Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

TIMELINE

A history of exploring cancer in context

Abstract

The concept that progression of cancer is regulated by interactions of cancer cells with their microenvironment was postulated by Stephen Paget over a century ago. Contemporary tumour microenvironment (TME) research focuses on the identification of tumour-interacting microenvironmental constituents, such as resident or infiltrating non-tumour cells, soluble factors and extracellular matrix components, and the large variety of mechanisms by which these constituents regulate and shape the malignant phenotype of tumour cells. In this Timeline article, we review the developmental phases of the TME paradigm since its initial description. While illuminating controversies, we discuss the importance of interactions between various microenvironmental components and tumour cells and provide an overview and assessment of therapeutic opportunities and modalities by which the TME can be targeted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of tumour microenvironment research.
Fig. 2: The primary tumour and metastatic microenvironments regulate tumour progression by distinct pathways.
Fig. 3: The deleterious influence of tumour–tumour microenvironment interactions on therapy.

Similar content being viewed by others

References

  1. Schmidt, A. & Weber, O. F. In memoriam of Rudolf Virchow: a historical retrospective including aspects of inflammation, infection and neoplasia. Contrib. Microbiol. 13, 1–15 (2006).

    PubMed  CAS  Google Scholar 

  2. Paget, S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 8, 98–101 (1989).

    PubMed  CAS  Google Scholar 

  3. Witz, I. P. & Levy-Nissenbaum, O. The tumor microenvironment in the post-PAGET era. Cancer Lett. 242, 1–10 (2006).

    Article  PubMed  CAS  Google Scholar 

  4. Mueller, M. M. & Fusenig, N. E. Friends or foes – bipolar effects of the tumour stroma in cancer. Nat. Rev. Cancer 4, 839–849 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. Jodele, S., Blavier, L., Yoon, J. M. & DeClerck, Y. A. Modifying the soil to affect the seed: role of stromal-derived matrix metalloproteinases in cancer progression. Cancer Metastasis Rev. 25, 35–43 (2006).

    Article  PubMed  CAS  Google Scholar 

  6. Talmadge, J. E. & Fidler, I. J. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 70, 5649–5669 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Vogelstein, B. & Kinzler, K. W. The multistep nature of cancer. Trends Genet. 9, 138–141 (1993).

    Article  PubMed  CAS  Google Scholar 

  8. Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nat. Med. 10, 789–799 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. Richmond, A. & Thomas, H. G. Melanoma growth stimulatory activity: isolation from human melanoma tumors and characterization of tissue distribution. J. Cell. Biochem. 36, 185–198 (1988).

    Article  PubMed  CAS  Google Scholar 

  10. Aguirre Ghiso, J. A., Alonso, D. F., Farias, E. F., Gomez, D. E. & de Kier Joffe, E. B. Deregulation of the signaling pathways controlling urokinase production. Its relationship with the invasive phenotype. Eur. J. Biochem. 263, 295–304 (1999).

    Article  PubMed  CAS  Google Scholar 

  11. Weaver, V. M., Fischer, A. H., Peterson, O. W. & Bissell, M. J. The importance of the microenvironment in breast cancer progression: recapitulation of mammary tumorigenesis using a unique human mammary epithelial cell model and a three-dimensional culture assay. Biochem. Cell Biol. 74, 833–851 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Pohl, J., Radler-Pohl, A. & Schirrmacher, V. A model to account for the effects of oncogenes, TPA, and retinoic acid on the regulation of genes involved in metastasis. Cancer Metastasis Rev. 7, 347–356 (1988).

    Article  PubMed  CAS  Google Scholar 

  13. Levi-Montalcini, R. & Hamburger, V. Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J. Exp. Zool. 116, 321–361 (1951).

    Article  PubMed  CAS  Google Scholar 

  14. Cohen, S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J. Biol. Chem. 237, 1555–1562 (1962).

    PubMed  CAS  Google Scholar 

  15. Sutherland, E. W. & Rall, T. W. Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J. Biol. Chem. 232, 1077–1091 (1958).

    PubMed  CAS  Google Scholar 

  16. Gilman, A. G. G proteins and dual control of adenylate cyclase. Cell 36, 577–579 (1984).

    Article  PubMed  CAS  Google Scholar 

  17. Sager, R. Expression genetics in cancer: shifting the focus from DNA to RNA. Proc. Natl Acad. Sci. USA 94, 952–955 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Szatrowski, T. P. & Nathan, C. F. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 51, 794–798 (1991).

    PubMed  CAS  Google Scholar 

  19. Witz, I. P. Tumor-microenvironment interactions: dangerous liaisons. Adv. Cancer Res. 100, 203–222 (2008).

    Article  PubMed  CAS  Google Scholar 

  20. Vaupel, P., Kallinowski, F. & Okunieff, P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 49, 6449–6465 (1989).

    PubMed  CAS  Google Scholar 

  21. Radinsky, R. Paracrine growth regulation of human colon carcinoma organ-specific metastasis. Cancer Metastasis Rev. 12, 345–361 (1993).

    Article  PubMed  CAS  Google Scholar 

  22. Stracke, M. L., Murata, J., Aznavoorian, S. & Liotta, L. A. The role of the extracellular matrix in tumor cell metastasis. In Vivo 8, 49–58 (1994).

    PubMed  CAS  Google Scholar 

  23. Nicolson, G. L. Tumor microenvironment: paracrine and autocrine growth mechanisms and metastasis to specific sites. Front. Radiat. Ther. Oncol. 28, 11–24 (1994).

    Article  PubMed  CAS  Google Scholar 

  24. Shih, I. M. & Herlyn, M. Autocrine and paracrine roles for growth factors in melanoma. In Vivo 8, 113–123 (1994).

    PubMed  CAS  Google Scholar 

  25. Condeelis, J. & Pollard, J. W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263–266 (2006).

    Article  PubMed  CAS  Google Scholar 

  26. Orimo, A. & Weinberg, R. A. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5, 1597–1601 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. Witz, I. P. Yin-yang activities and vicious cycles in the tumor microenvironment. Cancer Res. 68, 9–13 (2008).

    Article  PubMed  CAS  Google Scholar 

  28. Joyce, J. A. & Pollard, J. W. Microenvironmental regulation of metastasis. Nature reviews. Cancer 9, 239–252 (2009).

    Article  PubMed  CAS  Google Scholar 

  29. Pickup, M., Novitskiy, S. & Moses, H. L. The roles of TGFbeta in the tumour microenvironment. Nat. Rev. Cancer 13, 788–799 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Klein-Goldberg, A., Maman, S. & Witz, I. P. The role played by the microenvironment in site-specific metastasis. Cancer Lett. 352, 54–58 (2014).

    Article  PubMed  CAS  Google Scholar 

  31. Noback, C. R. Placentation and angiogenesis in the amnion of a baboon (Papio papio). Anat. Rec. 94, 553–567 (1946).

    Article  PubMed  CAS  Google Scholar 

  32. Folkman, J., Merler, E., Abernathy, C. & Williams, G. Isolation of a tumor factor responsible for angiogenesis. J. Exp. Med. 133, 275–288 (1971).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. O’Reilly, M. S. et al. Angiostatin: a circulating endothelial cell inhibitor that suppresses angiogenesis and tumor growth. Cold Spring Harb. Symp. Quant. Biol. 59, 471–482 (1994).

    Article  PubMed  Google Scholar 

  34. Auerbach, R., Arensman, R., Kubai, L. & Folkman, J. Tumor-induced angiogenesis: lack of inhibition by irradiation. Int. J. Cancer 15, 241–245 (1975).

    Article  PubMed  CAS  Google Scholar 

  35. Langer, R., Conn, H., Vacanti, J., Haudenschild, C. & Folkman, J. Control of tumor growth in animals by infusion of an angiogenesis inhibitor. Proc. Natl Acad. Sci. USA 77, 4331–4335 (1980).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Gimbrone, M. A. Jr., Leapman, S. B., Cotran, R. S. & Folkman, J. Tumor dormancy in vivo by prevention of neovascularization. J. Exp. Med. 136, 261–276 (1972).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Folkman, J. The role of angiogenesis in tumor growth. Semin. Cancer Biol. 3, 65–71 (1992).

    PubMed  CAS  Google Scholar 

  38. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    Article  PubMed  CAS  Google Scholar 

  39. Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V. & Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306–1309 (1989).

    Article  PubMed  CAS  Google Scholar 

  40. Leek, R. D. et al. Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. J. Pathol. 190, 430–436 (2000).

    Article  PubMed  CAS  Google Scholar 

  41. Bergers, G. & Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer 8, 592–603 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Ebos, J. M., Lee, C. R. & Kerbel, R. S. Tumor and host-mediated pathways of resistance and disease progression in response to antiangiogenic therapy. Clin. Cancer Res. 15, 5020–5025 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Li, J. L. et al. DLL4-Notch signaling mediates tumor resistance to anti-VEGF therapy in vivo. Cancer Res. 71, 6073–6083 (2011).

    Article  PubMed  CAS  Google Scholar 

  44. Partanen, J. et al. A novel endothelial cell surface receptor tyrosine kinase with extracellular epidermal growth factor homology domains. Mol. Cell. Biol. 12, 1698–1707 (1992).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Maisonpierre, P. C. et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277, 55–60 (1997).

    Article  PubMed  CAS  Google Scholar 

  46. Biel, N. M. & Siemann, D. W. Targeting the Angiopoietin-2/Tie-2 axis in conjunction with VEGF signal interference. Cancer Lett. 380, 525–533 (2016).

    Article  PubMed  CAS  Google Scholar 

  47. De Palma, M., Murdoch, C., Venneri, M. A., Naldini, L. & Lewis, C. E. Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications. Trends Immunol. 28, 519–524 (2007).

    Article  PubMed  CAS  Google Scholar 

  48. Mazzieri, R. et al. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 19, 512–526 (2011).

    Article  PubMed  CAS  Google Scholar 

  49. Frentzas, S. et al. Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. Nature Med. 22, 1294–1302 (2016).

    Article  PubMed  CAS  Google Scholar 

  50. Jayson, G. C., Kerbel, R., Ellis, L. M. & Harris, A. L. Antiangiogenic therapy in oncology: current status and future directions. Lancet 388, 518–529 (2016).

    Article  PubMed  CAS  Google Scholar 

  51. Annabi, B., Naud, E., Lee, Y. T., Eliopoulos, N. & Galipeau, J. Vascular progenitors derived from murine bone marrow stromal cells are regulated by fibroblast growth factor and are avidly recruited by vascularizing tumors. J. Cell. Biochem. 91, 1146–1158 (2004).

