Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

OPINION

Non-canonical functions of the RB protein in cancer

Abstract

The canonical model of RB-mediated tumour suppression developed over the past 30 years is based on the regulation of E2F transcription factors to restrict cell cycle progression. Several additional functions have been proposed for RB, on the basis of which a non-canonical RB pathway can be described. Mechanistically, the non-canonical RB pathway promotes histone modification and regulates chromosome structure in a manner distinct from cell cycle regulation. These functions have implications for chemotherapy response and resistance to targeted anticancer agents. This Opinion offers a framework to guide future studies of RB in basic and clinical research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Canonical RB–E2F regulation and mechanisms of CDK resistance.
Fig. 2: Roles for RB in genome stability and regulation of chromatin.
Fig. 3: Proposed model for RB1 loss in transdifferentiation and drug resistance.
Fig. 4: Features of the canonical and non-canonical RB pathways.

Similar content being viewed by others

References

  1. Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262 (1998).

    Article  PubMed  CAS  Google Scholar 

  2. Classon, M. & Harlow, E. The retinoblastoma tumour suppressor in development and cancer. Nat. Rev. Cancer 2, 910–917 (2002).

    Article  PubMed  CAS  Google Scholar 

  3. Knudsen, E. S. & Knudsen, K. E. Tailoring to RB: tumour suppressor status and therapeutic response. Nat. Rev. Cancer 8, 714–724 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Sherr, C. J. Cancer cell cycles. Science 274, 1672–1677 (1996).

    Article  PubMed  CAS  Google Scholar 

  5. Sherr, C. J. & McCormick, F. The RB and p53 pathways in cancer. Cancer Cell 2, 103–112 (2002).

    Article  PubMed  CAS  Google Scholar 

  6. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  PubMed  CAS  Google Scholar 

  7. Ishak, C. A. et al. An RB-EZH2 complex mediates silencing of repetitive DNA sequences. Mol. Cell 64, 1074–1087 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Kareta, M. S. et al. Inhibition of pluripotency networks by the Rb tumor suppressor restricts reprogramming and tumorigenesis. Cell Stem Cell 16, 39–50 (2015).

    Article  PubMed  CAS  Google Scholar 

  9. Ferrari, R. et al. Adenovirus small E1A employs the lysine acetylases p300/CBP and tumor suppressor Rb to repress select host genes and promote productive virus infection. Cell Host Microbe 16, 663–676 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Avni, D. et al. Active localization of the retinoblastoma protein in chromatin and its response to S phase DNA damage. Mol. Cell 12, 735–746 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. Wells, J., Yan, P. S., Cechvala, M., Huang, T. & Farnham, P. J. Identification of novel pRb binding sites using CpG microarrays suggests that E2F recruits pRb to specific genomic sites during S phase. Oncogene 22, 1445–1460 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. Ianari, A. et al. Proapoptotic function of the retinoblastoma tumor suppressor protein. Cancer Cell 15, 184–194 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Cecchini, M. J. & Dick, F. A. The biochemical basis of CDK phosphorylation-independent regulation of E2F1 by the retinoblastoma protein. Biochem. J. 434, 297–308 (2011).

    Article  PubMed  CAS  Google Scholar 

  14. Cecchini, M. J. et al. Loss of the retinoblastoma tumor suppressor correlates with improved outcome in patients with lung adenocarcinoma treated with surgery and chemotherapy. Hum. Pathol. 46, 1922–1934 (2015).

    Article  PubMed  CAS  Google Scholar 

  15. Bosco, E. E. et al. The retinoblastoma tumor suppressor modifies the therapeutic response of breast cancer. J. Clin. Invest. 117, 218–228 (2007).

    Article  PubMed  CAS  Google Scholar 

  16. Witkiewicz, A. K. et al. RB-pathway disruption is associated with improved response to neoadjuvant chemotherapy in breast cancer. Clin. Cancer Res. 18, 5110–5122 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kommoss, S. et al. Independent prognostic significance of cell cycle regulator proteins p16(INK4a) and pRb in advanced-stage ovarian carcinoma including optimally debulked patients: a translational research subprotocol of a randomised study of the Arbeitsgemeinschaft Gynaekologische Onkologie Ovarian Cancer Study Group. Br. J. Cancer 96, 306–313 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ludovini, V. et al. Vascular endothelial growth factor, p53, Rb, Bcl-2 expression and response to chemotherapy in advanced non-small cell lung cancer. Lung Cancer 46, 77–85 (2004).

    Article  PubMed  Google Scholar 

  19. Zhao, W. et al. Altered p16(INK4) and RB1 expressions are associated with poor prognosis in patients with nonsmall cell lung cancer. J. Oncol. 2012, 957437 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Garsed, D. W. et al. Homologous recombination DNA repair pathway disruption and retinoblastoma protein loss are associated with exceptional survival in high-grade serous ovarian cancer. Clin. Cancer Res. 24, 569–580 (2017).

    Article  PubMed  CAS  Google Scholar 

  21. Knudsen, E. S. et al. Retinoblastoma and phosphate and tensin homolog tumor suppressors: impact on ductal carcinoma in situ progression. J. Natl Cancer Inst. 104, 1825–1836 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Sharma, A. et al. The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression. J. Clin. Invest. 120, 4478–4492 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Burkhart, D. L. & Sage, J. Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat. Rev. Cancer 8, 671–682 (2008).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. McNair, C. et al. Differential impact of RB status on E2F1 reprogramming in human cancer. J. Clin. Invest. 128, 341–358 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Robinson, D. R. et al. Integrative clinical genomics of metastatic cancer. Nature 548, 297–303 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 162, 454 (2015).

    Article  PubMed  CAS  Google Scholar 

  27. Beltran, H. et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat. Med. 22, 298–305 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Dick, F. A. & Rubin, S. M. Molecular mechanisms underlying RB protein function. Nat. Rev. Mol. Cell Biol. 14, 297–306 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kitajima, S. & Takahashi, C. Intersection of retinoblastoma tumor suppressor function, stem cells, metabolism, and inflammation. Cancer Sci. 108, 1726–1731 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Nicolay, B. N. & Dyson, N. J. The multiple connections between pRB and cell metabolism. Curr. Opin. Cell Biol. 25, 735–740 (2013).

    Article  PubMed  CAS  Google Scholar 

  31. Benevolenskaya, E. V. & Frolov, M. V. Emerging links between E2F control and mitochondrial function. Cancer Res. 75, 619–623 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Ciavarra, G. & Zacksenhaus, E. Direct and indirect effects of the pRb tumor suppressor on autophagy. Autophagy 7, 544–546 (2011).

    Article  PubMed  CAS  Google Scholar 

  33. Indovina, P., Pentimalli, F., Casini, N., Vocca, I. & Giordano, A. RB1 dual role in proliferation and apoptosis: cell fate control and implications for cancer therapy. Oncotarget 6, 17873–17890 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sage, J. The retinoblastoma tumor suppressor and stem cell biology. Genes Dev. 26, 1409–1420 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Dyson, N. J. RB1: a prototype tumor suppressor and an enigma. Genes Dev. 30, 1492–1502 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Blanchet, E. et al. E2F transcription factor-1 regulates oxidative metabolism. Nat. Cell Biol. 13, 1146–1152 (2011).

    Article  PubMed  CAS  Google Scholar 

  37. Jones, R. A. et al. RB1 deficiency in triple-negative breast cancer induces mitochondrial protein translation. J. Clin. Invest. 126, 3739–3757 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lee, W. H. et al. The retinoblastoma susceptibility gene encodes a nuclear phosphoprotein associated with DNA binding activity. Nature 329, 642–645 (1987).

    Article  PubMed  CAS  Google Scholar 

  39. Adams, P. D. et al. Retinoblastoma protein contains a C-terminal motif that targets it for phosphorylation by cyclin-cdk complexes. Mol. Cell. Biol. 19, 1068–1080 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Carr, S. M., Munro, S., Kessler, B., Oppermann, U. & La Thangue, N. B. Interplay between lysine methylation and Cdk phosphorylation in growth control by the retinoblastoma protein. EMBO J. 30, 317–327 (2011).

    Article  PubMed  CAS  Google Scholar 

  41. Munro, S., Khaire, N., Inche, A., Carr, S. & La Thangue, N. B. Lysine methylation regulates the pRb tumour suppressor protein. Oncogene 29, 2357–2367 (2010).

    Article  PubMed  CAS  Google Scholar 

  42. Chan, H. M., Krstic-Demonacos, M., Smith, L., Demonacos, C. & La Thangue, N. B. Acetylation control of the retinoblastoma tumour-suppressor protein. Nat. Genet. 3, 667–674 (2001).

    CAS  Google Scholar 

  43. Hirschi, A. et al. An overlapping kinase and phosphatase docking site regulates activity of the retinoblastoma protein. Nat. Struct. Mol. Biol. 17, 1051–1057 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Julian, L. M., Palander, O., Seifried, L. A., Foster, J. E. & Dick, F. A. Characterization of an E2F1-specific binding domain in pRB and its implications for apoptotic regulation. Oncogene 27, 1572–1579 (2008).

    Article  PubMed  CAS  Google Scholar 

  45. Rubin, S. M., Gall, A. L., Zheng, N. & Pavletich, N. P. Structure of the Rb C-terminal domain bound to E2F1-DP1: a mechanism for phosphorylation-induced E2F release. Cell 123, 1093–1106 (2005).

    Article  PubMed  CAS  Google Scholar 

  46. Calbo, J. et al. G1 cyclin/cyclin-dependent kinase-coordinated phosphorylation of endogenous pocket proteins differentially regulates their interactions with E2F4 and E2F1 and gene expression. J. Biol. Chem. 277, 50263–50274 (2002).

    Article  PubMed  CAS  Google Scholar 

  47. Liban, T. J. et al. Conservation and divergence of C-terminal domain structure in the retinoblastoma protein family. Proc. Natl Acad. Sci. USA 114, 4942–4947 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Cecchini, M. J. et al. A retinoblastoma allele that is mutated at its common E2F interaction site inhibits cell proliferation in gene targeted mice. Mol. Cell. Biol. 34, 2029–2045 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Dick, F. A. & Dyson, N. pRB contains an E2F1-specific binding domain that allows E2F1-induced apoptosis to be regulated separately from other E2F activities. Mol. Cell 12, 639–649 (2003).

    Article  PubMed  CAS  Google Scholar 

  50. Gubern, A. et al. The N-terminal phosphorylation of RB by p38 bypasses its inactivation by CDKs and prevents proliferation in cancer cells. Mol. Cell 64, 25–36 (2016).

    Article  PubMed  CAS  Google Scholar 

  51. Zhang, J. et al. Inhibition of Rb phosphorylation leads to mTORC2-mediated activation of Akt. Mol. Cell 62, 929–942 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Julian, L. M. et al. Opposing regulation of Sox2 by cell-cycle effectors E2f3a and E2f3b in neural stem cells. Cell Stem Cell 12, 440–452 (2013).

    Article  PubMed  CAS  Google Scholar 

  53. Alabert, C. & Groth, A. Chromatin replication and epigenome maintenance. Nat. Rev. Mol. Cell Biol. 13, 153–167 (2012).

    Article  PubMed  CAS  Google Scholar 

  54. Alabert, C. et al. Two distinct modes for propagation of histone PTMs across the cell cycle. Genes Dev. 29, 585–590 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Calo, E. et al. Rb regulates fate choice and lineage commitment in vivo. Nature 466, 1110–1114 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Blais, A. & Dynlacht, B. D. E2F-associated chromatin modifiers and cell cycle control. Curr. Opin. Cell Biol. 19, 658–662 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Cook, R. et al. Direct involvement of retinoblastoma family proteins in DNA repair by non-homologous end-joining. Cell Rep 10, 2006–2018 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Velez-Cruz, R. et al. RB localizes to DNA double-strand breaks and promotes DNA end resection and homologous recombination through the recruitment of BRG1. Genes Dev. 30, 2500–2512 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Coschi, C. et al. Haploinsufficiency of an RB-E2F1-Condensin II complex leads to aberrant replication and aneuploidy. Cancer Discov. 4, 840–853 (2014).

    Article  PubMed  CAS  Google Scholar 

  60. Montoya-Durango, D. E. et al. Epigenetic control of mammalian LINE-1 retrotransposon by retinoblastoma proteins. Mutat. Res. 665, 20–28 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Chen, J. et al. E2F1 promotes the recruitment of DNA repair factors to sites of DNA double-strand breaks. Cell Cycle 10, 1287–1294 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Saddic, L. A. et al. Methylation of the retinoblastoma tumor suppressor by SMYD2. J. Biol. Chem. 285, 37733–37740 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Carnevale, J., Palander, O., Seifried, L. A. & Dick, F. A. DNA damage signals through differentially modified E2F1 molecules to induce apoptosis. Mol. Cell. Biol. 32, 900–912 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Chong, J. L. et al. E2f1-3 switch from activators in progenitor cells to repressors in differentiating cells. Nature 462, 930–934 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Yamasaki, L. et al. Tumor induction and tissue atrophy in mice lacking E2F-1. Cell 85, 537–548 (1996).

    Article  PubMed  CAS  Google Scholar 

  66. Chen, H. Z., Tsai, S. Y. & Leone, G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat. Rev. Cancer 9, 785–797 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Biedermann, S. et al. The retinoblastoma homolog RBR1 mediates localization of the repair protein RAD51 to DNA lesions in Arabidopsis. EMBO J. 36, 1279–1297 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Horvath, B. M. et al. Arabidopsis RETINOBLASTOMA RELATED directly regulates DNA damage responses through functions beyond cell cycle control. EMBO J. 36, 1261–1278 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Montoya-Durango, D. E. et al. LINE-1 silencing by retinoblastoma proteins is effected through the nucleosomal and remodeling deacetylase multiprotein complex. BMC Cancer 16, 38 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Manning, A. L. et al. Suppression of genome instability in pRB-deficient cells by enhancement of chromosome cohesion. Mol. Cell 53, 993–1004 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Gonzalo, S. et al. Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nat. Cell Biol. 7, 420–428 (2005).

    Article  PubMed  CAS  Google Scholar 

  72. Isaac, C. E. et al. The retinoblastoma protein regulates pericentric heterochromatin. Mol. Cell. Biol. 26, 3659–3671 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Longworth, M. S., Herr, A., Ji, J. Y. & Dyson, N. J. RBF1 promotes chromatin condensation through a conserved interaction with the Condensin II protein dCAP-D3. Genes Dev. 22, 1011–1024 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Woodward, J. et al. Condensin II mutation causes T-cell lymphoma through tissue-specific genome instability. Genes Dev. 30, 2173–2186 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Lukas, J., Lukas, C. & Bartek, J. More than just a focus: the chromatin response to DNA damage and its role in genome integrity maintenance. Nat. Cell Biol. 13, 1161–1169 (2011).

    Article  PubMed  CAS  Google Scholar 

  76. Mankouri, H. W., Huttner, D. & Hickson, I. D. How unfinished business from S-phase affects mitosis and beyond. EMBO J. 32, 2661–2671 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Munro, S. et al. Linker histone H1.2 directs genome-wide chromatin association of the retinoblastoma tumor suppressor protein and facilitates its function. Cell Rep 19, 2193–2201 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Zheng, L., Flesken-Nikitin, A., Chen, P. L. & Lee, W. H. Deficiency of Retinoblastoma gene in mouse embryonic stem cells leads to genetic instability. Cancer Res. 62, 2498–2502 (2002).

    PubMed  CAS  Google Scholar 

  79. Coschi, C. H. et al. Mitotic chromosome condensation mediated by the retinoblastoma protein is tumor-suppressive. Genes Dev. 24, 1351–1363 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Conklin, J. F., Baker, J. & Sage, J. The RB family is required for the self-renewal and survival of human embryonic stem cells. Nat. Commun. 3, 1244 (2012).

    Article  PubMed  CAS  Google Scholar 

  81. Schvartzman, J. M., Sotillo, R. & Benezra, R. Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nat. Rev. Cancer 10, 102–115 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Sharma, A. et al. Retinoblastoma tumor suppressor status is a critical determinant of therapeutic response in prostate cancer cells. Cancer Res. 67, 6192–6203 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Varma, H. & Conrad, S. E. Reversal of an antiestrogen-mediated cell cycle arrest of MCF-7 cells by viral tumor antigens requires the retinoblastoma protein-binding domain. Oncogene 19, 4746–4753 (2000).

    Article  PubMed  CAS  Google Scholar 

  84. Mayhew, C. N. et al. Discrete signaling pathways participate in RB-dependent responses to chemotherapeutic agents. Oncogene 23, 4107–4120 (2004).

    Article  PubMed  CAS  Google Scholar 

  85. Zagorski, W. A., Knudsen, E. S. & Reed, M. F. Retinoblastoma deficiency increases chemosensitivity in lung cancer. Cancer Res. 67, 8264–8273 (2007).

    Article  PubMed  CAS  Google Scholar 

  86. Bourgo, R. J. et al. RB restricts DNA damage-initiated tumorigenesis through an LXCXE-dependent mechanism of transcriptional control. Mol. Cell 43, 663–672 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Xiao, H. & Goodrich, D. W. The retinoblastoma tumor suppressor protein is required for efficient processing and repair of trapped topoisomerase II-DNA-cleavable complexes. Oncogene 24, 8105–8113 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. The Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).

    Article  PubMed Central  CAS  Google Scholar 

  89. Branzei, D. & Foiani, M. Regulation of DNA repair throughout the cell cycle. Nat. Rev. Mol. Cell Biol. 9, 297–308 (2008).

    Article  PubMed  CAS  Google Scholar 

  90. Sherr, C. J., Beach, D. & Shapiro, G. I. Targeting CDK4 and CDK6: from discovery to therapy. Cancer Discov. 6, 353–367 (2016).

    Article  PubMed  CAS  Google Scholar 

  91. Koh, J., Enders, G. H., Dynlacht, B. D. & Harlow, E. Tumor-derived p16 alleles encoding proteins defective in cell cycle inhibition. Nature 375, 506–510 (1995).

    Article  PubMed  CAS  Google Scholar 

  92. Lukas, J. et al. Retinoblastoma-protein-dependent inhibition by the tumor-suppressor p16. Nature 375, 503–506 (1995).

    Article  PubMed  CAS  Google Scholar 

  93. Bruce, J. L., Hurford, R. K. J., Classon, M., Koh, J. & Dyson, N. Requirements for cell cycle arrest by p16INK4a. Mol. Cell 6, 737–742 (2000).

    Article  PubMed  CAS  Google Scholar 

  94. Watson, P. A., Arora, V. K. & Sawyers, C. L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15, 701–711 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Tran, C. et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324, 787–790 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Rickman, D. S., Beltran, H., Demichelis, F. & Rubin, M. A. Biology and evolution of poorly differentiated neuroendocrine tumors. Nat. Med. 23, 1–10 (2017).

    Article  PubMed  CAS  Google Scholar 

  97. Bluemn, E. G. et al. Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling. Cancer Cell 32, 474–489 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  98. The Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell 163, 1011–1025 (2015).

    Article  PubMed Central  CAS  Google Scholar 

  99. Mu, P. et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science 355, 84–88 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Ku, S. Y. et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 355, 78–83 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Wang, S. et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4, 209–221 (2003).

    Article  PubMed  CAS  Google Scholar 

  102. Zhou, Z. et al. Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res. 66, 7889–7898 (2006).

    Article  PubMed  CAS  Google Scholar 

  103. Maddison, L. A., Sutherland, B. W., Barrios, R. J. & Greenberg, N. M. Conditional deletion of Rb causes early stage prostate cancer. Cancer Res. 64, 6018–6025 (2004).

    Article  PubMed  CAS  Google Scholar 

  104. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  PubMed  CAS  Google Scholar 

  105. Kobayashi, S. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 352, 786–792 (2005).

    Article  PubMed  CAS  Google Scholar 

  106. Yun, C. H. et al. Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell 11, 217–227 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Pirker, R. Third-generation epidermal growth factor receptor tyrosine kinase inhibitors in advanced nonsmall cell lung cancer. Curr. Opin. Oncol. 28, 115–121 (2016).

    Article  PubMed  CAS  Google Scholar 

  108. Sequist, L. V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl Med. 3, 75ra26 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Oser, M. G., Niederst, M. J., Sequist, L. V. & Engelman, J. A. Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin. Lancet Oncol. 16, e165–e172 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. George, J. et al. Comprehensive genomic profiles of small cell lung cancer. Nature 524, 47–53 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Niederst, M. J. et al. RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer. Nat. Commun. 6, 6377 (2015).

    Article  PubMed  CAS  Google Scholar 

  112. Rothenberg, S. M. et al. Inhibition of mutant EGFR in lung cancer cells triggers SOX2-FOXO6-dependent survival pathways. eLife 4, e06132 (2015).

    Article  PubMed Central  CAS  Google Scholar 

  113. Ting, D. T. et al. Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science 331, 593–596 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Liu, Y. et al. Mouse fibroblasts lacking RB1 function form spheres and undergo reprogramming to a cancer stem cell phenotype. Cell Stem Cell 4, 336–347 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Akamatsu, S. et al. The placental gene PEG10 promotes progression of neuroendocrine prostate cancer. Cell Rep. 12, 922–936 (2015).

    Article  PubMed  CAS  Google Scholar 

  116. Herrera-Merchan, A. et al. Ectopic expression of the histone methyltransferase Ezh2 in haematopoietic stem cells causes myeloproliferative disease. Nat. Commun. 3, 623 (2012).

    Article  PubMed  CAS  Google Scholar 

  117. Gonzalez-Vasconcellos, I. et al. Rb1 haploinsufficiency promotes telomere attrition and radiation-induced genomic instability. Cancer Res. 73, 4247–4255 (2013).

    Article  PubMed  CAS  Google Scholar 

  118. Hilgendorf, K. I. et al. The retinoblastoma protein induces apoptosis directly at the mitochondria. Genes Dev. 27, 1003–1015 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Araki, K., Kawauchi, K., Hirata, H., Yamamoto, M. & Taya, Y. Cytoplasmic translocation of the retinoblastoma protein disrupts sarcomeric organization. eLife 2, e01228 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).

    Article  PubMed  CAS  Google Scholar 

  121. The Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

    Article  CAS  Google Scholar 

  122. Ciriello, G. et al. Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163, 506–519 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Research in the authors’ laboratories is supported by the US National Institutes of Health (R01 CA207757 and R21 CA179907 to D.W.G., R21 AG050296 and R01 CA114102 to J.S. and R01 GM117413 to N.J.D.) and the Canadian Institutes of Health Research (MOP-89765 and MOP-64253 to F.A.D.). F.A.D. is the Wolfe Senior Fellow in Tumour Suppressor Genes at Western University. J.S. is the Harriet and Mary Zelencik Scientist in Children’s Cancer and Blood Diseases.

Reviewer information

Nature Reviews Cancer thanks E. Knudsen, N. La Thangue and S. Mittnacht for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

F.A.D., J.S. and D.W.G. researched data for the article, provided substantial contribution to the discussion of content, wrote the manuscript and reviewed and/or edited the manuscript before submission. N.J.D. provided substantial contribution to the discussion of content, wrote the manuscript and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Frederick A. Dick.

Ethics declarations

Competing interests statement

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

cBioPortal database: http://www.cbioportal.org

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dick, F.A., Goodrich, D.W., Sage, J. et al. Non-canonical functions of the RB protein in cancer. Nat Rev Cancer 18, 442–451 (2018). https://doi.org/10.1038/s41568-018-0008-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-018-0008-5

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer