Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phase transition in magic with random quantum circuits

Abstract

Magic is a property of quantum states that enables universal fault-tolerant quantum computing using simple sets of gate operations. Understanding the mechanisms by which magic is created or destroyed is, therefore, a crucial step towards efficient and practical fault-tolerant computation. Many proposals for error correction in quantum computing make use of so-called stabilizer codes, which use multiqubit measurements to detect deviations from logical qubit states. Here we observe that a random stabilizer code subject to coherent errors exhibits a phase transition in magic, which we characterize through analytical, numerical and experimental probes. Below a critical error rate, stabilizer measurements remove the accumulated magic in the circuit, effectively protecting against coherent errors; above the critical error rate measurements concentrate magic. A better understanding of this behaviour in the resource theory of magic could help to identify the origins of quantum speedup and lead to methods for more efficient magic state generation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Model and phase diagram.
Fig. 2: Results for vanishing-rate codes.
Fig. 3: Results for constant-rate codes.

Similar content being viewed by others

Data availability

All the data used in this work can be found via Zenodo at https://doi.org/10.5281/zenodo.7847794 (ref. 35). Source data are provided with this paper.

References

  1. Gottesman, D. The Heisenberg representation of quantum computers. Preprint at https://doi.org/10.48550/arXiv.quant-ph/9807006 (1998).

  2. Aaronson, S. & Gottesman, D. Improved simulation of stabilizer circuits. Phys. Rev. A 70, 052328 (2004).

    Article  ADS  Google Scholar 

  3. Bravyi, S. et al. Simulation of quantum circuits by low-rank stabilizer decompositions. Quantum 3, 181 (2019).

    Article  Google Scholar 

  4. Bu, K. & Koh, D. E. Efficient classical simulation of clifford circuits with nonstabilizer input states. Phys. Rev. Lett. 123, 170502 (2019).

    Article  ADS  Google Scholar 

  5. Bravyi, S. & Kitaev, A. Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  6. Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    Article  ADS  Google Scholar 

  7. O’Gorman, J. & Campbell, E. T. Quantum computation with realistic magic-state factories. Phys. Rev. A 95, 032338 (2017).

    Article  ADS  Google Scholar 

  8. Campbell, E. T., Terhal, B. M. & Vuillot, C. Roads towards fault-tolerant universal quantum computation. Nature 549, 172–179 (2017).

    Article  ADS  Google Scholar 

  9. Veitch, V., Mousavian, S. A. H., Gottesman, D. & Emerson, J. The resource theory of stabilizer computation. New J. Phys. 16, 013009 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  10. Bu, K., Garcia, R. J., Jaffe, A., Koh, D. E. & Li, L. Complexity of quantum circuits via sensitivity, magic and coherence. Commun. Math. Phys. 405, 161 (2024).

    Article  MathSciNet  Google Scholar 

  11. White, C. D., Cao, C. & Swingle, B. Conformal field theories are magical. Phys. Rev. B 103, 075145 (2021).

    Article  ADS  Google Scholar 

  12. Leone, L., Oliviero, S. F., Zhou, Y. & Hamma, A. Quantum chaos is quantum. Quantum 5, 453 (2021).

    Article  Google Scholar 

  13. Skinner, B., Ruhman, J. & Nahum, A. Measurement-induced phase transitions in the dynamics of entanglement. Phys. Rev. X 9, 031009 (2019).

    Google Scholar 

  14. Li, Y., Chen, X. & Fisher, M. P. A. Measurement-driven entanglement transition in hybrid quantum circuits. Phys. Rev. B 100, 134306 (2019).

    Article  ADS  Google Scholar 

  15. Terhal, B. M. Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307–346 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  16. Potter, A. C. & Vasseur, R. in Entanglement in Spin Chains: From Theory to Quantum Technology Applications (eds Bayat, A. et al.) 211–249 (Springer, 2022).

  17. Fisher, M. P., Khemani, V., Nahum, A. & Vijay, S. Random quantum circuits. Ann. Rev. Condens. Matter Phys. 14, 335–379 (2023).

    Article  ADS  Google Scholar 

  18. Zabalo, A. et al. Operator scaling dimensions and multifractality at measurement-induced transitions. Phys. Rev. Lett. 128, 050602 (2022).

    Article  ADS  Google Scholar 

  19. Iaconis, J., Lucas, A. & Chen, X. Measurement-induced phase transitions in quantum automaton circuits. Phys. Rev. B 102, 224311 (2020).

    Article  ADS  Google Scholar 

  20. Gullans, M. J. & Huse, D. A. Dynamical purification phase transition induced by quantum measurements. Phys. Rev. X 10, 041020 (2020).

    Google Scholar 

  21. Bao, Y., Choi, S. & Altman, E. Theory of the phase transition in random unitary circuits with measurements. Phys. Rev. B 101, 104301 (2020).

    Article  ADS  Google Scholar 

  22. Jian, C.-M., You, Y.-Z., Vasseur, R. & Ludwig, A. W. W. Measurement-induced criticality in random quantum circuits. Phys. Rev. B 101, 104302 (2020).

    Article  ADS  Google Scholar 

  23. Li, Y., Vasseur, R., Fisher, M. P. & Ludwig, A. W. Statistical mechanics model for clifford random tensor networks and monitored quantum circuits. Phys. Rev. B 109, 174307 (2024).

    Article  ADS  Google Scholar 

  24. Barratt, F. et al. Field theory of charge sharpening in symmetric monitored quantum circuits. Phys. Rev. Lett. 129, 120604 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  25. Agrawal, U. et al. Entanglement and charge-sharpening transitions in U(1) symmetric monitored quantum circuits. Phys. Rev. X 12, 041002 (2022).

    Google Scholar 

  26. Leone, L., Oliviero, S. F. E. & Hamma, A. Stabilizer Rényi entropy. Phys. Rev. Lett. 128, 050402 (2022).

    Article  ADS  Google Scholar 

  27. Brown, W. & Fawzi, O. Short random circuits define good quantum error correcting codes. In 2013 IEEE International Symposium on Information Theory 346–350 (IEEE, 2013).

  28. Haug, T. & Piroli, L. Stabilizer entropies and nonstabilizerness monotones. Quantum 7, 1092 (2023).

    Article  Google Scholar 

  29. Gottesman, D. Stabilizer Codes and Quantum Error Correction (California Institute of Technology, 1997).

  30. Bravyi, S., Englbrecht, M., König, R. & Peard, N. Correcting coherent errors with surface codes. NPJ Quantum Inf. 4, 55 (2018).

    Article  ADS  Google Scholar 

  31. Venn, F., Behrends, J. & Béri, B. Coherent-error threshold for surface codes from Majorana delocalization. Phys. Rev. Lett. 131, 060603 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  32. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article  ADS  Google Scholar 

  33. Leone, L., Oliviero, S. F., Esposito, G. & Hamma, A. Phase transition in stabilizer entropy and efficient purity estimation. Phys. Rev. A 109, 032403 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  34. Ippoliti, M., Gullans, M. J., Gopalakrishnan, S., Huse, D. A. & Khemani, V. Entanglement phase transitions in measurement-only dynamics. Phys. Rev. X 11, 011030 (2021).

    Google Scholar 

  35. Pradeep, N. et al. Phase transition in magic with random quantum circuits. Zenodo https://doi.org/10.5281/zenodo.7847794 (2024).

Download references

Acknowledgements

We thank K. Wright, M. Hiles and J. Nguyen from IonQ for their assistance, and L. Zhukas, N. Yunger Halpern, W. Braasch and B. Ware for comments on the manuscript. We are also grateful to an anonymous reviewer for a thorough, careful and thoughtful review. This work is supported by the NSF STAQ program; the NSF QLCI RQS Program OMA-2120757; the DOE QSA program DE-FOA-0002253; and the AFOSR MURIs on Dissipation Engineering in Open Quantum Systems, Quantum Measurement/Verification, and Quantum Interactive Protocols. C.D.W. thanks DOE-ASCR Quantum Computing Application Teams program for support under fieldwork proposal number ERKJ347. The experiments were performed on the IonQ Aria system through the UMD/IonQ Q-Lab consortium. Certain commercial equipment, instruments or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

Author information

Authors and Affiliations

Authors

Contributions

P.N., C.D.W. and M.J.G. developed the theory. P.N. collected and analysed the data. Q.W., S.J., D.Z. and C.N. provided support and guidance on experiments. C.M., C.N. and M.J.G. supervised the project. All authors discussed results and contributed to the manuscript.

Corresponding authors

Correspondence to Pradeep Niroula or Michael J. Gullans.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Alioscia Hamma, Xhek Turkeshi and Guo-Yi Zhu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Discussion.

Source data

Source Data Fig. 1

Statistical source data for the plots.

Source Data Fig. 2

Statistical source data for the plots.

Source Data Fig. 3

Statistical source data for the plots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niroula, P., White, C.D., Wang, Q. et al. Phase transition in magic with random quantum circuits. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02637-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-024-02637-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing