Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deterministic remote entanglement using a chiral quantum interconnect

Abstract

Quantum interconnects facilitate entanglement distribution between non-local computational nodes in a quantum network. For superconducting processors, microwave photons are a natural means to mediate this distribution. However, many existing architectures limit node connectivity and directionality. In this work, we construct a chiral quantum interconnect between two nominally identical modules in separate microwave packages. Our approach uses quantum interference to emit and absorb microwave photons on demand and in a chosen direction between these modules. We optimize our protocol using model-free reinforcement learning to maximize the absorption efficiency. By halting the emission process halfway through its duration, we generate remote entanglement between modules in the form of a four-qubit W state with approximately 62% fidelity in each direction, limited mainly by propagation loss. This quantum network architecture enables all-to-all connectivity between non-local processors for modular and extensible quantum simulation and computation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chiral quantum interconnect experimental setup.
Fig. 2: Chiral photon emission and absorption in the time domain.
Fig. 3: Quantum state transfer between modules via directional photons.
Fig. 4: Deterministic remote entanglement generation.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The code used for numerical simulations and data analyses is available from the corresponding authors upon reasonable request.

References

  1. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    Article  ADS  Google Scholar 

  2. Cirac, J. I., Ekert, A. K., Huelga, S. F. & Macchiavello, C. Distributed quantum computation over noisy channels. Phys. Rev. A 59, 4249–4254 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  3. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  4. Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).

    Article  ADS  Google Scholar 

  5. Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    Article  ADS  Google Scholar 

  6. Pita-Vidal, M. et al. Strong tunable coupling between two distant superconducting spin qubits. Nat. Phys. 20, 1158–1163 (2024).

  7. Bluvstein, D. et al. A quantum processor based on coherent transport of entangled atom arrays. Nature 604, 451–456 (2022).

    Article  ADS  Google Scholar 

  8. Breuckmann, N. P. & Eberhardt, J. N. Quantum low-density parity-check codes. PRX Quantum 2, 040101 (2021).

    Article  ADS  Google Scholar 

  9. Zhong, Y. P. et al. Violating Bell’s inequality with remotely connected superconducting qubits. Nat. Phys. 15, 741–744 (2019).

    Article  Google Scholar 

  10. Zhong, Y. et al. Deterministic multi-qubit entanglement in a quantum network. Nature 590, 571–575 (2021).

    Article  ADS  Google Scholar 

  11. Burkhart, L. D. et al. Error-detected state transfer and entanglement in a superconducting quantum network. PRX Quantum 2, 030321 (2021).

    Article  ADS  Google Scholar 

  12. Qiu, J. et al. Deterministic quantum state and gate teleportation between distant superconducting chips. Sci. Bull. 70, 351–358 (2024).

  13. Niu, J. et al. Low-loss interconnects for modular superconducting quantum processors. Nat. Electron. 6, 235–241 (2023).

    Article  Google Scholar 

  14. Kurpiers, P. et al. Deterministic quantum state transfer and remote entanglement using microwave photons. Nature 558, 264–267 (2018).

    Article  ADS  Google Scholar 

  15. Axline, C. J. et al. On-demand quantum state transfer and entanglement between remote microwave cavity memories. Nat. Phys. 14, 705–710 (2018).

    Article  Google Scholar 

  16. Lalumière, K. et al. Input-output theory for waveguide QED with an ensemble of inhomogeneous atoms. Phys. Rev. A 88, 043806 (2013).

    Article  ADS  Google Scholar 

  17. Gheeraert, N., Kono, S. & Nakamura, Y. Programmable directional emitter and receiver of itinerant microwave photons in a waveguide. Phys. Rev. A 102, 053720 (2020).

    Article  ADS  Google Scholar 

  18. Guimond, P.-O. et al. A unidirectional on-chip photonic interface for superconducting circuits. npj Quantum Inf. 6, 32 (2020).

    Article  ADS  Google Scholar 

  19. Solano, P., Barberis-Blostein, P. & Sinha, K. Dissimilar collective decay and directional emission from two quantum emitters. Phys. Rev. A 107, 023723 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  20. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    Article  ADS  Google Scholar 

  21. Astafiev, O. et al. Resonance fluorescence of a single artificial atom. Science 327, 840–843 (2010).

    Article  ADS  Google Scholar 

  22. Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    Article  ADS  Google Scholar 

  23. van Loo, A. F. et al. Photon-mediated interactions between distant artificial atoms. Science 342, 1494–1496 (2013).

    Article  ADS  Google Scholar 

  24. Mirhosseini, M. et al. Cavity quantum electrodynamics with atom-like mirrors. Nature 569, 692–697 (2019).

    Article  ADS  Google Scholar 

  25. Kannan, B. et al. Waveguide quantum electrodynamics with superconducting artificial giant atoms. Nature 583, 775–779 (2020).

    Article  ADS  Google Scholar 

  26. Zanner, M. et al. Coherent control of a multi-qubit dark state in waveguide quantum electrodynamics. Nat. Phys. 18, 538–543 (2022).

    Article  Google Scholar 

  27. Forn-Díaz, P., Warren, C. W., Chang, C. W. S., Vadiraj, A. M. & Wilson, C. M. On-demand microwave generator of shaped single photons. Phys. Rev. Appl. 8, 054015 (2017).

    Article  ADS  Google Scholar 

  28. Besse, J.-C. et al. Realizing a deterministic source of multipartite-entangled photonic qubits. Nat. Commun. 11, 4877 (2020).

    Article  ADS  Google Scholar 

  29. Pichler, H., Ramos, T., Daley, A. J. & Zoller, P. Quantum optics of chiral spin networks. Phys. Rev. A 91, 042116 (2015).

    Article  ADS  Google Scholar 

  30. Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).

    Article  ADS  Google Scholar 

  31. Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

    Article  ADS  Google Scholar 

  32. Petersen, J., Volz, J. & Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science 346, 67–71 (2014).

    Article  ADS  Google Scholar 

  33. Soro, A. & Kockum, A. F. Chiral quantum optics with giant atoms. Phys. Rev. A 105, 023712 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  34. Joshi, C., Yang, F. & Mirhosseini, M. Resonance fluorescence of a chiral artificial atom. Phys. Rev. X 13, 021039 (2023).

    Google Scholar 

  35. Lingenfelter, A. et al. Exact results for a boundary-driven double spin chain and resource-efficient remote entanglement stabilization. Phys. Rev. X 14, 021028 (2024).

    Google Scholar 

  36. Irfan, A. et al. Loss resilience of driven-dissipative remote entanglement in chiral waveguide quantum electrodynamics. Phys. Rev. Res. 6, 033212 (2024).

    Article  Google Scholar 

  37. Kannan, B. et al. On-demand directional microwave photon emission using waveguide quantum electrodynamics. Nat. Phys. 19, 394–400 (2023).

    Article  Google Scholar 

  38. Sivak, V. V. et al. Model-free quantum control with reinforcement learning. Phys. Rev. X 12, 011059 (2022).

    Google Scholar 

  39. Sivak, V. V. et al. Real-time quantum error correction beyond break-even. Nature 616, 50–55 (2023).

    Article  ADS  Google Scholar 

  40. Ding, L. et al. High-fidelity, frequency-flexible two-qubit fluxonium gates with a transmon coupler. Phys. Rev. X 13, 031035 (2023).

    Google Scholar 

  41. Eichler, C., Bozyigit, D. & Wallraff, A. Characterizing quantum microwave radiation and its entanglement with superconducting qubits using linear detectors. Phys. Rev. A 86, 032106 (2012).

    Article  ADS  Google Scholar 

  42. Kannan, B. et al. Generating spatially entangled itinerant photons with waveguide quantum electrodynamics. Sci. Adv. 6, eabb8780 (2020).

    Article  ADS  Google Scholar 

  43. Dür, W., Vidal, G. & Cirac, J. I. Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  44. Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996).

    Article  ADS  Google Scholar 

  45. Ramette, J., Sinclair, J., Breuckmann, N. P. & Vuletić, V. Fault-tolerant connection of error-corrected qubits with noisy links. npj Quantum Inf. 10, 58 (2024).

    Article  ADS  Google Scholar 

  46. Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    Article  ADS  Google Scholar 

  47. Yan, F. et al. Tunable coupling scheme for implementing high-fidelity two-qubit gates. Phys. Rev. Appl. 10, 054062 (2018).

    Article  ADS  Google Scholar 

  48. Sung, Y. et al. Realization of high-fidelity CZ and ZZ-free iSWAP gates with a tunable coupler. Phys. Rev. X 11, 021058 (2021).

    Google Scholar 

  49. Yang, J. et al. Deterministic generation of shaped single microwave photons using a parametrically driven coupler. Phys. Rev. Appl. 20, 054018 (2023).

    Article  ADS  Google Scholar 

  50. Roth, M. et al. Analysis of a parametrically driven exchange-type gate and a two-photon excitation gate between superconducting qubits. Phys. Rev. A 96, 062323 (2017).

    Article  ADS  Google Scholar 

  51. Rol, M. A. et al. Time-domain characterization and correction of on-chip distortion of control pulses in a quantum processor. Appl. Phys. Lett. 116, 054001 (2020).

    Article  ADS  Google Scholar 

  52. Gühne, O. & Seevinck, M. Separability criteria for genuine multiparticle entanglement. New J. Phys. 12, 053002 (2010).

    Article  ADS  Google Scholar 

  53. Dür, W. Multipartite entanglement that is robust against disposal of particles. Phys. Rev. A 63, 020303 (2001).

    Article  ADS  Google Scholar 

  54. Weiss, D., Puri, S. & Girvin, S. Quantum random access memory architectures using 3D superconducting cavities. PRX Quantum 5, 020312 (2024).

    Article  ADS  Google Scholar 

  55. Rosenberg, D. et al. 3D integrated superconducting qubits. npj Quantum Inf. 3, 42 (2017).

    Article  ADS  Google Scholar 

  56. Yost, D. R. W. et al. Solid-state qubits integrated with superconducting through-silicon vias. npj Quantum Inf. 6, 59 (2020).

    Article  ADS  Google Scholar 

  57. Field, M. et al. Modular superconducting-qubit architecture with a multichip tunable coupler. Phys. Rev. Appl. 21, 054063 (2024).

    Article  ADS  Google Scholar 

  58. Jiang, L., Taylor, J. M., Sørensen, A. S. & Lukin, M. D. Distributed quantum computation based on small quantum registers. Phys. Rev. A 76, 062323 (2007).

    Article  ADS  Google Scholar 

  59. Chou, K. S. et al. Deterministic teleportation of a quantum gate between two logical qubits. Nature 561, 368–373 (2018).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was funded in part by the Army Research Office under award no. W911NF-23-1-0045; in part by the AWS Center for Quantum Computing; and in part under Air Force contract no. FA8702-15-D-0001. A.A. acknowledges support from the Paul & Daisy Soros Fellowships program and the Clare Boothe Luce Graduate Fellowship. B.Y. acknowledges support from the Fannie and John Hertz Foundation and the NSF Graduate Research Fellowship Program. M.H. is supported by an appointment to the Intelligence Community Postdoctoral Research Fellowship Program at MIT administered by Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the US Department of Energy and the Office of the Director of National Intelligence (ODNI). Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the US Air Force or the US Government.

Author information

Authors and Affiliations

Authors

Contributions

A.A. designed the experimental procedure and conducted the measurements. A.A. and B.Y. designed the devices, performed the theoretical calculations and simulations, analysed the data and wrote the manuscript. M.H. assisted in implementing the RL optimization. R.A. helped troubleshoot the experiments and analyse the data. A.G. assisted with the automation of calibration. M.G., B.M.N. and H.S. fabricated the devices with coordination from K.S. and M.E.S. B.Y., B.K., R.A. and J.Î.-j.W. assisted with the experimental setup. T.P.O., S.G., M.H., J.A.G. and W.D.O. supervised the project. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Aziza Almanakly or William D. Oliver.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Matt LaHaye and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections A–H, Figs. 1–5, Tables 1–6 and discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almanakly, A., Yankelevich, B., Hays, M. et al. Deterministic remote entanglement using a chiral quantum interconnect. Nat. Phys. 21, 825–830 (2025). https://doi.org/10.1038/s41567-025-02811-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-025-02811-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing