Abstract
The effects of fluctuations and disorder, which are substantially enhanced in reduced dimensionalities, can play a crucial role in producing non-trivial phases of matter such as vestigial orders characterized by a composite order parameter. However, fluctuation-driven magnetic phases in low dimensions have remained relatively unexplored. Here we demonstrate a phase transition from the zigzag antiferromagnetic order in the three-dimensional bulk to a Z3 vestigial Potts nematicity in two-dimensional few-layer samples of van der Waals magnet NiPS3. Our spin relaxometry and optical spectroscopy measurements reveal that the spin fluctuations are enhanced over the gigahertz to terahertz range as the layer number of NiPS3 reduces. Monte Carlo simulations corroborate the experimental finding of threefold rotational symmetry breaking but show that the translational symmetry is restored in thin layers of NiPS3. Therefore, our results show that strong quantum fluctuations can stabilize an unconventional magnetic phase after destroying a more conventional one.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
Source data are provided with this paper. All other data that support this study are available from the corresponding authors upon reasonable request.
References
Nie, L., Tarjus, G. & Kivelson, S. A. Quenched disorder and vestigial nematicity in the pseudogap regime of the cuprates. Proc. Natl Acad. Sci. 111, 7980–7985 (2014).
Fernandes, R. M., Orth, P. P. & Schmalian, J. Intertwined vestigial order in quantum materials: nematicity and beyond. Annu. Rev. Condens. Matter Phys. 10, 133–154 (2019).
Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998).
Ando, Y., Segawa, K., Komiya, S. & Lavrov, A. Electrical resistivity anisotropy from self-organized one dimensionality in high-temperature superconductors. Phys. Rev. Lett. 88, 137005 (2002).
Hinkov, V. et al. Electronic liquid crystal state in the high-temperature superconductor YBa2Cu3O6.45. Science 319, 597–600 (2008).
Lawler, M. et al. Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states. Nature 466, 347–351 (2010).
Achkar, A. et al. Nematicity in stripe-ordered cuprates probed via resonant X-ray scattering. Science 351, 576–578 (2016).
de La Cruz, C. et al. Magnetic order close to superconductivity in the iron-based layered LaO1−xFxFeAs systems. Nature 453, 899–902 (2008).
Chu, J.-H., Kuo, H.-H., Analytis, J. G. & Fisher, I. R. Divergent nematic susceptibility in an iron arsenide superconductor. Science 337, 710–712 (2012).
Fang, C., Yao, H., Tsai, W.-F., Hu, J. & Kivelson, S. A. Theory of electron nematic order in LaFeAsO. Phys. Rev. B 77, 224509 (2008).
Xu, C., Müller, M. & Sachdev, S. Ising and spin orders in the iron-based superconductors. Phys. Rev. B 78, 020501 (2008).
Domröse, T. et al. Light-induced hexatic state in a layered quantum material. Nat. Mater. 22, 1345–1351 (2023).
Cho, C.-W. et al. Z3-vestigial nematic order due to superconducting fluctuations in the doped topological insulators NbxBi2Se3 and CuxBi2Se3. Nat. Commun. 11, 3056 (2020).
Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Colloquium: theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 87, 457 (2015).
Fernandes, R., Chubukov, A. & Schmalian, J. What drives nematic order in iron-based superconductors? Nat. Phys. 10, 97–104 (2014).
Berg, E., Fradkin, E. & Kivelson, S. A. Charge-4e superconductivity from pair-density-wave order in certain high-temperature superconductors. Nat. Phys. 5, 830–833 (2009).
Agterberg, D. F. et al. The physics of pair-density waves: cuprate superconductors and beyond. Annu. Rev. Condens. Matter Phys. 11, 231–270 (2020).
Lee, P. A. Amperean pairing and the pseudogap phase of cuprate superconductors. Phys. Rev. 4, 031017 (2014).
Berg, E., Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Striped superconductors: how spin, charge and superconducting orders intertwine in the cuprates. New J. Phys. 11, 115004 (2009).
Jian, S.-K., Huang, Y. & Yao, H. Charge-4e superconductivity from nematic superconductors in two and three dimensions. Phys. Rev. Lett. 127, 227001 (2021).
Fernandes, R. M. & Fu, L. Charge-4e superconductivity from multicomponent nematic pairing: application to twisted bilayer graphene. Phys. Rev. Lett. 127, 047001 (2021).
Hecker, M., Willa, R., Schmalian, J. & Fernandes, R. M. Cascade of vestigial orders in two-component superconductors: nematic, ferromagnetic, s-wave charge-4e, and d-wave charge-4e states. Phys. Rev. B 107, 224503 (2023).
Wang, Y.-C., Yan, Z., Wang, C., Qi, Y. & Meng, Z. Y. Vestigial anyon condensation in kagome quantum spin liquids. Phys. Rev. B 103, 014408 (2021).
Wu, F.-Y. The Potts model. Rev. Mod. Phys. 54, 235 (1982).
Fernandes, R. M. & Venderbos, J. W. Nematicity with a twist: rotational symmetry breaking in a moiré superlattice. Sci. Adv. 6, eaba8834 (2020).
Christensen, M. H., Birol, T., Andersen, B. M. & Fernandes, R. M. Theory of the charge density wave in AV3Sb5 kagome metals. Phys. Rev. B 104, 214513 (2021).
Mulder, A., Ganesh, R., Capriotti, L. & Paramekanti, A. Spiral order by disorder and lattice nematic order in a frustrated Heisenberg antiferromagnet on the honeycomb lattice. Phys. Rev. B 81, 214419 (2010).
Little, A. et al. Three-state nematicity in the triangular lattice antiferromagnet Fe1/3NbS2. Nat. Mater. 19, 1062–1067 (2020).
Ni, Z., Huang, N., Haglund, A. V., Mandrus, D. G. & Wu, L. Observation of giant surface second-harmonic generation coupled to nematic orders in the van der Waals antiferromagnet FePS3. Nano Lett. 22, 3283–3288 (2022).
Chakraborty, A. R. & Fernandes, R. M. Strain-tuned quantum criticality in electronic Potts-nematic systems. Phys. Rev. B 107, 195136 (2023).
Kang, S. et al. Coherent many-body exciton in van der Waals antiferromagnet NiPS3. Nature 583, 785–789 (2020).
Hwangbo, K. et al. Highly anisotropic excitons and multiple phonon bound states in a van der Waals antiferromagnetic insulator. Nat. Nanotechnol. 16, 655–660 (2021).
Wang, X. et al. Spin-induced linear polarization of photoluminescence in antiferromagnetic van der Waals crystals. Nat. Mater. 20, 964–970 (2021).
Kim, K. et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat. Commun. 10, 345 (2019).
DiScala, M. F. et al. Elucidating the role of dimensionality on the electronic structure of the van der Waals antiferromagnet NiPS3. Adv. Phys. Res. 3, 2300096 (2024).
Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).
Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).
Lee, K. et al. Magnetic order and symmetry in the 2D semiconductor CrSBr. Nano Lett. 21, 3511–3517 (2021).
Lee, J.-U. et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16, 7433–7438 (2016).
Ni, Z. et al. Imaging the Néel vector switching in the monolayer antiferromagnet MnPSe3 with strain-controlled Ising order. Nat. Nanotechnol. 16, 782–787 (2021).
Wildes, A. R. et al. Magnetic structure of the quasi-two-dimensional antiferromagnet NiPS3. Phys. Rev. B 92, 224408 (2015).
Lançon, D., Ewings, R., Guidi, T., Formisano, F. & Wildes, A. Magnetic exchange parameters and anisotropy of the quasi-two-dimensional antiferromagnet NiPS3. Phys. Rev. B 98, 134414 (2018).
Wildes, A. et al. Magnetic dynamics of NiPS3. Phys. Rev. B 106, 174422 (2022).
Scheie, A. et al. Spin wave Hamiltonian and anomalous scattering in NiPS3. Phys. Rev. B 108, 104402 (2023).
Rondin, L. et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014).
Van der Sar, T., Casola, F., Walsworth, R. & Yacoby, A. Nanometre-scale probing of spin waves using single electron spins. Nat. Commun. 6, 7886 (2015).
Du, C. et al. Control and local measurement of the spin chemical potential in a magnetic insulator. Science 357, 195–198 (2017).
Ku, M. J. et al. Imaging viscous flow of the Dirac fluid in graphene. Nature 583, 537–541 (2020).
Kubo, R. The fluctuation–dissipation theorem. Rep. Prog. Phys. 29, 255 (1966).
Lemmens, P., Güntherodt, G. & Gros, C. Magnetic light scattering in low-dimensional quantum spin systems. Phys. Rep. 375, 1–103 (2003).
Jana, D. et al. Magnon gap excitations and spin-entangled optical transition in the van der Waals antiferromagnet NiPS3. Phys. Rev. B 108, 115149 (2023).
Hashemi, A., Komsa, H.-P., Puska, M. & Krasheninnikov, A. V. Vibrational properties of metal phosphorus trichalcogenides from first-principles calculations. J. Phys. Chem. C 121, 27207–27217 (2017).
Kuo, C.-T. et al. Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 van der Waals crystals. Sci. Rep. 6, 20904 (2016).
Yao, Y. et al. An electronic nematic liquid in BaNi2As2. Nat. Commun. 13, 4535 (2022).
Akram, M. et al. Theory of moiré magnetism in twisted bilayer α-RuCl3. Nano Lett. 24, 890–896 (2024).
Kim, S. Y. et al. Charge-spin correlation in van der Waals antiferromagnet NiPS3. Phys. Rev. Lett. 120, 136402 (2018).
Kim, D. S. et al. Anisotropic excitons reveal local spin chain directions in a van der Waals antiferromagnet. Adv. Mater. 35, 2206585 (2023).
Acknowledgements
We acknowledge valuable discussions with R. Fernandes and J. Venderbos. L.Z. acknowledges support from the National Science Foundation (NSF; Grant No. DMR-2103731), the Office of Naval Research (ONR; Grant No. N00014-21-1-2770) and the Gordon and Betty Moore Foundation (Award No. GBMF10694). R.H. acknowledges support from the NSF (Grant Nos. DMR-2104036 and DMR-2300640). C.R.D. acknowledges support from the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (Award No. DE-SC0024870). Z.Y.M. acknowledges support from the Research Grants Council (RGC) of the Hong Kong Special Administrative Region (SAR) of China (Project Nos. 17301721, AoE/P-701/20, 17309822, HKU C7037-22GF and 17302223), the ANR/RGC Joint Research Scheme sponsored by the RGC of the Hong Kong SAR of China and the French National Research Agency (Project No. A_HKU703/22). D.M. acknowledges support from the Gordon and Betty Moore Foundation's EPiQS Initiative (Grant GBMF9069). K.S. acknowledges support from the ONR (Grant No. N00014-21-1-2770) and the Gordon and Betty Moore Foundation (Award No. GBMF10694). Q.L. and H.D. acknowledge support from the ONR (Grant No. N00014-21-1-2770) and the Gordon and Betty Moore Foundation (Award No. GBMF10694). L.L acknowledges support from the DOE (Grant No. DE-SC0020184). X.X. and L.Y. acknowledge support from the NSF (Grant No. DMR-2118779). The ab initio simulation used Anvil at Purdue University through allocation DMR100005 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) programme, which is supported by the NSF (Grant Nos. 2138259, 2138286, 2138307, 2137603 and 2138296).
Author information
Authors and Affiliations
Contributions
Z.S., R.H. and L.Z. conceived the idea and initiated this project. Z.S. exfoliated the NiPS3 thin flakes with different layer numbers. G.Y., Z.Y., C.N. and Z.S. carried out the Raman experiments under the supervision of L.Z. and R.H. M.H. performed the NV spin relaxometry under the supervision of C.D. C.Z. carried out the Monte Carlo simulations under the supervision of K.S. and Z.Y.M. Q.L. and Z.S. carried out the atomic force microscopy measurements and the PL measurements guided by H.D. and L.Z. N.H. grew the high-quality NiPS3 bulk single crystals under the supervision of D.M. G.Z. performed the susceptibility measurements under the supervision of L.L. X.X. performed the phonon calculations under the supervision of L.Y. Z.S., R.H. and L.Z. analysed the data and wrote the manuscript. All authors participated in discussions about the results.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Sections 1–17 and Figs. 1–18.
Source data
Source Data Fig. 2
Source data for Fig. 2.
Source Data Fig. 3
Source data for Fig. 3.
Source Data Fig. 4
Source data for Fig. 4.
Source Data Fig. 5
Source data for Fig. 5a,b.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sun, Z., Ye, G., Zhou, C. et al. Dimensionality crossover to a two-dimensional vestigial nematic state from a three-dimensional antiferromagnet in a honeycomb van der Waals magnet. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02618-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41567-024-02618-6