    Article  PubMed  CAS  Google Scholar 

  52. Garcia-Barros, M. et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300, 1155–1159 (2003).

    Article  PubMed  CAS  Google Scholar 

  53. De Palma, M., Venneri, M. A., Roca, C. & Naldini, L. Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat. Med. 9, 789–795 (2003).

    Article  PubMed  CAS  Google Scholar 

  54. Iwasaki, A. & Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 16, 343–353 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Wang, K. & Karin, M. Tumor-elicited inflammation and colorectal cancer. Adv. Cancer Res. 128, 173–196 (2015).

    Article  PubMed  Google Scholar 

  56. Oberyszyn, T. M. Inflammation and wound healing. Front. Biosci. 12, 2993–2999 (2007).

    Article  PubMed  CAS  Google Scholar 

  57. Martin, P. & Leibovich, S. J. Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol. 15, 599–607 (2005).

    Article  PubMed  CAS  Google Scholar 

  58. Dvorak, H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986).

    Article  PubMed  CAS  Google Scholar 

  59. Elinav, E. et al. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer 13, 759–771 (2013).

    Article  PubMed  CAS  Google Scholar 

  60. Devroede, G. J., Taylor, W. F., Sauer, W. G., Jackman, R. J. & Stickler, G. B. Cancer risk and life expectancy of children with ulcerative colitis. N. Engl. J. Med. 285, 17–21 (1971).

    Article  PubMed  CAS  Google Scholar 

  61. Viaje, A., Slaga, T. J., Wigler, M. & Weinstein, I. B. Effects of antiinflammatory agents on mouse skin tumor promotion, epidermal DNA synthesis, phorbol ester-induced cellular proliferation, and production of plasminogen activator. Cancer Res. 37, 1530–1536 (1977).

    PubMed  CAS  Google Scholar 

  62. Lynch, N. R., Castes, M., Astoin, M. & Salomon, J. C. Mechanism of inhibition of tumour growth by aspirin and indomethacin. Br. J. Cancer 38, 503–512 (1978).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Gorog, P. & Kovacs, I. B. Experimental inflammation and tumor growth: chemical carcinogenesis in adjuvant arthritic rats. Inflammation 3, 359–364 (1979).

    Article  PubMed  CAS  Google Scholar 

  64. Zajicek, G. Inflammation initiates cancer by depleting stem cells. Med. Hypotheses 18, 207–219 (1985).

    Article  PubMed  CAS  Google Scholar 

  65. Borrello, M. G. et al. Induction of a proinflammatory program in normal human thyrocytes by the RET/PTC1oncogene. Proc. Natl Acad. Sci. USA 102, 14825–14830 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Ancrile, B., & Lim, K. H. & Counter, C. M. Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis. Genes Dev. 21, 1714–1719 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Donnelly, B. A. Primary “inflammatory” carcinoma of the breast: a report of five cases and a review of the literature. Ann. Surg. 128, 918–930 (1948).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Costa, R. et al. Developmental therapeutics for inflammatory breast cancer: biology and translational directions. Oncotarget 8, 12417–12432 (2016).

    PubMed Central  Google Scholar 

  69. Haupt, H. M., Hood, A. F. & Cohen, M. H. Inflammatory melanoma. J. Am. Acad. Dermatol. 10, 52–55 (1984).

    Article  PubMed  CAS  Google Scholar 

  70. Klein, E., Becker, S., Svedmyr, E., Jondal, M. & Vanky, F. Tumor infiltrating lymphocytes. Ann. NY Acad. Sci. 276, 207–216 (1976).

    Article  PubMed  CAS  Google Scholar 

  71. Richters, A. & Kaspersky, C. L. Surface immunoglobulin positive lymphocytes in human breast cancer tissue and homolateral axillary lymph nodes. Cancer 35, 129–133 (1975).

    Article  PubMed  CAS  Google Scholar 

  72. Brubaker, D. B. & Whiteside, T. L. Localization of human T lymphocytes in tissue sections by a rosetting technique. Am. J. Pathol. 88, 323–332 (1977).

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Yron, I., Wood, T. A. Jr., Spiess, P. J. & Rosenberg, S. A. In vitro growth of murine T cells. V. The isolation and growth of lymphoid cells infiltrating syngeneic solid tumors. J. Immunol. 125, 238–245 (1980).

    PubMed  CAS  Google Scholar 

  74. Vose, B. M., Vanky, F., Argov, S. & Klein, E. Natural cytotoxicity in man: activity of lymph node and tumor-infiltrating lymphocytes. Eur. J. Immunol. 7, 353–357 (1977).

    Article  PubMed  CAS  Google Scholar 

  75. Brunner, K. T., MacDonald, H. R. & Cerottini, J. C. Quantitation and clonal isolation of cytolytic T lymphocyte precursors selectively infiltrating murine sarcoma virus-induced tumors. J. Exp. Med. 154, 362–373 (1981).

    Article  PubMed  CAS  Google Scholar 

  76. Vose, B. M. & Moore, M. Human tumor-infiltrating lymphocytes: a marker of host response. Semin. Hematol. 22, 27–40 (1985).

    PubMed  CAS  Google Scholar 

  77. Chiou, S. H., Sheu, B. C., Chang, W. C., Huang, S. C. & Hong-Nerng, H. Current concepts of tumor-infiltrating lymphocytes in human malignancies. J. Reprod. Immunol. 67, 35–50 (2005).

    Article  PubMed  CAS  Google Scholar 

  78. Zolla, S. The effect of plasmacytomas on the immune response of mice. J. Immunol. 108, 1039–1048 (1972).

    PubMed  CAS  Google Scholar 

  79. Fischer, B., Muller, B., Fischer, K. G., Baur, N. & Kreutz, W. Acidic pH inhibits non-MHC-restricted killer cell functions. Clin. Immunol. 96, 252–263 (2000).

    Article  PubMed  CAS  Google Scholar 

  80. Drake, C. G., Jaffee, E. & Pardoll, D. M. Mechanisms of immune evasion by tumors. Adv. Immunol. 90, 51–81 (2006).

    Article  PubMed  CAS  Google Scholar 

  81. Gajewski, T. F., Meng, Y. & Harlin, H. Immune suppression in the tumor microenvironment. J. Immunother. 29, 233–240 (2006).

    Article  PubMed  CAS  Google Scholar 

  82. Rosenberg, S. A., Spiess, P. & Lafreniere, R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233, 1318–1321 (1986).

    Article  PubMed  CAS  Google Scholar 

  83. Kodumudi, K. N. et al. Immune checkpoint blockade to improve tumor infiltrating lymphocytes for adoptive cell therapy. PLoS ONE 11, e0153053 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Fernandez-Poma, S. M. et al. Expansion of tumor-infiltrating CD8+ T cells expressing PD-1 improves the efficacy of adoptive T cell therapy. Cancer Res. 77, 3672–3684 (2017).

    Article  PubMed  CAS  Google Scholar 

  85. Parkhurst, M. et al. Isolation of T-cell receptors specifically reactive with mutated tumor-associated antigens from tumor-infiltrating lymphocytes based on CD137 expression. Clin. Cancer Res. 23, 2491–2505 (2017).

    Article  PubMed  CAS  Google Scholar 

  86. Gross, G., Waks, T. & Eshhar, Z. Expression of immunoglobulin-T cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc. Natl Acad. Sci. USA 86, 10024–10028 (1989).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Goverman, J. et al. Chimeric immunoglobulin-T cell receptor proteins form functional receptors: implications for T cell receptor complex formation and activation. Cell 60, 929–939 (1990).

    Article  PubMed  CAS  Google Scholar 

  88. Almasbak, H., Aarvak, T. & Vemuri, M. C. CAR T cell therapy: a game changer in cancer treatment. J. Immunol. Res. 2016, 5474602 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Pegram, H. J., Smith, E. L., Rafiq, S. & Brentjens, R. J. CAR therapy for hematological cancers: can success seen in the treatment of B cell acute lymphoblastic leukemia be applied to other hematological malignancies? Immunotherapy 7, 545–561 (2015).

    Article  PubMed  CAS  Google Scholar 

  90. Gauthier, J. & Yakoub-Agha, I. Chimeric antigen-receptor T cell therapy for hematological malignancies and solid tumors: clinical data to date, current limitations and perspectives. Curr. Res. Transl Med. 65, 93–102 (2017).

    Article  PubMed  CAS  Google Scholar 

  91. Vivier, E. et al. Innate or adaptive immunity? The example of natural killer cells. Science 331, 44–49 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Brodbeck, T., Nehmann, N., Bethge, A., Wedemann, G. & Schumacher, U. Perforin-dependent direct cytotoxicity in natural killer cells induces considerable knockdown of spontaneous lung metastases and computer modelling-proven tumor cell dormancy in a HT29 human colon cancer xenograft mouse model. Mol. Cancer 13, 244 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Langers, I., Renoux, V. M., Thiry, M., Delvenne, P. & Jacobs, N. Natural killer cells: role in local tumor growth and metastasis. Biologics 6, 73–82 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  94. Sceneay, J. et al. Primary tumor hypoxia recruits CD11b+ /Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Res. 72, 3906–3911 (2012).

    Article  PubMed  CAS  Google Scholar 

  95. Witz, I. P. Tumor-bound immunoglobulins: in situ expressions of humoral immunity. Adv. Cancer Res. 25, 95–148 (1977).

    Article  PubMed  CAS  Google Scholar 

  96. Ran, M. & Witz, I. P. Tumor-associated immunoglobulins. Enhancement of syngeneic tumors by IgG2-containing tumor eluates. Int. J. Cancer 9, 242–247 (1972).

    Article  PubMed  CAS  Google Scholar 

  97. Tan, T. T. & Coussens, L. M. Humoral immunity, inflammation and cancer. Curr. Opin. Immunol. 19, 209–216 (2007).

    Article  PubMed  CAS  Google Scholar 

  98. de Visser, K. E., Korets, L. V. & Coussens, L. M. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7, 411–423 (2005).

    Article  PubMed  CAS  Google Scholar 

  99. Pylayeva-Gupta, Y. et al. IL35-producing B cells promote the development of pancreatic neoplasia. Cancer Discov. 6, 247–255 (2016).

    Article  PubMed  CAS  Google Scholar 

  100. Affara, N. I. et al. B cells regulate macrophage phenotype and response to chemotherapy in squamous carcinomas. Cancer Cell 25, 809–821 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Andreu, P. et al. FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell 17, 121–134 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Hersh, E. M., Mavligit, G. M., Gutterman, J. U. & Barsales, P. B. Mononuclear cell content of human solid tumors. Med. Pediatr. Oncol. 2, 1–9 (1976).

    Article  PubMed  CAS  Google Scholar 

  103. Russel, S. W., Doe, W. F. & Cochrane, C. G. Number of macrophages and distribution of mitotic activity in regressing and progressing Moloney sarcomas. J. Immunol. 116, 164–166 (1976).

    PubMed  CAS  Google Scholar 

  104. Totterman, T. H., Parthenais, E., Hayry, P., Timonen, T. & Saksela, E. Cytological and functional analysis of inflammatory infiltrates in human malignant tumors. III. Further functional investigations using cultured autochthonous tumor cell lines and freeze-thawed infiltrating inflammatory cells. Cell. Immunol. 55, 219–226 (1980).

    Article  PubMed  CAS  Google Scholar 

  105. Haskill, S., Becker, S., Fowler, W. & Walton, L. Mononuclear-cell infiltration in ovarian cancer. I. Inflammatory-cell infiltrates from tumour and ascites material. Br. J. Cancer 45, 728–736 (1982).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Kumar, V. & Gabrilovich, D. I. Hypoxia-inducible factors in regulation of immune responses in tumour microenvironment. Immunology 143, 512–519 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Evans, R. Macrophages and neoplasms: new insights and their implication in tumor immunobiology. Cancer Metastasis Rev. 1, 227–239 (1982).

    Article  PubMed  CAS  Google Scholar 

  108. Cianciolo, G. J. Antiinflammatory proteins associated with human and murine neoplasms. Biochim. Biophys. Acta 865, 69–82 (1986).

    PubMed  CAS  Google Scholar 

  109. Woods, A. E. & Papadimitriou, J. M. The effect of inflammatory stimuli on the stroma of neoplasms: the involvement of mononuclear phagocytes. J. Pathol. 123, 165–174 (1977).

    Article  PubMed  CAS  Google Scholar 

  110. Kadhim, S. A. & Rees, R. C. Enhancement of tumor growth in mice: evidence for the involvement of host macrophages. Cell. Immunol. 87, 259–269 (1984).

    Article  PubMed  CAS  Google Scholar 

  111. Ronnov-Jessen, L., Petersen, O. W. & Bissell, M. J. Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol. Rev. 76, 69–125 (1996).

    Article  PubMed  CAS  Google Scholar 

  112. Goede, V., Brogelli, L., Ziche, M. & Augustin, H. G. Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1. Int. J. Cancer 82, 765–770 (1999).

    Article  PubMed  CAS  Google Scholar 

  113. Haskill, S., Koren, H., Becker, S., Fowler, W. & Walton, L. Mononuclear-cell infiltration in ovarian cancer. III. Suppressor-cell and ADCC activity of macrophages from ascitic and solid ovarian tumours. Br. J. Cancer 45, 747–753 (1982).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Kreider, J. W., Bartlett, G. L. & Butkiewicz, B. L. Relationship of tumor leucocytic infiltration to host defense mechanisms and prognosis. Cancer Metastasis Rev. 3, 53–74 (1984).

    Article  PubMed  CAS  Google Scholar 

  115. Noy, R. & Pollard, J. W. Tumor-associated macrophages: from mechanisms to therapy. Immunity 41, 49–61 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399–416 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  117. Qian, B. Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Harney, A. S. et al. Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA. Cancer Discov. 5, 932–943 CD-15-0012 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Penny, H. L. et al. Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma. Oncoimmunology 5, e1191731 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Segaliny, A. I. et al. Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma through induction of angiogenesis and macrophage recruitment. Int. J. Cancer 137, 73–85 (2015).

    Article  PubMed  CAS  Google Scholar 

  121. Kitamura, T. et al. CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. J. Exp. Med. 212, 1043–1059 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Engstrom, A., Erlandsson, A., Delbro, D. & Wijkander, J. Conditioned media from macrophages of M1, but not M2 phenotype, inhibit the proliferation of the colon cancer cell lines HT-29 and CACO-2. Int. J. Oncol. 44, 385–392 (2014).

    Article  PubMed  CAS  Google Scholar 

  123. Laoui, D. et al. Tumor-associated macrophages in breast cancer: distinct subsets, distinct functions. Int. J. Dev. Biol. 55, 861–867 (2011).

    Article  PubMed  Google Scholar 

  124. Snodgrass, M. J., Morahan, P. S. & Kaplan, A. M. Histopathology of the host response to Lewis lung carcinoma: modulation by pyran. J. Natl Cancer Inst. 55, 455–462 (1975).

    PubMed  CAS  Google Scholar 

  125. Gregory, A. D. & Houghton, A. M. Tumor-associated neutrophils: new targets for cancer therapy. Cancer Res. 71, 2411–2416 (2011).

    Article  PubMed  CAS  Google Scholar 

  126. Brandau, S., Dumitru, C. A. & Lang, S. Protumor and antitumor functions of neutrophil granulocytes. Semin. Immunopathol. 35, 163–176 (2013).

    Article  PubMed  CAS  Google Scholar 

  127. Sagiv, J. Y. et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep. 10, 562–573 (2015).

    Article  PubMed  CAS  Google Scholar 

  128. Droeser, R. A. et al. High myeloperoxidase positive cell infiltration in colorectal cancer is an independent favorable prognostic factor. PLOS ONE 8, e64814 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Rao, H. L. et al. Increased intratumoral neutrophil in colorectal carcinomas correlates closely with malignant phenotype and predicts patients’ adverse prognosis. PLoS ONE 7, e30806 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Wikberg, M. L. et al. Neutrophil infiltration is a favorable prognostic factor in early stages of colon cancer. Hum. Pathol. 68, 193–202 (2017).

    Article  PubMed  CAS  Google Scholar 

  131. Thurnher, M. et al. Human renal-cell carcinoma tissue contains dendritic cells. Int. J. Cancer 68, 1–7 (1996).

    Article  PubMed  CAS  Google Scholar 

  132. Chaux, P., Hammann, A., Martin, F. & Martin, M. Surface phenotype and functions of tumor-infiltrating dendritic cells: CD8 expression by a cell subpopulation. Eur. J. Immunol. 23, 2517–2525 (1993).

    Article  PubMed  CAS  Google Scholar 

  133. Troy, A. J., Summers, K. L., Davidson, P. J., Atkinson, C. H. & Hart, D. N. Minimal recruitment and activation of dendritic cells within renal cell carcinoma. Clin. Cancer Res. 4, 585–593 (1998).

    PubMed  CAS  Google Scholar 

  134. Zong, J., Keskinov, A. A., Shurin, G. V. & Shurin, M. R. Tumor-derived factors modulating dendritic cell function. Cancer Immunol. Immunother. 65, 821–833 (2016).

    Article  PubMed  CAS  Google Scholar 

  135. Ma, Y., Shurin, G. V., Gutkin, D. W. & Shurin, M. R. Tumor associated regulatory dendritic cells. Seminars Cancer Biol. 22, 298–306 (2012).

    Article  CAS  Google Scholar 

  136. Veglia, F. & Gabrilovich, D. I. Dendritic cells in cancer: the role revisited. Curr. Opin. Immunol. 45, 43–51 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Strober, S. Natural suppressor (NS) cells, neonatal tolerance, and total lymphoid irradiation: exploring obscure relationships. Annu. Rev. Immunol. 2, 219–237 (1984).

    Article  PubMed  CAS  Google Scholar 

  138. Young, M. R., Kolesiak, K., Wright, M. A. & Gabrilovich, D. I. Chemoattraction of femoral CD34+ progenitor cells by tumor-derived vascular endothelial cell growth factor. Clin. Exp. Metastasis 17, 881–888 (1999).

    Article  PubMed  CAS  Google Scholar 

  139. Ostrand-Rosenberg, S. & Sinha, P. Myeloid-derived suppressor cells: linking inflammation and cancer. J. Immunol. 182, 4499–4506 (2009).

    Article  PubMed  CAS  Google Scholar 

  140. Marx, J. Cancer immunology. Cancer’s bulwark against immune attack: MDS cells. Science 319, 154–156 (2008).

    Article  PubMed  CAS  Google Scholar 

  141. Coussens, L. M. et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev. 13, 1382–1397 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Cimpean, A. M. et al. Mast cells in breast cancer angiogenesis. Crit. Rev. Oncol. Hematol. 115, 23–26 (2017).

    Article  PubMed  Google Scholar 

  143. Gasic, G. J., Gasic, T. B., Galanti, N., Johnson, T. & Murphy, S. Platelet-tumor-cell interactions in mice. The role of platelets in the spread of malignant disease. Int. J. Cancer 11, 704–718 (1973).

    Article  PubMed  CAS  Google Scholar 

  144. Nieswandt, B., Hafner, M., Echtenacher, B. & Mannel, D. N. Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res. 59, 1295–1300 (1999).

    PubMed  CAS  Google Scholar 

  145. Borsig, L. et al. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc. Natl Acad. Sci. USA 98, 3352–3357 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Labelle, M., Begum, S. & Hynes, R. O. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20, 576–590 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Tang, M. et al. Platelet microparticle-mediated transfer of miR-939 to epithelial ovarian cancer cells promotes epithelial to mesenchymal transition. Oncotarget 8, 97464–97475 (2017).

    PubMed  PubMed Central  Google Scholar 

  148. Yan, M. & Jurasz, P. The role of platelets in the tumor microenvironment: From solid tumors to leukemia. Biochim. Biophys. Acta 1863, 392–400 (2016).

    Article  PubMed  CAS  Google Scholar 

  149. Unanue, E. R. & Dixon, F. J. Experimental glomerulonephritis. V. studies interaction nephrotoxic antibodies with tissue of the rat. J. Exp. Med. 121, 697–714 (1965).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Lerner, R. A., Glassock, R. J. & Dixon, F. J. The role of anti-glomerular basement membrane antibody in the pathogenesis of human glomerulonephritis. J. Exp. Med. 126, 989–1004 (1967).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Witz, I., Yagi, Y. & Pressman, D. IgG associated with microsomes from autochthonous hepatomas and normal liver of rats. Cancer Res. 27, 2295–2299 (1967).

    PubMed  CAS  Google Scholar 

  152. Cahalon, L. et al. Autoantibody-mediated regulation of tumor growth. Ann. N Y Acad. Sci. 651, 393–408 (1992).

    Article  PubMed  CAS  Google Scholar 

  153. Ran, M., Klein, G. & Witz, I. P. Tumor-bound immunoglobulins. Evidence for the in vivo coating of tumor cells by potentially cytotoxic anti-tumour antibodies. Int. J. Cancer 17, 90–97 (1976).

    Article  PubMed  CAS  Google Scholar 

  154. Braslawsky, G. R., Yaackubowicz, M., Frensdorff, A. & Witz, I. P. Receptors for immune complexes on cells within a non-lymphoid murine tumor. J. Immunol. 116, 1571–1578 (1976).

    PubMed  CAS  Google Scholar 

  155. Gergely, J. & Sarmay, G. Fc gamma receptors in malignancies: friends or enemies? Adv. Cancer Res. 64, 211–245 (1994).

    Article  PubMed  CAS  Google Scholar 

  156. Cohen-Solal, J. F. et al. Metastatic melanomas express inhibitory low affinity fc gamma receptor and escape humoral immunity. Dermatol. Res. Pract. 2010, 657406 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Zusman, T. et al. The murine Fc-gamma (Fc gamma) receptor type II B1 is a tumorigenicity-enhancing factor in polyoma-virus-transformed 3T3 cells. Int. J. Cancer 65, 221–229 (1996).

    Article  PubMed  CAS  Google Scholar 

  158. Zusman, T. et al. Contribution of the intracellular domain of murine Fc-gamma receptor type IIB1 to its tumor-enhancing potential. Int. J. Cancer 68, 219–227 (1996).

    Article  PubMed  CAS  Google Scholar 

  159. DiLillo, D. J. & Ravetch, J. V. Fc-receptor interactions regulate both cytotoxic and immunomodulatory therapeutic antibody effector functions. Cancer Immunol. Res. 3, 704–713 (2015).

    Article  PubMed  CAS  Google Scholar 

  160. Mantovani, A. Tumor-associated macrophages in neoplastic progression: a paradigm for the in vivo function of chemokines. Lab Invest. 71, 5–16 (1994).

    PubMed  CAS  Google Scholar 

  161. Zou, L. et al. Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res. 64, 8451–8455 (2004).

    Article  PubMed  CAS  Google Scholar 

  162. Gobert, M. et al. Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res. 69, 2000–2009 (2009).

    Article  PubMed  CAS  Google Scholar 

  163. Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    Article  PubMed  CAS  Google Scholar 

  164. Ben-Baruch, A. Organ selectivity in metastasis: regulation by chemokines and their receptors. Clin. Exp. Metastasis 25, 345–356 (2008).

    Article  PubMed  CAS  Google Scholar 

  165. Springer, T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76, 301–314 (1994).

    Article  PubMed  CAS  Google Scholar 

  166. Reymond, N., d’Agua, B. B. & Ridley, A. J. Crossing the endothelial barrier during metastasis. Nat. Rev. Cancer 13, 858–870 (2013).

    Article  PubMed  CAS  Google Scholar 

  167. Gospodarowicz, D., Greenburg, G. & Birdwell, C. R. Determination of cellular shape by the extracellular matrix and its correlation with the control of cellular growth. Cancer Res. 38, 4155–4171 (1978).

    PubMed  CAS  Google Scholar 

  168. Vlodavsky, I., Lui, G. M. & Gospodarowicz, D. Morphological appearance, growth behavior and migratory activity of human tumor cells maintained on extracellular matrix versus plastic. Cell 19, 607–616 (1980).

    Article  PubMed  CAS  Google Scholar 

  169. Vlodavsky, I. & Gospodarowicz, D. Respective roles of laminin and fibronectin in adhesion of human carcinoma and sarcoma cells. Nature 289, 304–306 (1981).

    Article  PubMed  CAS  Google Scholar 

  170. Terranova, V. P., Liotta, L. A., Russo, R. G. & Martin, G. R. Role of laminin in the attachment and metastasis of murine tumor cells. Cancer Res. 42, 2265–2269 (1982).

    PubMed  CAS  Google Scholar 

  171. Katz, B. Z. & Witz, I. P. In vitro exposure of polyoma-virus-transformed cells to laminin augments their in vivo malignancy phenotype. Invasion Metastasis 13, 185–194 (1993).

    PubMed  CAS  Google Scholar 

  172. Jun, S. et al. Laminin adhesion-selected primary human colon-cancer cells are more tumorigenic than the parenteral and nonadherent cells. Int. J. Oncol. 4, 55–60 (1994).

    PubMed  CAS  Google Scholar 

  173. Yamamura, K., Kibbey, M. C. & Kleinman, H. K. Melanoma cells selected for adhesion to laminin peptides have different malignant properties. Cancer Res. 53, 423–428 (1993).

    PubMed  CAS  Google Scholar 

  174. Wai, P. Y. et al. Osteopontin silencing by small interfering RNA suppresses in vitro and in vivo CT26 murine colon adenocarcinoma metastasis. Carcinogenesis 26, 741–751 (2005).

    Article  PubMed  CAS  Google Scholar 

  175. Erler, J. T. & Weaver, V. M. Three-dimensional context regulation of metastasis. Clin. Exp. Metastasis 26, 35–49 (2009).

    Article  PubMed  Google Scholar 

  176. Bissell, M. J., Hall, H. G. & Parry, G. How does the extracellular matrix direct gene expression? J. Theor. Biol. 99, 31–68 (1982).

    Article  PubMed  CAS  Google Scholar 

  177. Dolberg, D. S. & Bissell, M. J. Inability of Rous sarcoma virus to cause sarcomas in the avian embryo. Nature 309, 552–556 (1984).

    Article  PubMed  CAS  Google Scholar 

  178. Dolberg, D. S., Hollingsworth, R., Hertle, M. & Bissell, M. J. Wounding and its role in RSV-mediated tumor formation. Science 230, 676–678 (1985).

    Article  PubMed  CAS  Google Scholar 

  179. Malik, R., Lelkes, P. I. & Cukierman, E. Biomechanical and biochemical remodeling of stromal extracellular matrix in cancer. Trends Biotechnol. 33, 230–236 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Liu, H. et al. Therapeutic potential of perineural invasion, hypoxia and desmoplasia in pancreatic cancer. Curr. Pharm. Des. 18, 2395–2403 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Kalluri, R. & Zeisberg, M. Fibroblasts in cancer. Nat. Rev. Cancer 6, 392–401 (2006).

    Article  PubMed  CAS  Google Scholar 

  182. Dvorak, H. F., Dickersin, G. R., Dvorak, A. M., Manseau, E. J. & Pyne, K. Human breast carcinoma: fibrin deposits and desmoplasia. Inflammatory cell type and distribution. Microvasculature and infarction. J. Natl Cancer Inst. 67, 335–345 (1981).

    PubMed  CAS  Google Scholar 

  183. Lubkin, S. R. & Jackson, T. Multiphase mechanics of capsule formation in tumors. J. Biomech. Eng. 124, 237–243 (2002).

    Article  PubMed  CAS  Google Scholar 

  184. Cardone, A., Tolino, A., Zarcone, R., Borruto Caracciolo, G. & Tartaglia, E. Prognostic value of desmoplastic reaction and lymphocytic infiltration in the management of breast cancer. Panminerva Med. 39, 174–177 (1997).

    PubMed  CAS  Google Scholar 

  185. Ray, J. M. & Stetler-Stevenson, W. G. The role of matrix metalloproteases and their inhibitors in tumour invasion, metastasis and angiogenesis. Eur. Respir. J. 7, 2062–2072 (1994).

    PubMed  CAS  Google Scholar 

  186. Liotta, L. A. & Stetler-Stevenson, W. G. Metalloproteinases and cancer invasion. Semin. Cancer Biol. 1, 99–106 (1990).

    PubMed  CAS  Google Scholar 

  187. Matrisian, L. M. et al. The role of the matrix metalloproteinase stromelysin in the progression of squamous cell carcinomas. Am. J. Med. Sci. 302, 157–162 (1991).

    Article  PubMed  CAS  Google Scholar 

  188. Sternlicht, M. D., Bissell, M. J. & Werb, Z. The matrix metalloproteinase stromelysin-1 acts as a natural mammary tumor promoter. Oncogene 19, 1102–1113 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Coussens, L. M. & Werb, Z. Matrix metalloproteinases and the development of cancer. Chem. Biol. 3, 895–904 (1996).

    Article  PubMed  CAS  Google Scholar 

  190. Coussens, L. M., Tinkle, C. L., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103, 481–490 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat. Cell Biol. 2, 737–744 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Brown, P. D. Matrix metalloproteinase inhibitors in the treatment of cancer. Med. Oncol. 14, 1–10 (1997).

    Article  PubMed  CAS  Google Scholar 

  193. Whittaker, M. & Brown, P. Recent advances in matrix metalloproteinase inhibitor research and development. Curr. Opin. Drug Discov. Devel. 1, 157–164 (1998).

    PubMed  CAS  Google Scholar 

  194. Brown, P. D. Clinical studies with matrix metalloproteinase inhibitors. Acta Pathol. Microbiol. Immunol. Scand. C. 107, 174–180 (1999).

    Article  CAS  Google Scholar 

  195. Wagenaar-Miller, R. A., Gorden, L. & Matrisian, L. M. Matrix metalloproteinases in colorectal cancer: is it worth talking about? Cancer Metastasis Rev. 23, 119–135 (2004).

    Article  PubMed  CAS  Google Scholar 

  196. Mannello, F., Tonti, G. & Papa, S. Matrix metalloproteinase inhibitors as anticancer therapeutics. Curr. Cancer Drug Targets 5, 285–298 (2005).

    Article  PubMed  CAS  Google Scholar 

  197. Decock, J., Thirkettle, S., Wagstaff, L. & Edwards, D. R. Matrix metalloproteinases: protective roles in cancer. J. Cell. Mol. Med. 15, 1254–1265 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Levin, M., Udi, Y., Solomonov, I. & Sagi, I. Next generation matrix metalloproteinase inhibitors – novel strategies bring new prospects. Biochim. Biophys. Acta 1864, 1927–1939 (2017).

    Article  CAS  Google Scholar 

  199. Pupa, S. M., Menard, S., Forti, S. & Tagliabue, E. New insights into the role of extracellular matrix during tumor onset and progression. J. Cell. Physiol. 192, 259–267 (2002).

    Article  PubMed  CAS  Google Scholar 

  200. Butler, T. P., Grantham, F. H. & Gullino, P. M. Bulk transfer of fluid in the interstitial compartment of mammary tumors. Cancer Res. 35, 3084–3088 (1975).

    PubMed  CAS  Google Scholar 

  201. Boucher, Y. & Jain, R. K. Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res. 52, 5110–5114 (1992).

    PubMed  CAS  Google Scholar 

  202. Skobe, M. et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat. Med. 7, 192–198 (2001).

    Article  PubMed  CAS  Google Scholar 

  203. Helmlinger, G., Netti, P. A., Lichtenbeld, H. C., Melder, R. J. & Jain, R. K. Solid stress inhibits the growth of multicellular tumor spheroids. Nat. Biotechnol. 15, 778–783 (1997).

    Article  PubMed  CAS  Google Scholar 

  204. Samani, A., Zubovits, J. & Plewes, D. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Phys. Med. Biol. 52, 1565–1576 (2007).

    Article  PubMed  Google Scholar 

  205. Sarntinoranont, M., Rooney, F. & Ferrari, M. Interstitial stress and fluid pressure within a growing tumor. Ann. Biomed. Eng. 31, 327–335 (2003).

    Article  PubMed  Google Scholar 

  206. Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C. & Brown, R. A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3, 349–363 (2002).

    Article  PubMed  CAS  Google Scholar 

  207. Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    Article  PubMed  CAS  Google Scholar 

  208. Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

    Article  PubMed  CAS  Google Scholar 

  209. Butcher, D. T., Alliston, T. & Weaver, V. M. A tense situation: forcing tumour progression. Nat. Rev. Cancer 9, 108–122 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. De Wever, O. & Mareel, M. Role of myofibroblasts at the invasion front. Biol. Chem. 383, 55–67 (2002).

    Article  PubMed  Google Scholar 

  211. Micke, P. & Ostman, A. Tumour-stroma interaction: cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer 45 (Suppl. 2), S163–175 (2004).

    Article  PubMed  Google Scholar 

  212. Delinassios, J. G., Kottaridis, S. D. & Garas, J. Uncontrolled growth of tumour stromal fibroblasts in vitro. Exp. Cell Biol. 51, 201–209 (1983).

    PubMed  CAS  Google Scholar 

  213. Delinassios, J. G. Cytocidal effects of human fibroblasts on HeLa cells in vitro. Biol. Cell 59, 69–77 (1987).

    Article  PubMed  CAS  Google Scholar 

  214. Yan, G., Fukabori, Y., McBride, G., Nikolaropolous, S. & McKeehan, W. L. Exon switching and activation of stromal and embryonic fibroblast growth factor (FGF)-FGF receptor genes in prostate epithelial cells accompany stromal independence and malignancy. Mol. Cell. Biol. 13, 4513–4522 (1993).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Ellis, M. J., Singer, C., Hornby, A., Rasmussen, A. & Cullen, K. J. Insulin-like growth factor mediated stromal-epithelial interactions in human breast cancer. Breast Cancer Res. Treat. 31, 249–261 (1994).

    Article  PubMed  CAS  Google Scholar 

  216. Olumi, A. F. et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 59, 5002–5011 (1999).

    PubMed  CAS  Google Scholar 

  217. Bucala, R., Ritchlin, C., Winchester, R. & Cerami, A. Constitutive production of inflammatory and mitogenic cytokines by rheumatoid synovial fibroblasts. J. Exp. Med. 173, 569–574 (1991).

    Article  PubMed  CAS  Google Scholar 

  218. Powell, D. W. et al. Myofibroblasts. I. Paracrine cells important in health and disease. Am. J. Physiol. 277, C1–C9 (1999).

    Article  PubMed  CAS  Google Scholar 

  219. Gaggioli, C. et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell Biol. 9, 1392–1400 (2007).

    Article  PubMed  CAS  Google Scholar 

  220. Schofield, R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4, 7–25 (1978).

    PubMed  CAS  Google Scholar 

  221. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med. 3, 730–737 (1997).

    Article  PubMed  CAS  Google Scholar 

  222. Fuchs, E., Tumbar, T. & Guasch, G. Socializing with the neighbors: stem cells and their niche. Cell 116, 769–778 (2004).

    Article  PubMed  CAS  Google Scholar 

  223. Lu, P., Weaver, V. M. & Werb, Z. The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol. 196, 395–406 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Calabrese, C. et al. A perivascular niche for brain tumor stem cells. Cancer Cell 11, 69–82 (2007).

    Article  PubMed  CAS  Google Scholar 

  225. Pistollato, F. et al. Intratumoral hypoxic gradient drives stem cells distribution and MGMT expression in glioblastoma. Stem Cells 28, 851–862 (2010).

    Article  PubMed  CAS  Google Scholar 

  226. Hjelmeland, A. B. et al. Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ. 18, 829–840 (2011).

    Article  PubMed  CAS  Google Scholar 

  227. Charles, N. et al. Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell 6, 141–152 (2010).

    Article  PubMed  CAS  Google Scholar 

  228. Vermeulen, L. et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat. Cell Biol. 12, 468–476 (2010).

    Article  PubMed  CAS  Google Scholar 

  229. Lu, H. et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat. Cell Biol. 16, 1105–1117 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Zhou, W. et al. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat. Cell Biol. 17, 170–182 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    Article  PubMed  CAS  Google Scholar 

  232. Gullino, P. M., Clark, S. H. & Grantham, F. H. The interstitial fluid of solid tumors. Cancer Res. 24, 780–794 (1964).

    PubMed  CAS  Google Scholar 

  233. Pavlides, S. et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8, 3984–4001 (2009).

    Article  PubMed  CAS  Google Scholar 

  234. Parks, S. K., Chiche, J. & Pouyssegur, J. Disrupting proton dynamics and energy metabolism for cancer therapy. Nat. Rev. Cancer 13, 611–623 (2013).

    Article  PubMed  CAS  Google Scholar 

  235. Thomlinson, R. H. & Gray, L. H. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer 9, 539–549 (1955).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Overgaard, J. Effect of hyperthermia on malignant cells in vivo. A review and a hypothesis. Cancer 39, 2637–2646 (1977).

    Article  PubMed  CAS  Google Scholar 

  237. Teicher, B. A., Lazo, J. S. & Sartorelli, A. C. Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells. Cancer Res. 41, 73–81 (1981).

    PubMed  CAS  Google Scholar 

  238. Wilson, W. R. & Hay, M. P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 11, 393–410 (2011).

    Article  PubMed  CAS  Google Scholar 

  239. Vaupel, P., Fortmeyer, H. P., Runkel, S. & Kallinowski, F. Blood flow, oxygen consumption, and tissue oxygenation of human breast cancer xenografts in nude rats. Cancer Res. 47, 3496–3503 (1987).

    PubMed  CAS  Google Scholar 

  240. Goldberg, M. A., Dunning, S. P. & Bunn, H. F. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242, 1412–1415 (1988).

    Article  PubMed  CAS  Google Scholar 

  241. Alabaster, O., Woods, T., Ortiz-Sanchez, V. & Jahangeer, S. Influence of microenvironmental pH on adriamycin resistance. Cancer Res. 49, 5638–5643 (1989).

    PubMed  CAS  Google Scholar 

  242. Tannock, I. F. & Rotin, D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 49, 4373–4384 (1989).

    PubMed  CAS  Google Scholar 

  243. Kourembanas, S., Marsden, P. A., McQuillan, L. P. & Faller, D. V. Hypoxia induces endothelin gene expression and secretion in cultured human endothelium. J. Clin. Invest. 88, 1054–1057 (1991).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Semenza, G. L., Roth, P. H., Fang, H. M. & Wang, G. L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 269, 23757–23763 (1994).

    PubMed  CAS  Google Scholar 

  245. Wang, G. L. & Semenza, G. L. Purification and characterization of hypoxia-inducible factor 1. J. Biol. Chem. 270, 1230–1237 (1995).

    Article  PubMed  CAS  Google Scholar 

  246. Semenza, G. L. The hypoxic tumor microenvironment: a driving force for breast cancer progression. Biochim. Biophys. Acta 1863, 382–391 (2016).

    Article  PubMed  CAS  Google Scholar 

  247. Denko, N. C. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat. Rev. Cancer 8, 705–713 (2008).

    Article  PubMed  CAS  Google Scholar 

  248. Giaccia, A., Siim, B. G. & Johnson, R. S. HIF-1 as a target for drug development. Nat. Rev. Drug Discov. 2, 803–811 (2003).

    Article  PubMed  CAS  Google Scholar 

  249. Reddy, B. S., Mastromarino, A. & Wynder, E. L. Further leads on metabolic epidemiology of large bowel cancer. Cancer Res. 35, 3403–3406 (1975).

    PubMed  CAS  Google Scholar 

  250. McBurney, M. I., Van Soest, P. J. & Jeraci, J. L. Colonic carcinogenesis: the microbial feast or famine mechanism. Nutr. Cancer 10, 23–28 (1987).

    Article  PubMed  CAS  Google Scholar 

  251. Dalmasso, G., Cougnoux, A., Delmas, J., Darfeuille-Michaud, A. & Bonnet, R. The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes 5, 675–680 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Kipanyula, M. J. et al. Signaling pathways bridging microbial-triggered inflammation and cancer. Cell Signal 25, 403–416 (2013).

    Article  PubMed  CAS  Google Scholar 

  253. Grivennikov, S. I. et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491, 254–258 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  254. Pidgeon, G. P. et al. The role of endotoxin/lipopolysaccharide in surgically induced tumour growth in a murine model of metastatic disease. Br. J. Cancer 81, 1311–1317 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  255. Dzutsev, A., Goldszmid, R. S., Viaud, S., Zitvogel, L. & Trinchieri, G. The role of the microbiota in inflammation, carcinogenesis, and cancer therapy. Eur. J. Immunol. 45, 17–31 (2015).

    Article  PubMed  CAS  Google Scholar 

  256. Iida, N. et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342, 967–970 (2013).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  257. Viaud, S. et al. Harnessing the intestinal microbiome for optimal therapeutic immunomodulation. Cancer Res. 74, 4217–4221 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  258. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    Article  PubMed  CAS  Google Scholar 

  259. Cantwell, A. R. Jr. Bacteriologic investigation and histologic observations of variably acid-fast bacteria in three cases of cutaneous Kaposi’s sarcoma. Growth 45, 79–89 (1981).

    PubMed  Google Scholar 

  260. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  261. Kaplan, R. N., Psaila, B. & Lyden, D. Niche-to-niche migration of bone-marrow-derived cells. Trends Mol. Med. 13, 72–81 (2007).

    Article  PubMed  CAS  Google Scholar 

  262. van Deventer, H. W., Palmieri, D. A., Wu, Q. P., McCook, E. C. & Serody, J. S. Circulating fibrocytes prepare the lung for cancer metastasis by recruiting Ly-6 C+ monocytes via CCL2. J. Immunol. 190, 4861–4867 (2013).

    Article  PubMed  CAS  Google Scholar 

  263. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    Article  PubMed  CAS  Google Scholar 

  264. Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  265. Costa-Silva, B. et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17, 816–826 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  267. Zhang, L. et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527, 100–104 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  268. Gabriel, K. et al. Regulation of the tumor suppressor PTEN through exosomes: a diagnostic potential for prostate cancer. PLoS ONE 8, e70047 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  269. Putz, U. et al. The tumor suppressor PTEN is exported in exosomes and has phosphatase activity in recipient cells. Sci. Signal 5, ra70. (2012).

    Article  PubMed  CAS  Google Scholar 

  270. Duda, D. G. & Jain, R. K. Premetastatic lung “niche”: is vascular endothelial growth factor receptor 1 activation required? Cancer Res. 70, 5670–5673 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  271. Dawson, M. R., Duda, D. G., Fukumura, D. & Jain, R. K. VEGFR1-activity-independent metastasis formation. Nature 461, E4 discussion E5. (2009).

  272. Cox, T. R., Gartland, A. & Erler, J. T. The pre-metastatic niche: is metastasis random? Bonekey Rep. 1, 80 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  273. Tarin, D. & Price, J. E. Metastatic colonization potential of primary tumour cells in mice. Br. J. Cancer 39, 740–754 (1979).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  274. Tarin, D. & Price, J. E. Influence of microenvironment and vascular anatomy on “metastatic” colonization potential of mammary tumors. Cancer Res. 41, 3604–3609 (1981).

    PubMed  CAS  Google Scholar 

  275. Horak, E., Darling, D. L. & Tarin, D. Analysis of organ-specific effects on metastatic tumor formation by studies in vitro. J. Natl Cancer Inst. 76, 913–922 (1986).

    PubMed  CAS  Google Scholar 

  276. Nicolson, G. L. Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev. 7, 143–188 (1988).

    Article  PubMed  CAS  Google Scholar 

  277. Price, J. E., Naito, S. & Fidler, I. J. Growth in an organ microenvironment as a selective process in metastasis. Clin. Exp. Metastasis 6, 91–102 (1988).

    Article  PubMed  CAS  Google Scholar 

  278. Pauli, B. U., Augustin-Voss, H. G., el-Sabban, M. E., Johnson, R. C. & Hammer, D. A. Organ-preference of metastasis. The role of endothelial cell adhesion molecules. Cancer Metastasis Rev. 9, 175–189 (1990).

    Article  PubMed  CAS  Google Scholar 

  279. Pienta, K. J., Robertson, B. A., Coffey, D. S. & Taichman, R. S. The cancer diaspora: metastasis beyond the seed and soil hypothesis. Clin. Cancer Res. 19, 5849–5855 (2013).

    Article  PubMed  Google Scholar 

  280. Coman, D. R. Mechanisms responsible for the origin and distribution of blood-borne tumor metastases: a review. Cancer Res. 13, 397–404 (1953).

    PubMed  CAS  Google Scholar 

  281. Fidler, I. J. & Nicolson, G. L. Organ selectivity for implantation survival and growth of B16 melanoma variant tumor lines. J. Natl Cancer Inst. 57, 1199–1202 (1976).

    Article  PubMed  CAS  Google Scholar 

  282. Sato, Y., Goto, Y., Narita, N. & Hoon, D. S. Cancer cells expressing toll-like receptors and the tumor microenvironment. Cancer Microenviron. 2 (Suppl. 1), 205–214 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  283. Maman, S. & Witz, I.P. The metastatic microenvironment. In: The tumor immunoenvironment. Shurin, M.R., Umansky, V., Malyguine, A., editors. New York, NY: Springer, 745 (2013).

  284. Lowery, F. J. & Yu, D. Growth factor signaling in metastasis: current understanding and future opportunities. Cancer Metastasis Rev. 31, 479–491 (2012).

    Article  PubMed  CAS  Google Scholar 

  285. Nguyen, D. X., Bos, P. D. & Massague, J. Metastasis: from dissemination to organ-specific colonization. Nat. Rev. Cancer 9, 274–284 (2009).

    Article  PubMed  CAS  Google Scholar 

  286. Wculek, S. K. & Malanchi, I. Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 528, 413–417 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  287. Hoon, D. S. et al. Molecular mechanisms of metastasis. J. Surg. Oncol. 103, 508–517 (2011).

    Article  PubMed  CAS  Google Scholar 

  288. Zlotnik, A., Burkhardt, A. M. & Homey, B. Homeostatic chemokine receptors and organ-specific metastasis. Nat. Rev. Immunol. 11, 597–606 (2011).

    Article  PubMed  CAS  Google Scholar 

  289. Ye, X. & Weinberg, R. A. Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol. 25, 675–686 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  290. Fischer, K. R. et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527, 472–476 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  291. Zheng, X. et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 527, 525–530 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  292. Montesano, R., Matsumoto, K., Nakamura, T. & Orci, L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 67, 901–908 (1991).

    Article  PubMed  CAS  Google Scholar 

  293. Miettinen, P. J., Ebner, R., Lopez, A. R. & Derynck, R. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J. Cell Biol. 127, 2021–2036 (1994).

    Article  PubMed  CAS  Google Scholar 

  294. Bates, R. C. & Mercurio, A. M. Tumor necrosis factor-alpha stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Mol. Biol. Cell 14, 1790–1800 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  295. Sullivan, D. E., Ferris, M., Nguyen, H., Abboud, E. & Brody, A. R. TNF-alpha induces TGF-beta1 expression in lung fibroblasts at the transcriptional level via AP-1 activation. J. Cell. Mol. Med. 13, 1866–1876 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  296. Sullivan, N. J. et al. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene 28, 2940–2947 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  297. Yang, M. H. et al. Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat. Cell Biol. 10, 295–305 (2008).

    Article  PubMed  CAS  Google Scholar 

  298. Leight, J. L., Wozniak, M. A., Chen, S., Lynch, M. L. & Chen, C. S. Matrix rigidity regulates a switch between TGF-beta1-induced apoptosis and epithelial-mesenchymal transition. Mol. Biol. Cell 23, 781–791 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  299. Ye, X. et al. Upholding a role for EMT in breast cancer metastasis. Nature 547, E1–E3 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  300. Nieto, M. A. Context-specific roles of EMT programmes in cancer cell dissemination. Nat. Cell Biol. 19, 416–418 (2017).

    Article  PubMed  CAS  Google Scholar 

  301. Dearnaley, D. P. et al. Increased detection of mammary carcinoma cells in marrow smears using antisera to epithelial membrane antigen. Br. J. Cancer 44, 85–90 (1981).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  302. Schlimok, G. et al. In vivo and in vitro labelling of epithelial tumor cells with anti 17-1A monoclonal antibodies in bone marrow of cancer patients. Hybridoma 5 (Suppl. 1), S163–S170 (1986).

    PubMed  Google Scholar 

  303. Riethmuller, G. & Johnson, J. P. Monoclonal antibodies in the detection and therapy of micrometastatic epithelial cancers. Curr. Opin. Immunol. 4, 647–655 (1992).

    Article  PubMed  CAS  Google Scholar 

  304. Wikman, H., Vessella, R. & Pantel, K. Cancer micrometastasis and tumour dormancy. Acta Pathol. Microbiol. Immunol. Scand. C. 116, 754–770 (2008).

    Article  CAS  Google Scholar 

  305. Townson, J. L. & Chambers, A. F. Dormancy of solitary metastatic cells. Cell Cycle 5, 1744–1750 (2006).

    Article  PubMed  CAS  Google Scholar 

  306. Izraely, S. et al. The metastatic microenvironment: brain-residing melanoma metastasis and dormant micrometastasis. Int. J. Cancer 131, 1071–1082 (2012).

    Article  PubMed  CAS  Google Scholar 

  307. Edry Botzer, L. et al. Lung-residing metastatic and dormant neuroblastoma cells. Am. J. Pathol. 179, 524–536 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  308. Sosa, M. S., Bragado, P. & Aguirre-Ghiso, J. A. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat. Rev. Cancer 14, 611–622 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  309. Aguirre-Ghiso, J. A., Liu, D., Mignatti, A., Kovalski, K. & Ossowski, L. Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol. Biol. Cell 12, 863–879 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  310. Gray, B. N. & Watkins, E. Jr. Immunologic approach to cancer therapy. Med. Clin. North Am. 59, 327–337 (1975).

    Article  PubMed  CAS  Google Scholar 

  311. Yefenof, E. et al. Induction of B cell tumor dormancy by anti-idiotypic antibodies. Curr. Opin. Immunol. 5, 740–744 (1993).

    Article  PubMed  CAS  Google Scholar 

  312. Racila, E. et al. Tumor dormancy and cell signaling. II. Antibody as an agonist in inducing dormancy of a B cell lymphoma in SCID mice. J. Exp. Med. 181, 1539–1550 (1995).

    Article  PubMed  CAS  Google Scholar 

  313. Uhr, J. W. et al. Role of antibody signaling in inducing tumor dormancy. Adv. Exp. Med. Biol. 406, 69–74 (1996).

    Article  PubMed  CAS  Google Scholar 

  314. Farrar, J. D. et al. Cancer dormancy. VII. A regulatory role for CD8+ T cells and IFN-gamma in establishing and maintaining the tumor-dormant state. J. Immunol. 162, 2842–2849 (1999).

    PubMed  CAS  Google Scholar 

  315. Gohongi, T. et al. Tumor-host interactions in the gallbladder suppress distal angiogenesis and tumor growth: involvement of transforming growth factor beta1. Nat. Med. 5, 1203–1208 (1999).

    Article  PubMed  CAS  Google Scholar 

  316. Tse, J. C. & Kalluri, R. Waking up dormant tumors. Breast Cancer Res. 13, 310 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  317. Bragado, P., Sosa, M. S., Keely, P., Condeelis, J. & Aguirre-Ghiso, J. A. Microenvironments dictating tumor cell dormancy. Recent Results Cancer Res. 195, 25–39 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  318. Maman, S. et al. The beta subunit of hemoglobin (HBB2/HBB) suppresses neuroblastoma growth and metastasis. Cancer Res. 77, 14–26 (2017).

    Article  PubMed  CAS  Google Scholar 

  319. Leung, C. T. & Brugge, J. S. Outgrowth of single oncogene-expressing cells from suppressive epithelial environments. Nature 482, 410–413 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  320. Elkabets, M. et al. Human tumors instigate granulin-expressing hematopoietic cells that promote malignancy by activating stromal fibroblasts in mice. J. Clin. Invest. 121, 784–799 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  321. Bailey-Downs, L. C. et al. Development and characterization of a preclinical model of breast cancer lung micrometastatic to macrometastatic progression. PLoS ONE 9, e98624 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  322. Willis, L. et al. What can be learnt about disease progression in breast cancer dormancy from relapse data? PLoS ONE 8, e62320 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  323. Sleeman, J. P. The lymph node as a bridgehead in the metastatic dissemination of tumors. Recent Results Cancer Res. 157, 55–81 (2000).

    Article  PubMed  CAS  Google Scholar 

  324. Gould, E. A., Winship, T., Philbin, P. H. & Kerr, H. H. Observations on a “sentinel node” in cancer of the parotid. Cancer 13, 77–78 (1960).

    Article  PubMed  CAS  Google Scholar 

  325. Cochran, A. J. et al. Sentinel lymph nodes show profound downregulation of antigen-presenting cells of the paracortex: implications for tumor biology and treatment. Mod. Pathol. 14, 604–608 (2001).

    Article  PubMed  CAS  Google Scholar 

  326. Qian, C. N. et al. Preparing the “soil”: the primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells. Cancer Res. 66, 10365–10376 (2006).

    Article  PubMed  CAS  Google Scholar 

  327. Hood, J. L., San, R. S. & Wickline, S. A. Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res. 71, 3792–3801 (2011).

    Article  PubMed  CAS  Google Scholar 

  328. Essner, R. Sentinel lymph node biopsy and melanoma biology. Clin Cancer Res. 12, 2320s–2325s. (2006).

    Article  PubMed  Google Scholar 

  329. Riedel, A., Shorthouse, D., Haas, L., Hall, B. A. & Shields, J. Tumor-induced stromal reprogramming drives lymph node transformation. Nat. Immunol. 17, 1118–1127 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  330. Wong, S. Y. & Hynes, R. O. Tumor-lymphatic interactions in an activated stromal microenvironment. J. Cell. Biochem. 101, 840–850 (2007).

    Article  PubMed  CAS  Google Scholar 

  331. Nathanson, S. D., Shah, R. & Rosso, K. Sentinel lymph node metastases in cancer: causes, detection and their role in disease progression. Semin. Cell Dev. Biol. 38, 106–116 (2015).

    Article  PubMed  CAS  Google Scholar 

  332. Naxerova, K. et al. Origins of lymphatic and distant metastases in human colorectal cancer. Science 357, 55–60 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  333. Kwok, T. T. & Twentyman, P. R. The relationship between tumour geometry and the response of tumour cells to cytotoxic drugs—an in vitro study using EMT6 multicellular spheroids. Int. J. Cancer 35, 675–682 (1985).

    Article  PubMed  CAS  Google Scholar 

  334. Kroemer, G. Galluzzi, L. Kepp, O & Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 31, 51–72 (2013).

  335. Siemann, D. W., Chapman, M. & Beikirch, A. Effects of oxygenation and pH on tumor cell response to alkylating chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 20, 287–289 (1991).

    Article  PubMed  CAS  Google Scholar 

  336. Durand, R. E. The influence of microenvironmental factors during cancer therapy. In Vivo 8, 691–702 (1994).

    PubMed  CAS  Google Scholar 

  337. Fidler, I. J. et al. Modulation of tumor cell response to chemotherapy by the organ environment. Cancer Metastasis Rev. 13, 209–222 (1994).

    Article  PubMed  CAS  Google Scholar 

  338. van der Zee, J. Heating the patient: a promising approach? Ann. Oncol. 13, 1173–1184 (2002).

    Article  PubMed  Google Scholar 

  339. Bicher, H. I. et al. Effects of hyperthermia on normal and tumor microenvironment. Radiology 137, 523–530 (1980).

    Article  PubMed  CAS  Google Scholar 

  340. Gerweck, L. E. Modification of cell lethality at elevated temperatures. The pH effect. Radiat. Res. 70, 224–235 (1977).

    Article  CAS  Google Scholar 

  341. Song, C. W. Effect of local hyperthermia on blood flow and microenvironment: a review. Cancer Res 44, 4721s–4730s (1984).

    PubMed  CAS  Google Scholar 

  342. Rofstad, E. K. Step-down heating of human melanoma xenografts: effects of the tumour microenvironment. Br. J. Cancer 70, 453–458 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  343. Novitzky, N. & Mohamed, R. Alterations in both the hematopoietic microenvironment and the progenitor cell population follow the recovery from myeloablative therapy and bone marrow transplantation. Exp. Hematol. 23, 1661–1666 (1995).

    PubMed  CAS  Google Scholar 

  344. Galotto, M. et al. Stromal damage as consequence of high-dose chemo/radiotherapy in bone marrow transplant recipients. Exp. Hematol. 27, 1460–1466 (1999).

    Article  PubMed  CAS  Google Scholar 

  345. Imaizumi, N., Monnier, Y., Hegi, M., Mirimanoff, R. O. & Ruegg, C. Radiotherapy suppresses angiogenesis in mice through TGF-betaRI/ALK5-dependent inhibition of endothelial cell sprouting. PLoS ONE 5, e11084 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  346. von Essen, C. F. Radiation enhancement of metastasis: a review. Clin. Exp. Metastasis 9, 77–104 (1991).

    Article  Google Scholar 

  347. Katz, O. B. & Shaked, Y. Host effects contributing to cancer therapy resistance. Drug Resist. Updat. 19, 33–42 (2015).

    Article  PubMed  Google Scholar 

  348. Shiao, S. L. & Coussens, L. M. The tumor-immune microenvironment and response to radiation therapy. Drug Resist. Updat. 15, 411–421 (2010).

    Google Scholar 

  349. De Palma, M. & Lewis, C. E. Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell 23, 277–286 (2013).

    Article  PubMed  CAS  Google Scholar 

  350. Welt, S. et al. Antibody targeting in metastatic colon cancer: a phase I study of monoclonal antibody F19 against a cell-surface protein of reactive tumor stromal fibroblasts. J. Clin. Oncol. 12, 1193–1203 (1994).

    Article  PubMed  CAS  Google Scholar 

  351. Zardi, L. & Neri, D. Affinity reagents against tumour-associated extracellular molecules and newforming vessels. Adv. Drug Deliv. Rev. 31, 43–52 (1998).

    Article  PubMed  CAS  Google Scholar 

  352. Sung, S. Y. & Chung, L. W. Prostate tumor-stroma interaction: molecular mechanisms and opportunities for therapeutic targeting. Differentiation 70, 506–521 (2002).

    Article  PubMed  CAS  Google Scholar 

  353. Muul, L. M., Spiess, P. J., Director, E. P. & Rosenberg, S. A. Identification of specific cytolytic immune responses against autologous tumor in humans bearing malignant melanoma. J. Immunol. 138, 989–995 (1987).

    PubMed  CAS  Google Scholar 

  354. Chen, L. et al. Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 71, 1093–1102 (1992).

    Article  PubMed  CAS  Google Scholar 

  355. Chambers, C. A., Kuhns, M. S., Egen, J. G. & Allison, J. P. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu. Rev. Immunol. 19, 565–594 (2001).

    Article  PubMed  CAS  Google Scholar 

  356. Nagai, H. et al. In vivo elimination of CD25+ regulatory T cells leads to tumor rejection of B16F10 melanoma, when combined with interleukin-12 gene transfer. Exp. Dermatol. 13, 613–620 (2004).

    Article  PubMed  CAS  Google Scholar 

  357. Medina-Echeverz, J. et al. Successful colon cancer eradication after chemoimmunotherapy is associated with profound phenotypic change of intratumoral myeloid cells. J. Immunol. 186, 807–815 (2011).

    Article  PubMed  CAS  Google Scholar 

  358. Byrne, W. L., Mills, K. H., Lederer, J. A. & O’Sullivan, G. C. Targeting regulatory T cells in cancer. Cancer Res. 71, 6915–6920 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  359. Albeituni, S. H., Ding, C. & Yan, J. Hampering immune suppressors: therapeutic targeting of myeloid-derived suppressor cells in cancer. Cancer J. 19, 490–501 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  360. Mole, R. H. Whole body irradiation; radiobiology or medicine? Br. J. Radiol 26, 234–241 (1953).

    Article  PubMed  CAS  Google Scholar 

  361. Demaria, S. et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int. J. Radiat. Oncol. Biol. Phys. 58, 862–870 (2004).

    Article  PubMed  Google Scholar 

  362. Golden, E. B. et al. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol. 16, 795–803 (2015).

    Article  PubMed  CAS  Google Scholar 

  363. Wahl, M. I. & Carpenter, G. Role of growth factors and their receptors in the control of normal cell proliferation and cancer. Clin. Physiol. Biochem. 5, 130–139 (1987).

    PubMed  CAS  Google Scholar 

  364. Verstraete, K. & Savvides, S. N. Extracellular assembly and activation principles of oncogenic class III receptor tyrosine kinases. Nat. Rev. Cancer 12, 753–766 (2012).

    Article  PubMed  CAS  Google Scholar 

  365. Schwartz, G. K. et al. Inhibition of invasion of invasive human bladder carcinoma cells by protein kinase C inhibitor staurosporine. J. Natl Cancer Inst. 82, 1753–1756 (1990).

    Article  PubMed  CAS  Google Scholar 

  366. Yoneda, T. et al. The antiproliferative effects of tyrosine kinase inhibitors tyrphostins on a human squamous cell carcinoma in vitro and in nude mice. Cancer Res. 51, 4430–4435 (1991).

    PubMed  CAS  Google Scholar 

  367. Minana, M. D., Felipo, V., Cortes, F. & Grisolia, S. Inhibition of protein kinase C arrests proliferation of human tumors. FEBS Lett. 284, 60–62 (1991).

    Article  PubMed  CAS  Google Scholar 

  368. Pegram, M. D. et al. Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J. Clin. Oncol. 16, 2659–2671 (1998).

    Article  PubMed  CAS  Google Scholar 

  369. Pegram, M. & Slamon, D. Biological rationale for HER2/neu (c-erbB2) as a target for monoclonal antibody therapy. Semin. Oncol. 27, 13–19 (2000).

    PubMed  CAS  Google Scholar 

  370. Jain, R. K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7, 987–989 (2001).

    Article  PubMed  CAS  Google Scholar 

  371. Jain, R. K. Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J. Clin. Oncol. 31, 2205–2218 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  372. Nguyen, A. N. et al. Normalizing the bone marrow microenvironment with p38 inhibitor reduces multiple myeloma cell proliferation and adhesion and suppresses osteoclast formation. Exp. Cell Res. 312, 1909–1923 (2006).

    Article  PubMed  CAS  Google Scholar 

  373. Chiche, J., Ricci, J. E. & Pouyssegur, J. Tumor hypoxia and metabolism — towards novel anticancer approaches. Ann. Endocrinol. 74, 111–114 (2013).

    Article  CAS  Google Scholar 

  374. Bingle, L., Brown, N. J. & Lewis, C. E. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J. Pathol. 196, 254–265 (2002).

    Article  PubMed  CAS  Google Scholar 

  375. Colombo, M. P. & Mantovani, A. Targeting myelomonocytic cells to revert inflammation-dependent cancer promotion. Cancer Res. 65, 9113–9116 (2005).

    Article  PubMed  CAS  Google Scholar 

  376. Jackson, W. D. & Woollard, K. J. Targeting monocyte and macrophage subpopulations for immunotherapy: a patent review. Expert Opin. Ther. Pat. 24, 779–790 (2014).

    Article  PubMed  CAS  Google Scholar 

  377. Kolch, W., Halasz, M., Granovskaya, M. & Kholodenko, B. N. The dynamic control of signal transduction networks in cancer cells. Nat. Rev. Cancer 15, 515–527 (2015).

    Article  PubMed  CAS  Google Scholar 

  378. Yarden, Y. & Pines, G. The ERBB network: at last, cancer therapy meets systems biology. Nat. Rev. Cancer 12, 553–563 (2012).

    Article  PubMed  CAS  Google Scholar 

  379. Gonda, T. J. & Ramsay, R. G. Directly targeting transcriptional dysregulation in cancer. Nat. Rev. Cancer 15, 686–694 (2015).

    Article  PubMed  CAS  Google Scholar 

  380. Bertolaso, M. Towards an integrated view of the neoplastic phenomena in cancer research. Hist. Philos. Life Sci. 31, 79–97 (2009).

    PubMed  Google Scholar 

  381. Kienle, G. & Kiene, H. From reductionism to holism: systems-oriented approaches in cancer research. Glob. Adv. Health Med. 1, 68–77 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  382. Chishima, T. et al. Visualization of the metastatic process by green fluorescent protein expression. Anticancer Res. 17, 2377–2384 (1997).

    PubMed  CAS  Google Scholar 

  383. Yang, M. et al. Dual-color fluorescence imaging distinguishes tumor cells from induced host angiogenic vessels and stromal cells. Proc. Natl Acad. Sci. USA 100, 14259–14262 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  384. Bouvet, M. et al. In vivo color-coded imaging of the interaction of colon cancer cells and splenocytes in the formation of liver metastases. Cancer Res. 66, 11293–11297 (2006).

    Article  PubMed  CAS  Google Scholar 

  385. Mercado, K. P., Helguera, M., Hocking, D. C. & Dalecki, D. Noninvasive quantitative imaging of collagen microstructure in three-dimensional hydrogels using high-frequency ultrasound. Tissue Eng. Part C Methods 21, 671–682 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  386. Ring, H. C. et al. Imaging of collagen deposition disorders using optical coherence tomography. J. Eur. Acad. Dermatol. Venereol 29, 890–898 (2015).

    Article  PubMed  CAS  Google Scholar 

  387. Wang, P., Wang, P., Wang, H. W. & Cheng, J. X. Mapping lipid and collagen by multispectral photoacoustic imaging of chemical bond vibration. J. Biomed. Opt. 17, 96010–96011 (2012).

    PubMed  Google Scholar 

  388. Chuang, C. H. et al. In vivo positron emission tomography imaging of protease activity by generation of a hydrophobic product from a noninhibitory protease substrate. Clin. Cancer Res. 18, 238–247 (2012).

    Article  PubMed  CAS  Google Scholar 

  389. Shiftan, L. et al. Magnetic resonance imaging visualization of hyaluronidase in ovarian carcinoma. Cancer Res. 65, 10316–10323 (2005).

    Article  PubMed  CAS  Google Scholar 

  390. Ye, F. et al. A peptide targeted contrast agent specific to fibrin-fibronectin complexes for cancer molecular imaging with MRI. Bioconjug Chem. 19, 2300–2303 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  391. Fujita, M. et al. Brain tumor tandem targeting using a combination of monoclonal antibodies attached to biopoly(beta-L-malic acid). J. Control Release 122, 356–363 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  392. Ottobrini, L., Martelli, C., Trabattoni, D. L., Clerici, M. & Lucignani, G. In vivo imaging of immune cell trafficking in cancer. Eur. J. Nucl. Med. Mol. Imaging 38, 949–968 (2011).

    Article  PubMed  Google Scholar 

  393. Singh, A. S., Radu, C. G. & Ribas, A. PET imaging of the immune system: immune monitoring at the whole body level. Q. J. Nucl. Med. Mol. Imaging 54, 281–290 (2010).

    PubMed  CAS  Google Scholar 

  394. Freise, A. C. & Wu, A. M. In vivo imaging with antibodies and engineered fragments. Mol. Immunol. 67, 142–152 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  395. Li, J. et al. Activatable near-infrared fluorescent probe for in vivo imaging of fibroblast activation protein-alpha. Bioconjug Chem. 23, 1704–1711 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  396. Haberkorn, U., Altmann, A., Mier, W. & Eisenhut, M. Molecular imaging of tumor metabolism and apoptosis. Ernst Schering Found. Symp. Proc. 4, 125–152 (2007).

  397. Serganova, I., Humm, J., Ling, C. & Blasberg, R. Tumor hypoxia imaging. Clin. Cancer Res. 12, 5260–5264 (2006).

    Article  PubMed  Google Scholar 

  398. Raghunand, N. Tissue pH measurement by magnetic resonance spectroscopy and imaging. Methods Mol. Med. 124, 347–364 (2006).

    PubMed  Google Scholar 

  399. Wyckoff, J. et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 64, 7022–7029 (2004).

    Article  PubMed  CAS  Google Scholar 

  400. Nakasone, E. S. et al. Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell 21, 488–503 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  401. McMillin, D. W., Negri, J. M. & Mitsiades, C. S. The role of tumour-stromal interactions in modifying drug response: challenges and opportunities. Nat. Rev. Drug Discov. 12, 217–228 (2013).

    Article  PubMed  CAS  Google Scholar 

  402. Fang, H. & Declerck, Y. A. Targeting the tumor microenvironment: from understanding pathways to effective clinical trials. Cancer Res. 73, 4965–4977 (2013).

    Article  PubMed  CAS  Google Scholar 

  403. Chen, F. et al. New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med. 13, 45 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  404. Abdollahi, A. & Folkman, J. Evading tumor evasion: current concepts and perspectives of anti-angiogenic cancer therapy. Drug Resist. Updat. 13, 16–28 (2010).

    Article  PubMed  CAS  Google Scholar 

  405. Rich, A. R. On the frequency of occurrence of occult carcinoma of the prostate. J. Urol. 33, 215–223 (1935).

    Article  Google Scholar 

  406. Nielsen, M., Thomsen, J. L., Primdahl, S., Dyreborg, U. & Andersen, J. A. Breast cancer and atypia among young and middle-aged women: a study of 110 medicolegal autopsies. Br. J. Cancer 56, 814–819 (1987).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  407. Stoker, M. G., Shearer, M. & O’Neill, C. Growth inhibition of polyoma-transformed cells by contact with static normal fibroblasts. J. Cell Sci. 1, 297–310 (1966).

    PubMed  CAS  Google Scholar 

  408. Harris, H. & Bramwell, M. E. The suppression of malignancy by terminal differentiation: evidence from hybrids between tumour cells and keratinocytes. J. Cell Sci. 87, 383–388 (1987).

    PubMed  Google Scholar 

  409. Klein, G. & Klein, E. Surveillance against tumors—is it mainly immunological? Immunol. Lett. 100, 29–33 (2005).

    Article  PubMed  CAS  Google Scholar 

  410. Mintz, B. & Illmensee, K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl Acad. Sci. USA 72, 3585–3589 (1975).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  411. Flaberg, E. et al. High-throughput live-cell imaging reveals differential inhibition of tumor cell proliferation by human fibroblasts. Int. J. Cancer 128, 2793–2802 (2011).

    Article  PubMed  CAS  Google Scholar 

  412. Bissell, M. J. & Hines, W. C. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat. Med. 17, 320–329 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  413. De Wever, O., Demetter, P., Mareel, M. & Bracke, M. Stromal myofibroblasts are drivers of invasive cancer growth. Int. J. Cancer 123, 2229–2238 (2008).

    Article  PubMed  CAS  Google Scholar 

  414. Mantovani, A., Bottazzi, B., Colotta, F., Sozzani, S. & Ruco, L. The origin and function of tumor-associated macrophages. Immunol. Today 13, 265–270 (1992).

    Article  PubMed  CAS  Google Scholar 

  415. Mishra, P., Banerjee, D. & Ben-Baruch, A. Chemokines at the crossroads of tumor-fibroblast interactions that promote malignancy. J. Leukoc. Biol. 89, 31–39 (2011).

    Article  PubMed  CAS  Google Scholar 

  416. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).

    Article  PubMed  CAS  Google Scholar 

  417. Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow? Lancet 357, 539–545 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Y. Shaked for his valuable and constructive comments on this review. The authors’ studies were supported by the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation (Needham, MA, USA), the German Research Foundation (Deutsche Forschungsgemeinschaft (DFG)), the Sara and Natan Blutinger Foundation (West Orange, NJ, USA), the Fred August and Adele Wolpers Charitable Fund (Clifton, NJ, USA) and the James and Rita Leibman Endowment Fund for Cancer Research (New York, NY, USA).

Author information

Authors and Affiliations

Authors

Contributions

S.M. and I.P.W. contributed equally to the conceptualizing and writing of this review.

Corresponding author

Correspondence to Isaac P. Witz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maman, S., Witz, I.P. A history of exploring cancer in context. Nat Rev Cancer 18, 359–376 (2018). https://doi.org/10.1038/s41568-018-0006-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-018-0006-7

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer