Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of chiral edge transport in a rapidly rotating quantum gas

Abstract

The frictionless directional propagation of particles at the boundary of topological materials is a striking transport phenomenon. These chiral edge modes lie at the heart of the integer and fractional quantum Hall effects, and their robustness against noise and disorder reflects the quantization of Hall conductivity in these systems. Despite their importance, the controllable injection of edge modes, and direct imaging of their propagation, structure and dynamics, remains challenging. Here we demonstrate the distillation of chiral edge modes in a rapidly rotating bosonic superfluid confined by an optical boundary. By tuning the wall sharpness, we reveal the smooth crossover between soft wall behaviour in which the propagation speed is proportional to wall steepness and the hard wall regime that exhibits chiral free particles. From the skipping motion of atoms along the boundary we infer the energy gap between the ground and first excited edge bands, and reveal its evolution from the bulk Landau level splitting for a soft boundary to the hard wall limit. Finally, we demonstrate the robustness of edge propagation against disorder by projecting an optical obstacle that is static in the rotating frame.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Controllable injection of chiral edge modes.
Fig. 2: Density profiles of the bulk and edge modes.
Fig. 3: Variation in edge mode speed with wall steepness.
Fig. 4: Frequency of skipping orbits at the boundary.
Fig. 5: Robustness of edge modes against disorder.

Similar content being viewed by others

Data availability

All data files are available from the corresponding author upon request. Accompanying data, including data for Figs. 1–5 and Extended Data Figs. 1 and 2 are available via Zenodo at https://doi.org/10.5281/zenodo.12724216 (ref. 55).

Code availability

The simulation and analysis code is available from the corresponding author upon reasonable request.

References

  1. Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494 (1980).

    Article  ADS  Google Scholar 

  2. Laughlin, R. B. Quantized Hall conductivity in two dimensions. Phys. Rev. B 23, 5632 (1981).

    Article  ADS  Google Scholar 

  3. Halperin, B. I. Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185 (1982).

    Article  ADS  Google Scholar 

  4. Jackiw, R. & Rebbi, C. Solitons with fermion number 1/2. Phys. Rev. D 13, 3398 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  5. Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405 (1982).

    Article  ADS  Google Scholar 

  6. Hatsugai, Y. Chern number and edge states in the integer quantum Hall effect. Phys. Rev. Lett. 71, 3697 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  7. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  8. Stormer, H. L., Tsui, D. C. & Gossard, A. C. The fractional quantum Hall effect. Rev. Mod. Phys. 71, S298 (1999).

    Article  MathSciNet  Google Scholar 

  9. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213 (2015).

    Article  ADS  Google Scholar 

  10. Lu, L., Joannopoulos, J. D. & Soljacic, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    Article  ADS  Google Scholar 

  11. Read, N. & Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267 (2000).

    Article  ADS  Google Scholar 

  12. Sato, M. & Ando, Y. Topological superconductors: a review. Rep. Prog. Phys. 80, 076501 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  13. Büttiker, M. Absence of backscattering in the quantum Hall effect in multiprobe conductors. Phys. Rev. B 38, 9375 (1988).

    Article  ADS  Google Scholar 

  14. Chklovskii, D. B., Shklovskii, B. I. & Glazman, L. I. Electrostatics of edge channels. Phys. Rev. B 46, 4026 (1992).

    Article  ADS  Google Scholar 

  15. Chamon, Cd. C. & Wen, X. G. Sharp and smooth boundaries of quantum Hall liquids. Phys. Rev. B 49, 8227 (1994).

    Article  ADS  Google Scholar 

  16. Kane, C. L. & Fisher, M. P. A. Impurity scattering and transport of fractional quantum Hall edge states. Phys. Rev. B 51, 13449 (1995).

    Article  ADS  Google Scholar 

  17. Kane, C. L. & Fisher, M. P. A. Quantized thermal transport in the fractional quantum Hall effect. Phys. Rev. B 55, 15832 (1997).

    Article  ADS  Google Scholar 

  18. Grayson, M., Tsui, D. C., Pfeiffer, L. N., West, K. W. & Chang, A. M. Continuum of chiral Luttinger liquids at the fractional quantum Hall edge. Phys. Rev. Lett. 80, 1062 (1998).

    Article  ADS  Google Scholar 

  19. Wan, X., Yang, K. & Rezayi, E. H. Reconstruction of fractional quantum Hall edges. Phys. Rev. Lett. 88, 056802 (2002).

    Article  ADS  Google Scholar 

  20. Yacoby, A., Hess, H., Fulton, T., Pfeiffer, L. & West, K. Electrical imaging of the quantum Hall state. Solid State Commun. 111, 1–13 (1999).

    Article  ADS  Google Scholar 

  21. Aoki, N., da Cunha, C. R., Akis, R., Ferry, D. K. & Ochiai, Y. Imaging of integer quantum Hall edge state in a quantum point contact via scanning gate microscopy. Phys. Rev. B 72, 155327 (2005).

    Article  ADS  Google Scholar 

  22. Lai, K. et al. Imaging of Coulomb-driven quantum Hall edge states. Phys. Rev. Lett. 107, 176809 (2011).

    Article  ADS  Google Scholar 

  23. Suddards, M. E., Baumgartner, A., Henini, M. & Mellor, C. J. Scanning capacitance imaging of compressible and incompressible quantum Hall effect edge strips. New J. Phys. 14, 083015 (2012).

    Article  ADS  Google Scholar 

  24. Uri, A. et al. Nanoscale imaging of equilibrium quantum Hall edge currents and of the magnetic monopole response in graphene. Nat. Phys. 16, 164–170 (2019).

    Article  Google Scholar 

  25. Ashoori, R. C., Stormer, H. L., Pfeiffer, L. N., Baldwin, K. W. & West, K. Edge magnetoplasmons in the time domain. Phys. Rev. B 45, 3894 (1992).

    Article  ADS  Google Scholar 

  26. Bid, A. et al. Observation of neutral modes in the fractional quantum Hall regime. Nature 466, 585–590 (2010).

    Article  ADS  Google Scholar 

  27. Johnsen, T. et al. Mapping quantum Hall edge states in graphene by scanning tunneling microscopy. Phys. Rev. B 107, 115426 (2023).

    Article  ADS  Google Scholar 

  28. Dalibard, J., Gerbier, F., Juzeliūnas, G. & Öhberg, P. Colloquium: artificial gauge potentials for neutral atoms. Rev. Mod. Phys. 83, 1523 (2011).

    Article  ADS  Google Scholar 

  29. Goldman, N., Juzeliūnas, G., Öhberg, P. & Spielman, I. B. Light-induced gauge fields for ultracold atoms. Rep. Prog. Phys. 77, 126401 (2014).

    Article  ADS  Google Scholar 

  30. Galitski, V. & Spielman, I. B. Spin–orbit coupling in quantum gases. Nature 494, 49–54 (2013).

    Article  ADS  Google Scholar 

  31. Chalopin, T. et al. Probing chiral edge dynamics and bulk topology of a synthetic Hall system. Nat. Phys. 16, 1017–1021 (2020).

    Article  Google Scholar 

  32. Struck, J. et al. Tunable gauge potential for neutral and spinless particles in driven optical lattices. Phys. Rev. Lett. 108, 225304 (2012).

    Article  ADS  Google Scholar 

  33. Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    Article  ADS  Google Scholar 

  34. Aidelsburger, M. et al. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nat. Phys. 11, 162–166 (2015).

  35. Stuhl, B. K., Lu, H.-I., Aycock, L. M., Genkina, D. & Spielman, I. B. Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science 349, 1514–1518 (2015).

  36. Mancini, M. et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349, 1510–1513 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  37. Tai, M. E. et al. Microscopy of the interacting Harper–Hofstadter model in the two-body limit. Nature 546, 519–523 (2017).

  38. Schweikhard, V., Coddington, I., Engels, P., Mogendorff, V. P. & Cornell, E. A. Rapidly rotating Bose–Einstein condensates in and near the lowest Landau level. Phys. Rev. Lett. 92, 040404 (2004).

    Article  ADS  Google Scholar 

  39. Bretin, V., Stock, S., Seurin, Y. & Dalibard, J. Fast rotation of a Bose–Einstein condensate. Phys. Rev. Lett. 92, 050403 (2004).

    Article  ADS  Google Scholar 

  40. Cooper, N. R. Rapidly rotating atomic gases. Adv. Phys. 57, 539–616 (2008).

  41. Fletcher, R. J. et al. Geometric squeezing into the lowest Landau level. Science 372, 1318–1322 (2021).

  42. Mukherjee, B. et al. Crystallization of bosonic quantum Hall states in a rotating quantum gas. Nature 601, 58–62 (2022).

  43. Ho, T. L. Bose–Einstein condensates with large number of vortices. Phys. Rev. Lett. 87, 060403 (2001).

    Article  ADS  Google Scholar 

  44. Bouhiron, J.-B. et al. Realization of an atomic quantum Hall system in four dimensions. Science 384, 223–227 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  45. Wen, X.-G. Topological orders and edge excitations in fractional quantum Hall states. Adv. Phys. 44, 405–473 (1995).

    Article  ADS  Google Scholar 

  46. Petrich, W., Anderson, M. H., Ensher, J. R. & Cornell, E. A. Stable, tightly confining magnetic trap for evaporative cooling of neutral atoms. Phys. Rev. Lett. 74, 3352 (1995).

    Article  ADS  Google Scholar 

  47. Bièvre, S. D. & Pulé, J. V. Propagating edge states for a magnetic Hamiltonian. Math. Phys. Electron. J. 5, 39–55 (2002).

  48. Bukov, M., D’Alessio, L. & Polkovnikov, A. Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering. Adv. Phys. 64, 139 (2015).

    Article  ADS  Google Scholar 

  49. Lieb, E. H. & Liniger, W. Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. 130, 1605–1616 (1963).

  50. Sinha, S. & Shlyapnikov, G. V. Two-dimensional Bose–Einstein condensate under extreme rotation. Phys. Rev. Lett. 94, 150401 (2005).

    Article  ADS  Google Scholar 

  51. Ji, Y. et al. An electronic Mach–Zehnder interferometer. Nature 422, 415–418 (2003).

    Article  ADS  Google Scholar 

  52. Zhang, Y. et al. Distinct signatures for Coulomb blockade and Aharonov-Bohm interference in electronic Fabry-Pérot interferometers. Phys. Rev. B 79, 241304 (2009).

    Article  ADS  Google Scholar 

  53. Braun, C. et al. Real-space detection and manipulation of topological edge modes with ultracold atoms. Nat. Phys. 20, 1306–1312 (2024).

  54. Fernández, F. M. Simple one-dimensional quantum-mechanical model for a particle attached to a surface. Eur. J. Phys. 31, 961 (2010).

    Article  Google Scholar 

  55. Yao, R. et al. Observation of chiral edge transport in a rapidly-rotating quantum gas. Figshare https://doi.org/10.5281/zenodo.12724216 (2024).

Download references

Acknowledgements

We thank V. Crépel, P. Patel, C. Wilson and Z. Yan for early contributions to the experiment. This work was supported by the NSF through the Center for Ultracold Atoms and grant number PHY-2012110, the ARO through grant number W911NF-23-1-0382 and by DURIP grant number W911NF-23-1-0326. M.Z. acknowledges funding from the Vannevar Bush Faculty Fellowship (ONR number N00014-19-1-2631). R.J.F. acknowledges funding from the AFOSR Young Investigator Program (grant number FA9550-22-1-0066).

Author information

Authors and Affiliations

Authors

Contributions

R.Y., S.C., B.M., A.S. and R.J.F. performed the measurements. R.Y. and S.C. analysed the data. B.M. and R.Y. contributed the Gross–Pitaevskii numerical simulations. R.Y., S.C., R.J.F. and M.Z. developed the theoretical description. R.J.F. and M.Z. supervised the project. All authors contributed to interpretation of the results and preparation of the manuscript.

Corresponding author

Correspondence to Richard J. Fletcher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Luca Asteria for his contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Analysis of the boundary potential.

(a,d) Images of the projected optical boundary. The white boxes indicate the approximate azimuthal range explored by the atoms as they pass through the saddle minimum, and hence the edge mode speed is maximum. (b,e) The measured radial intensity I(r), averaged over the indicated range of azimuthal angles. The green line shows a fitted error function. (c,f) The black curve is the inferred intensity profile at the atoms, obtained by de-convolution of the green curve in (b,e). The orange line is a piecewise linear fit to the black curve, whose slope provides the effective steepness of the boundary potential.

Extended Data Fig. 2 Evolution of the condensate density obtained from a Gross-Pitaevskii simulation.

We perform a numerical simulation of the condensate evolution based on time-evolution of the Gross-Pitaevskii equation under an identical protocol to the experiment. Panels show the condensate density (a) before rotation; (b) when Ω = 0.85ω; (c) once Ω = ω, approximately corresponding to the time at which the condensate encounters the edge potential; (d) after 5ms of edge mode propagation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, R., Chi, S., Mukherjee, B. et al. Observation of chiral edge transport in a rapidly rotating quantum gas. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02617-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-024-02617-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing