections and activation of secondary genetic changes in ALL via RAG and AID.

  127. 127.

    Olinski, R., Styczynski, J., Olinska, E. & Gackowski, D. Viral infection-oxidative stress/DNA damage-aberrant DNA methylation: separate or interrelated events responsible for genetic instability and childhood ALL development? Biochim. Biophys. Acta 1846, 226–231 (2014).

  128. 128.

    de Yébenes, V. & Ramiro, A. R. Activation-induced deaminase: light and dark sides. Trends Mol. Med. 12, 432–439 (2006).

  129. 129.

    Robbiani, D. F. et al. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 135, 1028–1038 (2008).

  130. 130.

    Chesi, M. et al. AID-dependent activation of a MYC transgene induces multiple myeloma in a conditional mouse model of post-germinal center malignancies. Cancer Cell 13, 167–180 (2008).

  131. 131.

    Rosenberg, B. R. & Papavasiliou, F. N. Beyond SHM and CSR: AID and related cytidine deaminases in the host response to viral infection. Adv. Immunol. 94, 215–244 (2007).

  132. 132.

    Pickup, M., Novitskiy, S. & Moses, H. L. The roles of TGFbeta in the tumour microenvironment. Nat. Rev. Cancer 13, 788–799 (2013).

  133. 133.

    Rouce, R. H. et al. The TGF-beta/SMAD pathway is an important mechanism for NK cell immune evasion in childhood B-acute lymphoblastic leukemia. Leukemia 30, 800–811 (2016).

  134. 134.

    Martin-Lorenzo, A. et al. Infection exposure is a causal factor in B cell precursor acute lymphoblastic leukemia as a result of Pax5-inherited susceptibility. Cancer Discov. 5, 1328–1343 (2015). This study demonstrates, in a mouse model, that common infections promote BCP-ALL.

  135. 135.

    Rodriguez-Hernandez, G. et al. Infection exposure promotes ETV6-RUNX1 precursor B cell leukemia via impaired H3K4 demethylases. Cancer Res. 77, 4365–4377 (2017).

  136. 136.

    Fidanza, M. et al. Inhibition of precursor B cell malignancy progression by toll-like receptor ligand-induced immune responses. Leukemia 30, 2116–2119 (2016).

  137. 137.

    Poynton, F. J., Thursfield, H. & Paterson, D. The severe blood diseases of childhood: a series of observations from the Hospital for Sick Children, Great Ormond Street. Br. J. Child Dis. XIX, 128–144 (1922).

  138. 138.

    Holm, J. et al. Assessment of breast cancer risk factors reveals subtype heterogeneity. Cancer Res. 77, 3708–3717 (2017).

  139. 139.

    Thagard, P. How Scientists Explain Disease (Princeton Univ. Press, Princeton, 1999).

  140. 140.

    Cozen, W. et al. A protective role for early oral exposures in the etiology of young adult Hodgkin lymphoma. Blood 114, 4014–4020 (2009).

  141. 141.

    Bach, J. F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002).

  142. 142.

    Dunne, D. W. & Cooke, A. A worm’s eye view of the immune system: consequences for evolution of human autoimmune disease. Nat. Rev. Immunol. 5, 420–426 (2005).

  143. 143.

    Parker, W. & Ollerton, J. Evolutionary biology and anthropology suggest biome reconstitution as a necessary approach toward dealing with immune disorders. Evol. Med. Public Health 2013, 89–103 (2013).

  144. 144.

    Marino, E. et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat. Immunol. 18, 552–562 (2017).

  145. 145.

    Durack, J. et al. Delayed gut microbiota development in high-risk for asthma infants is temporarily modifiable by Lactobacillus supplementation. Nat. Commun. 9, 707 (2018).

  146. 146.

    Trompette, A. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20, 159–166 (2014).

  147. 147.

    Elliott, D. E. & Weinstock, J. V. Helminth-host immunological interactions: prevention and control of immune-mediated diseases. Ann. NY Acad. Sci. 1247, 83–96 (2012).

  148. 148.

    Navarro, S. et al. Hookworm recombinant protein promotes regulatory T cell responses that suppress experimental asthma. Sci. Transl Med. 8, 362ra143 (2016).

  149. 149.

    Panigrahi, P. et al. A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature 548, 407–412 (2017).

  150. 150.

    Anderson, R. M. & May, R. M. Immunisation and herd immunity. Lancet 335, 641–645 (1990).

  151. 151.

    Bellec, S. et al. Childhood leukaemia and population movements in France, 1990–2003. Br. J. Cancer 98, 225–231 (2008).

  152. 152.

    Stiller, C. A., Kroll, M. E., Boyle, P. J. & Feng, Z. Population mixing, socioeconomic status and incidence of childhood acute lymphoblastic leukaemia in England and Wales: analysis by census ward. Br. J. Cancer 98, 1006–1011 (2008).

  153. 153.

    Dickinson, H. O., Hammal, D. M., Bithell, J. F. & Parker, L. Population mixing and childhood leukaemia and non-Hodgkin’s lymphoma in census wards in England and Wales, 1966–1987. Br. J. Cancer 86, 1411–1413 (2002).

  154. 154.

    Sabaawy, H. E. et al. TEL-AML1 transgenic zebrafish model of precursor B cell acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA 103, 15166–15171 (2006).

  155. 155.

    Bernardin, F. et al. TEL-AML1, expressed from t(12;21) in human acute lymphocytic leukemia, induces acute leukemia in mice. Cancer Res. 62, 3904–3908 (2002).

  156. 156.

    Morrow, M., Horton, S., Kioussis, D., Brady, H. J. M. & Williams, O. TEL-AML1 promotes development of specific hematopoietic lineages consistent with preleukemic activity. Blood 103, 3890–3896 (2004).

  157. 157.

    Tsuzuki, S., Seto, M., Greaves, M. & Enver, T. Modelling first-hit functions of the t(12;21) TEL-AML1 translocation in mice. Proc. Natl Acad. Sci. USA 101, 8443–8448 (2004).

  158. 158.

    Fischer, M. et al. Defining the oncogenic function of the TEL/AML1 (ETV6/RUNX1) fusion protein in a mouse model. Oncogene 24, 7579–7591 (2005).

  159. 159.

    Schindler, J. W. et al. TEL-AML1 corrupts hematopoietic stem cells to persist in the bone marrow and initiate leukemia. Cell Stem Cell 5, 43–53 (2009).

  160. 160.

    van der Weyden, L. et al. Modeling the evolution of ETV6-RUNX1-induced B cell precursor acute lymphoblastic leukemia in mice. Blood 118, 1041–1051 (2011).

  161. 161.

    van der Weyden, L. et al. Somatic drivers of B-ALL in a model of ETV6-RUNX1; Pax5(+/−) leukemia. BMC Cancer 15, 585 (2015).

  162. 162.

    Li, M. et al. Initially disadvantaged, TEL-AML1 cells expand and initiate leukemia in response to irradiation and cooperating mutations. Leukemia 27, 1570–1573 (2013).

  163. 163.

    Inthal, A. et al. Role of the erythropoietin receptor in ETV6/RUNX1-positive acute lymphoblastic leukemia. Clin. Cancer Res. 14, 7196–7204 (2008).

  164. 164.

    Torrano, V., Procter, J., Cardus, P., Greaves, M. & Ford, A. M. ETV6-RUNX1 promotes survival of early B lineage progenitor cells via a dysregulated erythropoietin receptor. Blood 118, 4910–4918 (2011).

  165. 165.

    Liu, G. J. et al. Pax5 loss imposes a reversible differentiation block in B-progenitor acute lymphoblastic leukemia. Genes Dev. 28, 1337–1350 (2014).

  166. 166.

    Hunger, S. P. & Mullighan, C. G. Redefining ALL classification: toward detecting high-risk ALL and implementing precision medicine. Blood 125, 3977–3987 (2015).

  167. 167.

    Li, Z. et al. Developmental stage-selective effect of somatically mutated leukemogenic transcription factor GATA1. Nat. Genet. 37, 613–619 (2005).

  168. 168.

    Boiers, C. et al. A human IPS model implicates embryonic B-myeloid fate restriction as developmental susceptibility to B acute lymphoblastic leukemia-associated ETV6-RUNX1. Dev. Cell 44, 362–377.e7 (2018).This study identifies putative fetal liver target cells for ETV6–RUNX1 + BCP-ALL.

  169. 169.

    Hjalgrim, L. L. et al. Birth weight as a risk factor for childhood leukemia: a meta-analysis of 18 epidemiologic studies. Am. J. Epidemiol. 158, 724–735 (2003).

  170. 170.

    Roman, E. et al. Childhood acute lymphoblastic leukaemia and birthweight: insights from a pooled analysis of case-control data from Germany, the United Kingdom and the United States. Eur. J. Cancer 49, 1437–1447 (2013).

  171. 171.

    Milne, E. et al. Fetal growth and childhood acute lymphoblastic leukemia: findings from the childhood leukemia international consortium. Int. J. Cancer 133, 2968–2979 (2013).

  172. 172.

    Chokkalingam, A. P. et al. Fetal growth and body size genes and risk of childhood acute lymphoblastic leukemia. Cancer Causes Control 23, 1577–1585 (2012).

  173. 173.

    Tower, R. L. & Spector, L. G. The epidemiology of childhood leukemia with a focus on birth weight and diet. Crit. Rev. Clin. Lab. Sci. 44, 203–242 (2007).

  174. 174.

    Gibson, L. F., Piktel, D. & Landreth, K. S. Insulin-like growth factor-1 potentiates expansion of interleukin-7-dependent pro-B cells. Blood 82, 3005–3011 (1993).

  175. 175.

    Lu, Z. et al. Fasting selectively blocks development of acute lymphoblastic leukemia via leptin-receptor upregulation. Nat. Med. 23, 79–90 (2017).

  176. 176.

    Monod, J. Chance & Necessity (Alfred A. Knopf, New York, 1970).

  177. 177.

    Tomasetti, C. & Vogelstein, B. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347, 78–81 (2015).

  178. 178.

    Greaves, M. Evolutionary determinants of cancer. Cancer Discov. 5, 806–820 (2015).

  179. 179.

    Iacobucci, I. & Mullighan, C. G. Genetic basis of acute lymphoblastic leukemia. J. Clin. Oncol. 35, 975–983 (2017).

  180. 180.

    Roberts, K. G. & Mullighan, C. G. Genomics in acute lymphoblastic leukaemia: insights and treatment implications. Nat. Rev. Clin. Oncol. 12, 344–357 (2015).

  181. 181.

    Belver, L. & Ferrando, A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat. Rev. Cancer 16, 494–507 (2016).

  182. 182.

    Greaves, M. F., Pegram, S. M. & Chan, L. C. Collaborative group study of the epidemiology of acute lymphoblastic leukaemia subtypes: background and first report. Leuk. Res. 9, 715–733 (1985).

  183. 183.

    Greaves, M. F., Janossy, G., Peto, J. & Kay, H. Immunologically defined subclasses of acute lymphoblastic leukaemia in children: their relationship to presentation features and prognosis. Br. J. Haematol. 48, 179–197 (1981).

  184. 184.

    Shah, A. & Coleman, M. P. Increasing incidence of childhood leukaemia: a controversy re-examined. Br. J. Cancer 97, 1009–1012 (2007).

  185. 185.

    Spix, C., Eletr, D., Blettner, M. & Kaatsch, P. Temporal trends in the incidence rate of childhood cancer in Germany 1987–2004. Int. J. Cancer 122, 1859–1867 (2008).

  186. 186.

    Steliarova-Foucher, E. et al. Trends in childhood cancer incidence in Europe, 1970–1999. Lancet 365, 2088 (2005).

  187. 187.

    Chessells, J. M., Hardisty, R. M., Rapson, N. T. & Greaves, M. F. Acute lymphoblastic leukaemia in children: classification and prognosis. Lancet 2, 1307–1309 (1977).

  188. 188.

    Sallan, S. E. et al. Cell surface antigens: prognostic implications in childhood acute lymphoblastic leukemia. Blood 55, 395–402 (1980).

  189. 189.

    Greaves, M. in Nathan & Oski’s Hematology & Oncology of Infancy & Childhood (eds Orkin, S. H. et al.) 1229–1238 (Elsevier Saunders, Philadelphia, 2015).

  190. 190.

    Papaemmanuil, E. et al. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat. Genet. 41, 1006–1010 (2009).

  191. 191.

    Trevino, L. R. et al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat. Genet. 41, 1001–1005 (2009).

  192. 192.

    Hungate, E. A. et al. A variant at 9p21.3 functionally implicates CDKN2B in paediatric B cell precursor acute lymphoblastic leukaemia aetiology. Nat. Commun. 7, 10635 (2016).

  193. 193.

    Vijayakrishnan, J. et al. The 9p21.3 risk of childhood acute lymphoblastic leukaemia is explained by a rare high-impact variant in CDKN2A. Sci. Rep. 5, 15065 (2015).

  194. 194.

    Wiemels, J. L. et al. A functional polymorphism in the CEBPE gene promoter influences acute lymphoblastic leukemia risk through interaction with the hematopoietic transcription factor Ikaros. Leukemia 30, 1194–1197 (2016).

  195. 195.

    Migliorini, G. et al. Variation at 10p12.2 and 10p14 influences risk of childhood B cell acute lymphoblastic leukemia and phenotype. Blood 122, 3298–3307 (2013).

  196. 196.

    Perez-Andreu, V. et al. Inherited GATA3 variants are associated with Ph-like childhood acute lymphoblastic leukemia and risk of relapse. Nat. Genet. 45, 1494–1498 (2013).

  197. 197.

    Ellinghaus, E. et al. Identification of germline susceptibility loci in ETV6-RUNX1-rearranged childhood acute lymphoblastic leukemia. Leukemia 26, 902–909 (2012).

  198. 198.

    Vijayakrishnan, J. et al. A genome-wide association study identifies risk loci for childhood acute lymphoblastic leukemia at 10q26.13 and 12q23.1. Leukemia 31, 573–579 (2017).

  199. 199.

    Vijayakrishnan, J. et al. Genome-wide association study identifies susceptibility loci for B-cell childhood acute lymphoblastic leukemia. Nat. Commun. 9, 1340 (2018).

  200. 200.

    Wiemels, J. L. et al. GWAS in childhood acute lymphoblastic leukemia reveals novel genetic associations at chromosomes 17q12 and 8q24.21. Nat. Commun. 9, 286 (2018).

Download references


The author thanks the Leukaemia Research Fund UK (now Bloodwise), The Kay Kendall Leukaemia Fund, the Wellcome Trust [105104/Z/14/Z] and The Institute of Cancer Research, London, for long-term funding support. The author also thanks R. Houlston for constructive comments on the manuscript. The author is indebted to many students and postdoctoral fellows in his laboratory who have researched this topic over many years and to the many scientists and clinicians who have been excellent collaborators. These include A. Ford, J. Wiemels, A. T. Maia, L. C. Chan, C. Bateman, D. Alpar, I. Titley, S. Colman, H. Mori, V. Cazzaniga, K. Anderson, N. Potter, L. Kearney and R. Houlston (all at The Institute of Cancer Research, London), as well as A. Lister, T. Eden, J. Chessells, P. Ancliff, R. Jarrett, A. Borkhardt, P. Buffler, E. Roman, G. Cazzaniga, M. E. Cabrera, M. P. de Oliveira, A. Biondi, J. Kersey, M. Müschen, P. Campbell, E. Papaemmanuil and T. Enver.

Reviewer information

Nature Reviews Cancer thanks K. Paulsson, S. Sallan and J. Wiemels for their contribution to the peer review of this work.

Author information


  1. Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK

    • Mel Greaves


  1. Search for Mel Greaves in:


M.G. researched data for the article and wrote, reviewed and edited the manuscript.

Competing interests

The author declares no competing interests.

Corresponding author

Correspondence to Mel Greaves.

Supplementary information


Vascular anastomoses

Interconnected blood vessels (venous or arterial) in a twin, monochorionic placenta that facilitate the transfer of blood cells and fluids between identical twins.

Blood cell chimerism

The sharing of blood cells in monozygotic twins that developed in a single, or monochorionic, placenta.

Neonatal blood spots

Also known as Guthrie cards, these are samples of dried blood collected from a newborn baby shortly after birth via a heel prick that are routinely used to detect genetic conditions.

Non-homologous end joining via microhomologies

A common (error-prone) recombination method that cells use to repair double-stranded DNA breaks without a sequence template that often involves the use of microhomologies of a few bases in pairing DNA strands.

Space–time clusters

A set of patients diagnosed in a short time frame and resident in the same, small area.

Relative risk

(RR). The calculated increase in diagnoses in a group of patients expressed, proportionally, in relation to that expected in the general, age-matched population.

About this article

Publication history



Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.