Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Opportunities in nanoscale probing of laser-driven phase transitions

Abstract

For several decades, optical near-field microscopy has facilitated pioneering investigations of photonic excitations at the nanoscale. In recent years, near-field microscopy of terahertz fields has emerged as an important tool for experiments involving phononic and electronic phenomena, rich spatiotemporal dynamics and highly nonlinear processes. Building on this foundation, this Perspective elucidates the transformative opportunities provided by terahertz near-field microscopy to probe ultrafast phase transitions, helping to tackle previously inaccessible challenges of condensed matter physics. Laser-driven phase transitions in many systems are accompanied by the generation of terahertz pulses with spatiotemporal features governed by the complex physics underlying the phase transition. The characterization of these emitted pulses using terahertz near-field microscopy techniques could therefore support the investigation of ultrafast phase transition dynamics. This approach could, for example, allow the observation of ultrafast topological transitions in quantum materials, showcasing its ability to clarify the dynamic processes underlying phase changes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Emission of an electromagnetic pulse following an abrupt light-induced phase transition.
Fig. 2: Comparing near-field and far-field terahertz emission experiments.
Fig. 3: Tip-based experiments for time-resolved nanoscale imaging of terahertz fields.
Fig. 4: Free-electron-based experiments for time-resolved nanoscale imaging of terahertz emission.

Similar content being viewed by others

References

  1. Lloyd-Hughes, J. et al. The 2021 ultrafast spectroscopic probes of condensed matter roadmap. J. Condens. Matter Phys. 33, 353001 (2021).

    Article  Google Scholar 

  2. Bao, C., Tang, P., Sun, D. & Zhou, S. Light-induced emergent phenomena in 2D materials and topological materials. Nat. Rev. Phys. 4, 33–48 (2022).

    Article  Google Scholar 

  3. Hangyo, M. et al. Terahertz radiation from superconducting YBa2Cu3O7-δ thin films excited by femtosecond optical pulses. Appl. Phys. Lett. 69, 2122–2124 (1996).

    Article  ADS  Google Scholar 

  4. Beaurepaire, E. et al. Coherent terahertz emission from ferromagnetic films excited by femtosecond laser pulses. Appl. Phys. Lett. 84, 3465–3467 (2004).

    Article  ADS  Google Scholar 

  5. Rana, D. S. et al. Understanding the nature of ultrafast polarization dynamics of ferroelectric memory in the muitiferroic BiFeO. Adv. Mater. 21, 2881–2885 (2009).

    Article  Google Scholar 

  6. Charipar, N. A., Kim, H., Mathews, S. A. & Piqué, A. Broadband terahertz generation using the semiconductor-metal transition in VO2. AIP Adv. 6, 015113 (2016).

    Article  ADS  Google Scholar 

  7. Ulbricht, R., Hendry, E., Shan, J., Heinz, T. F. & Bonn, M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 83, 543–586 (2011).

    Article  ADS  Google Scholar 

  8. Cocker, T. L. et al. Nanoscale terahertz scanning probe microscopy. Nat. Photon. 15, 558–569 (2021).

    Article  ADS  Google Scholar 

  9. Rice, A. et al. Terahertz optical rectification from〈110〉zinc-blende crystals. Appl. Phys. Lett. 64, 1324–1326 (1994).

    Article  ADS  Google Scholar 

  10. Coté, D., Laman, N. & van Driel, H. M. Rectification and shift currents in GaAs. Appl. Phys. Lett. 80, 905–907 (2002).

    Article  ADS  Google Scholar 

  11. Laman, N., Bieler, M. & van Driel, H. M. Ultrafast shift and injection currents observed in wurtzite semiconductors via emitted terahertz radiation. J. Appl. Phys. 98, 103507 (2005).

    Article  ADS  Google Scholar 

  12. Sirica, N. et al. Tracking ultrafast photocurrents in the Weyl semimetal TaAs using THz emission spectroscopy. Phys. Rev. Lett. 122, 197401 (2019).

    Article  ADS  Google Scholar 

  13. Savel’Ev, S., Yampol’Skii, V. A., Rakhmanov, A. L. & Nori, F. Terahertz Josephson plasma waves in layered superconductors: spectrum, generation, nonlinear and quantum phenomena. Rep. Prog. Phys. 73, 026501 (2010).

    Article  ADS  Google Scholar 

  14. Welp, U., Kadowaki, K. & Kleiner, R. Superconducting emitters of THz radiation. Nat. Photon. 7, 702–710 (2013).

    Article  ADS  Google Scholar 

  15. Embon, L. et al. Imaging of super-fast dynamics and flow instabilities of superconducting vortices. Nat. Commun. 8, 85 (2017).

    Article  ADS  Google Scholar 

  16. Nicoletti, D. et al. Coherent emission from surface Josephson plasmons in striped cuprates. Proc. Natl Acad. Sci. USA 119, e2211670119 (2022).

    Article  Google Scholar 

  17. Adam, A. J. L. Review of near-field terahertz measurement methods and their applications: how to achieve sub-wavelength resolution at THz frequencies. J. Infrared Millim. THz Waves 32, 976–1019 (2011).

    Article  Google Scholar 

  18. Eisele, M. et al. Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution. Nat. Photon. 8, 841–845 (2014).

    Article  ADS  Google Scholar 

  19. Wagner, M. et al. Ultrafast and nanoscale plasmonic phenomena in exfoliated graphene revealed by infrared pump–probe nanoscopy. Nano Lett. 14, 894–900 (2014).

    Article  ADS  Google Scholar 

  20. Klarskov, P., Kim, H., Colvin, V. L. & Mittleman, D. M. Nanoscale laser terahertz emission microscopy. ACS Photon. 4, 2676–2680 (2017).

    Article  Google Scholar 

  21. Cocker, T. L. et al. An ultrafast terahertz scanning tunnelling microscope. Nat. Photon. 7, 620–625 (2013).

    Article  ADS  Google Scholar 

  22. Siday, T. et al. All-optical subcycle microscopy on atomic length scales. Nature 629, 329–334 (2024).

    Article  ADS  Google Scholar 

  23. Rivera, N., Kaminer, I., Zhen, B., Joannopoulos, J. D. & Soljačić, M. Shrinking light to allow forbidden transitions on the atomic scale. Science 353, 263–269 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  24. Basov, D. N., Fogler, M. M. & García De Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Article  Google Scholar 

  25. Zhang, Q. et al. Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021).

    Article  ADS  Google Scholar 

  26. Zewail, A. H. Four-dimensional electron microscopy. Science 328, 187–193 (2010).

    Article  ADS  Google Scholar 

  27. Ryabov, A. & Baum, P. Electron microscopy of electromagnetic waveforms. Science 353, 374–377 (2016).

    Article  ADS  Google Scholar 

  28. Madan, I. et al. Charge dynamics electron microscopy: nanoscale imaging of femtosecond plasma dynamics. ACS Nano 17, 3657–3665 (2023).

    Article  Google Scholar 

  29. Yannai, M. et al. Ultrafast electron microscopy of nanoscale charge dynamics in semiconductors. ACS Nano 17, 3645–3656 (2023).

    Article  Google Scholar 

  30. Vogelsang, J. et al. Plasmonic-nanofocusing-based electron holography. ACS Photon. 5, 3584–3593 (2018).

    Article  Google Scholar 

  31. Houdellier, F. et al. Optimization of off-axis electron holography performed with femtosecond electron pulses. Ultramicroscopy 202, 26–32 (2019).

    Article  Google Scholar 

  32. Berruto, G. et al. Laser-induced skyrmion writing and erasing in an ultrafast cryo-Lorentz transmission electron microscope. Phys. Rev. Lett. 120, 117201 (2018).

    Article  ADS  Google Scholar 

  33. Gaida, J. et al. Lorentz microscopy of optical fields. Nat. Commun. 14, 6545 (2023).

    Article  ADS  Google Scholar 

  34. Morimoto, Y. & Baum, P. Diffraction and microscopy with attosecond electron pulse trains. Nat. Phys. 14, 252–256 (2018).

    Article  Google Scholar 

  35. Danz, T., Domröse, T. & Ropers, C. Ultrafast nanoimaging of the order parameter in a structural phase transition. Science 371, 371–374 (2021).

    Article  ADS  Google Scholar 

  36. Rivera, N. & Kaminer, I. Light–matter interactions with photonic quasiparticles. Nat. Rev. Phys. 2, 538–561 (2020).

    Article  Google Scholar 

  37. Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

    Article  ADS  Google Scholar 

  38. Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

    Article  ADS  Google Scholar 

  39. Li, X. et al. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3. Science 364, 1079–1082 (2019).

    Article  ADS  Google Scholar 

  40. Nova, T. F., Disa, A. S., Fechner, M. & Cavalleri, A. Metastable ferroelectricity in optically strained SrTiO3. Science 364, 1075–1079 (2019).

    Article  ADS  Google Scholar 

  41. Schubert, O. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nat. Photon. 8, 119–123 (2014).

    Article  ADS  Google Scholar 

  42. Hohenleutner, M. et al. Real-time observation of interfering crystal electrons in high-harmonic generation. Nature 523, 572–575 (2015).

    Article  ADS  Google Scholar 

  43. Orenstein, J. et al. Topology and symmetry of quantum materials via nonlinear optical responses. Annu. Rev. Condens. Matter Phys. 12, 247–272 (2021).

    Article  ADS  Google Scholar 

  44. Luo, C. W. et al. THz generation and detection on Dirac fermions in topological insulators. Adv. Opt. Mater. 1, 804–808 (2013).

    Article  Google Scholar 

  45. Braun, L. et al. Ultrafast photocurrents at the surface of the three-dimensional topological insulator Bi2Se3. Nat. Commun. 7, 13259 (2016).

    Article  ADS  Google Scholar 

  46. Seifert, P., Vaklinova, K., Kern, K., Burghard, M. & Holleitner, A. Surface state-dominated photoconduction and THz generation in topological Bi2Te2Se nanowires. Nano Lett. 17, 973–979 (2017).

    Article  ADS  Google Scholar 

  47. Wang, X. et al. Ultrafast spin-to-charge conversion at the surface of topological insulator thin films. Adv. Mater. 30, 1802356 (2018).

    Article  Google Scholar 

  48. Ma, E. Y. et al. Recording interfacial currents on the subnanometer length and femtosecond time scale by terahertz emission. Sci. Adv. 5, eaau0073 (2019).

    Article  ADS  Google Scholar 

  49. Qi, X. L. & Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.Y. is partially supported by the VATAT Quantum Science and Technology scholarship. D.N.B. is supported by DOE-BES grant number DE-SC0018426.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 851780-ERC-NanoEp, and No 101101048-ERC-POC.

N.R. acknowledges the support of a Junior Fellowship from the Harvard Society of Fellows.

This research is supported by the ADAMS fellowships program of the Israel Academy of Sciences and Humanities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ido Kaminer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yannai, M., Haller, M., Ruimy, R. et al. Opportunities in nanoscale probing of laser-driven phase transitions. Nat. Phys. 20, 1383–1388 (2024). https://doi.org/10.1038/s41567-024-02603-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-024-02603-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing