Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dimensionality crossover to a two-dimensional vestigial nematic state from a three-dimensional antiferromagnet in a honeycomb van der Waals magnet

Abstract

The effects of fluctuations and disorder, which are substantially enhanced in reduced dimensionalities, can play a crucial role in producing non-trivial phases of matter such as vestigial orders characterized by a composite order parameter. However, fluctuation-driven magnetic phases in low dimensions have remained relatively unexplored. Here we demonstrate a phase transition from the zigzag antiferromagnetic order in the three-dimensional bulk to a Z3 vestigial Potts nematicity in two-dimensional few-layer samples of van der Waals magnet NiPS3. Our spin relaxometry and optical spectroscopy measurements reveal that the spin fluctuations are enhanced over the gigahertz to terahertz range as the layer number of NiPS3 reduces. Monte Carlo simulations corroborate the experimental finding of threefold rotational symmetry breaking but show that the translational symmetry is restored in thin layers of NiPS3. Therefore, our results show that strong quantum fluctuations can stabilize an unconventional magnetic phase after destroying a more conventional one.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic phase diagrams of vestigial order and magnetic states in NiPS3.
Fig. 2: Thickness-dependent spin fluctuations in few-layer NiPS3 measured by NV relaxometry and Raman spectroscopy.
Fig. 3: Thickness dependence of BTS and BRS signatures in Raman spectroscopy.
Fig. 4: Polarization-dependent LD and Raman data for 4L NiPS3.
Fig. 5: Monte Carlo calculations of the magnetic state in 2 L NiPS3.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support this study are available from the corresponding authors upon reasonable request.

References

  1. Nie, L., Tarjus, G. & Kivelson, S. A. Quenched disorder and vestigial nematicity in the pseudogap regime of the cuprates. Proc. Natl Acad. Sci. 111, 7980–7985 (2014).

    Article  ADS  Google Scholar 

  2. Fernandes, R. M., Orth, P. P. & Schmalian, J. Intertwined vestigial order in quantum materials: nematicity and beyond. Annu. Rev. Condens. Matter Phys. 10, 133–154 (2019).

    Article  ADS  Google Scholar 

  3. Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998).

    Article  ADS  Google Scholar 

  4. Ando, Y., Segawa, K., Komiya, S. & Lavrov, A. Electrical resistivity anisotropy from self-organized one dimensionality in high-temperature superconductors. Phys. Rev. Lett. 88, 137005 (2002).

    Article  ADS  Google Scholar 

  5. Hinkov, V. et al. Electronic liquid crystal state in the high-temperature superconductor YBa2Cu3O6.45. Science 319, 597–600 (2008).

    Article  Google Scholar 

  6. Lawler, M. et al. Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states. Nature 466, 347–351 (2010).

    Article  ADS  Google Scholar 

  7. Achkar, A. et al. Nematicity in stripe-ordered cuprates probed via resonant X-ray scattering. Science 351, 576–578 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  8. de La Cruz, C. et al. Magnetic order close to superconductivity in the iron-based layered LaO1−xFxFeAs systems. Nature 453, 899–902 (2008).

    Article  ADS  Google Scholar 

  9. Chu, J.-H., Kuo, H.-H., Analytis, J. G. & Fisher, I. R. Divergent nematic susceptibility in an iron arsenide superconductor. Science 337, 710–712 (2012).

    Article  ADS  Google Scholar 

  10. Fang, C., Yao, H., Tsai, W.-F., Hu, J. & Kivelson, S. A. Theory of electron nematic order in LaFeAsO. Phys. Rev. B 77, 224509 (2008).

    Article  ADS  Google Scholar 

  11. Xu, C., Müller, M. & Sachdev, S. Ising and spin orders in the iron-based superconductors. Phys. Rev. B 78, 020501 (2008).

    Article  ADS  Google Scholar 

  12. Domröse, T. et al. Light-induced hexatic state in a layered quantum material. Nat. Mater. 22, 1345–1351 (2023).

  13. Cho, C.-W. et al. Z3-vestigial nematic order due to superconducting fluctuations in the doped topological insulators NbxBi2Se3 and CuxBi2Se3. Nat. Commun. 11, 3056 (2020).

    Article  ADS  Google Scholar 

  14. Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Colloquium: theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 87, 457 (2015).

    Article  ADS  Google Scholar 

  15. Fernandes, R., Chubukov, A. & Schmalian, J. What drives nematic order in iron-based superconductors? Nat. Phys. 10, 97–104 (2014).

    Article  Google Scholar 

  16. Berg, E., Fradkin, E. & Kivelson, S. A. Charge-4e superconductivity from pair-density-wave order in certain high-temperature superconductors. Nat. Phys. 5, 830–833 (2009).

    Article  Google Scholar 

  17. Agterberg, D. F. et al. The physics of pair-density waves: cuprate superconductors and beyond. Annu. Rev. Condens. Matter Phys. 11, 231–270 (2020).

    Article  ADS  Google Scholar 

  18. Lee, P. A. Amperean pairing and the pseudogap phase of cuprate superconductors. Phys. Rev. 4, 031017 (2014).

    Article  Google Scholar 

  19. Berg, E., Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Striped superconductors: how spin, charge and superconducting orders intertwine in the cuprates. New J. Phys. 11, 115004 (2009).

    Article  ADS  Google Scholar 

  20. Jian, S.-K., Huang, Y. & Yao, H. Charge-4e superconductivity from nematic superconductors in two and three dimensions. Phys. Rev. Lett. 127, 227001 (2021).

    Article  ADS  Google Scholar 

  21. Fernandes, R. M. & Fu, L. Charge-4e superconductivity from multicomponent nematic pairing: application to twisted bilayer graphene. Phys. Rev. Lett. 127, 047001 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  22. Hecker, M., Willa, R., Schmalian, J. & Fernandes, R. M. Cascade of vestigial orders in two-component superconductors: nematic, ferromagnetic, s-wave charge-4e, and d-wave charge-4e states. Phys. Rev. B 107, 224503 (2023).

    Article  ADS  Google Scholar 

  23. Wang, Y.-C., Yan, Z., Wang, C., Qi, Y. & Meng, Z. Y. Vestigial anyon condensation in kagome quantum spin liquids. Phys. Rev. B 103, 014408 (2021).

    Article  ADS  Google Scholar 

  24. Wu, F.-Y. The Potts model. Rev. Mod. Phys. 54, 235 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  25. Fernandes, R. M. & Venderbos, J. W. Nematicity with a twist: rotational symmetry breaking in a moiré superlattice. Sci. Adv. 6, eaba8834 (2020).

    Article  ADS  Google Scholar 

  26. Christensen, M. H., Birol, T., Andersen, B. M. & Fernandes, R. M. Theory of the charge density wave in AV3Sb5 kagome metals. Phys. Rev. B 104, 214513 (2021).

    Article  ADS  Google Scholar 

  27. Mulder, A., Ganesh, R., Capriotti, L. & Paramekanti, A. Spiral order by disorder and lattice nematic order in a frustrated Heisenberg antiferromagnet on the honeycomb lattice. Phys. Rev. B 81, 214419 (2010).

    Article  ADS  Google Scholar 

  28. Little, A. et al. Three-state nematicity in the triangular lattice antiferromagnet Fe1/3NbS2. Nat. Mater. 19, 1062–1067 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  29. Ni, Z., Huang, N., Haglund, A. V., Mandrus, D. G. & Wu, L. Observation of giant surface second-harmonic generation coupled to nematic orders in the van der Waals antiferromagnet FePS3. Nano Lett. 22, 3283–3288 (2022).

    Article  ADS  Google Scholar 

  30. Chakraborty, A. R. & Fernandes, R. M. Strain-tuned quantum criticality in electronic Potts-nematic systems. Phys. Rev. B 107, 195136 (2023).

    Article  ADS  Google Scholar 

  31. Kang, S. et al. Coherent many-body exciton in van der Waals antiferromagnet NiPS3. Nature 583, 785–789 (2020).

    Article  ADS  Google Scholar 

  32. Hwangbo, K. et al. Highly anisotropic excitons and multiple phonon bound states in a van der Waals antiferromagnetic insulator. Nat. Nanotechnol. 16, 655–660 (2021).

    Article  ADS  Google Scholar 

  33. Wang, X. et al. Spin-induced linear polarization of photoluminescence in antiferromagnetic van der Waals crystals. Nat. Mater. 20, 964–970 (2021).

    Article  ADS  Google Scholar 

  34. Kim, K. et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat. Commun. 10, 345 (2019).

    Article  ADS  Google Scholar 

  35. DiScala, M. F. et al. Elucidating the role of dimensionality on the electronic structure of the van der Waals antiferromagnet NiPS3. Adv. Phys. Res. 3, 2300096 (2024).

    Article  Google Scholar 

  36. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  ADS  Google Scholar 

  37. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Article  ADS  Google Scholar 

  38. Lee, K. et al. Magnetic order and symmetry in the 2D semiconductor CrSBr. Nano Lett. 21, 3511–3517 (2021).

    Article  ADS  Google Scholar 

  39. Lee, J.-U. et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16, 7433–7438 (2016).

    Article  ADS  Google Scholar 

  40. Ni, Z. et al. Imaging the Néel vector switching in the monolayer antiferromagnet MnPSe3 with strain-controlled Ising order. Nat. Nanotechnol. 16, 782–787 (2021).

    Article  ADS  Google Scholar 

  41. Wildes, A. R. et al. Magnetic structure of the quasi-two-dimensional antiferromagnet NiPS3. Phys. Rev. B 92, 224408 (2015).

    Article  ADS  Google Scholar 

  42. Lançon, D., Ewings, R., Guidi, T., Formisano, F. & Wildes, A. Magnetic exchange parameters and anisotropy of the quasi-two-dimensional antiferromagnet NiPS3. Phys. Rev. B 98, 134414 (2018).

    Article  ADS  Google Scholar 

  43. Wildes, A. et al. Magnetic dynamics of NiPS3. Phys. Rev. B 106, 174422 (2022).

    Article  ADS  Google Scholar 

  44. Scheie, A. et al. Spin wave Hamiltonian and anomalous scattering in NiPS3. Phys. Rev. B 108, 104402 (2023).

    Article  ADS  Google Scholar 

  45. Rondin, L. et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014).

    Article  ADS  Google Scholar 

  46. Van der Sar, T., Casola, F., Walsworth, R. & Yacoby, A. Nanometre-scale probing of spin waves using single electron spins. Nat. Commun. 6, 7886 (2015).

    Article  ADS  Google Scholar 

  47. Du, C. et al. Control and local measurement of the spin chemical potential in a magnetic insulator. Science 357, 195–198 (2017).

    Article  ADS  Google Scholar 

  48. Ku, M. J. et al. Imaging viscous flow of the Dirac fluid in graphene. Nature 583, 537–541 (2020).

    Article  ADS  Google Scholar 

  49. Kubo, R. The fluctuation–dissipation theorem. Rep. Prog. Phys. 29, 255 (1966).

    Article  ADS  Google Scholar 

  50. Lemmens, P., Güntherodt, G. & Gros, C. Magnetic light scattering in low-dimensional quantum spin systems. Phys. Rep. 375, 1–103 (2003).

    Article  ADS  Google Scholar 

  51. Jana, D. et al. Magnon gap excitations and spin-entangled optical transition in the van der Waals antiferromagnet NiPS3. Phys. Rev. B 108, 115149 (2023).

    Article  ADS  Google Scholar 

  52. Hashemi, A., Komsa, H.-P., Puska, M. & Krasheninnikov, A. V. Vibrational properties of metal phosphorus trichalcogenides from first-principles calculations. J. Phys. Chem. C 121, 27207–27217 (2017).

    Article  Google Scholar 

  53. Kuo, C.-T. et al. Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 van der Waals crystals. Sci. Rep. 6, 20904 (2016).

    Article  ADS  Google Scholar 

  54. Yao, Y. et al. An electronic nematic liquid in BaNi2As2. Nat. Commun. 13, 4535 (2022).

    Article  ADS  Google Scholar 

  55. Akram, M. et al. Theory of moiré magnetism in twisted bilayer α-RuCl3. Nano Lett. 24, 890–896 (2024).

    Article  ADS  Google Scholar 

  56. Kim, S. Y. et al. Charge-spin correlation in van der Waals antiferromagnet NiPS3. Phys. Rev. Lett. 120, 136402 (2018).

    Article  ADS  Google Scholar 

  57. Kim, D. S. et al. Anisotropic excitons reveal local spin chain directions in a van der Waals antiferromagnet. Adv. Mater. 35, 2206585 (2023).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge valuable discussions with R. Fernandes and J. Venderbos. L.Z. acknowledges support from the National Science Foundation (NSF; Grant No. DMR-2103731), the Office of Naval Research (ONR; Grant No. N00014-21-1-2770) and the Gordon and Betty Moore Foundation (Award No. GBMF10694). R.H. acknowledges support from the NSF (Grant Nos. DMR-2104036 and DMR-2300640). C.R.D. acknowledges support from the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (Award No. DE-SC0024870). Z.Y.M. acknowledges support from the Research Grants Council (RGC) of the Hong Kong Special Administrative Region (SAR) of China (Project Nos. 17301721, AoE/P-701/20, 17309822, HKU C7037-22GF and 17302223), the ANR/RGC Joint Research Scheme sponsored by the RGC of the Hong Kong SAR of China and the French National Research Agency (Project No. A_HKU703/22). D.M. acknowledges support from the Gordon and Betty Moore Foundation's EPiQS Initiative (Grant GBMF9069). K.S. acknowledges support from the ONR (Grant No. N00014-21-1-2770) and the Gordon and Betty Moore Foundation (Award No. GBMF10694). Q.L. and H.D. acknowledge support from the ONR (Grant No. N00014-21-1-2770) and the Gordon and Betty Moore Foundation (Award No. GBMF10694). L.L acknowledges support from the DOE (Grant No. DE-SC0020184). X.X. and L.Y. acknowledge support from the NSF (Grant No. DMR-2118779). The ab initio simulation used Anvil at Purdue University through allocation DMR100005 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) programme, which is supported by the NSF (Grant Nos. 2138259, 2138286, 2138307, 2137603 and 2138296).

Author information

Authors and Affiliations

Authors

Contributions

Z.S., R.H. and L.Z. conceived the idea and initiated this project. Z.S. exfoliated the NiPS3 thin flakes with different layer numbers. G.Y., Z.Y., C.N. and Z.S. carried out the Raman experiments under the supervision of L.Z. and R.H. M.H. performed the NV spin relaxometry under the supervision of C.D. C.Z. carried out the Monte Carlo simulations under the supervision of K.S. and Z.Y.M. Q.L. and Z.S. carried out the atomic force microscopy measurements and the PL measurements guided by H.D. and L.Z. N.H. grew the high-quality NiPS3 bulk single crystals under the supervision of D.M. G.Z. performed the susceptibility measurements under the supervision of L.L. X.X. performed the phonon calculations under the supervision of L.Y. Z.S., R.H. and L.Z. analysed the data and wrote the manuscript. All authors participated in discussions about the results.

Corresponding authors

Correspondence to Rui He or Liuyan Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–17 and Figs. 1–18.

Source data

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Source Data Fig. 5

Source data for Fig. 5a,b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Ye, G., Zhou, C. et al. Dimensionality crossover to a two-dimensional vestigial nematic state from a three-dimensional antiferromagnet in a honeycomb van der Waals magnet. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02618-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-024-02618-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing