Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Topological edge and corner states in bismuth fractal nanostructures

Abstract

Topological materials hosting metallic edges characterized by integer-quantized conductivity in an insulating bulk have revolutionized our understanding of transport in matter. The topological protection of these edge states is based on symmetries and dimensionality. While integer-dimensional effects on topological properties have been studied extensively, the interplay of topology and fractals, which may have a non-integer dimension, remains largely unexplored. Here we demonstrate that topological edge and corner modes arise in fractals formed upon depositing thin layers of bismuth on an indium antimonide substrate. Our scanning tunnelling microscopy results and theoretical calculations reveal the appearance and stability of nearly zero-energy modes at the corners of Sierpiński triangles, as well as the formation of outer and inner edge modes at higher energies. This work opens the perspective to extend electronic device applications in real materials at non-integer dimensions with robust and protected topological states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fractal Bi monolayers on InSb substrate.
Fig. 2: Local density of states for the third-generation Sierpinski triangle.
Fig. 3: LDOS for several values of the bias voltage.
Fig. 4: Comparison between theoretical and experimental LDOS calculated for a Sierpiński gasket with a straight potential barrier, which is asymmetrically positioned inside a square box.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The numerical codes used for solving the theoretical models (muffin-tin and tight-binding) are available upon request from the corresponding authors.

References

  1. Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494 (1980).

    Article  ADS  Google Scholar 

  2. Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    Article  ADS  Google Scholar 

  3. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757 (2006).

    Article  ADS  Google Scholar 

  4. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766 (2007).

    Article  ADS  Google Scholar 

  5. Novoselov, K. S. et al. Room-temperature quantum Hall effect in graphene. Science 315, 1379 (2007).

    Article  ADS  Google Scholar 

  6. Reis, F. et al. Bismuthene on a SiC substrate: a candidate for a high-temperature quantum spin Hall material. Science 357, 287 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  7. Murakami, S. Quantum spin Hall effect and enhanced magnetic response by spin–orbit coupling. Phys. Rev. Lett. 97, 236805 (2006).

    Article  ADS  Google Scholar 

  8. Liu, Z. et al. Stable nontrivial Z2 topology in ultrathin Bi (111) films: a first-principles study. Phys. Rev. Lett. 107, 136805 (2011).

    Article  ADS  Google Scholar 

  9. Wada, M., Murakami, S., Freimuth, F. & Bihlmayer, G. Localized edge states in two-dimensional topological insulators: ultrathin Bi films. Phys. Rev. B 83, 121310 (2011).

    Article  ADS  Google Scholar 

  10. Roy, R. & Harper, F. Periodic table for Floquet topological insulators. Phys. Rev. B 96, 155118 (2017).

    Article  ADS  Google Scholar 

  11. Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and topology in non-Hermitian physics. Phys. Rev. X 9, 041015 (2019).

    Google Scholar 

  12. Po, H. C., Vishwanath, A. & Watanabe, H. Symmetry-based indicators of band topology in the 230 space groups. Nat. Commun. 8, 1 (2017).

    Google Scholar 

  13. Kruthoff, J., de Boer, J., van Wezel, J., Kane, C. L. & Slager, R. J. Topological classification of crystalline insulators through band structure combinatorics. Phys. Rev. X 7, 041069 (2017).

    Google Scholar 

  14. Gu, Z.-C. & Wen, X.-G. Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order. Phys. Rev. B 80, 155131 (2009).

    Article  ADS  Google Scholar 

  15. Kempkes, S. N. et al. Design and characterization of electrons in a fractal geometry. Nat. Phys. 15, 127 (2019).

    Article  Google Scholar 

  16. Xu, X. Y. et al. Quantum transport in fractal networks. Nat. Photonics 15, 703 (2021).

    Article  ADS  Google Scholar 

  17. Fremling, M., van Hooft, M., Smith, C. M. & Fritz, L. Existence of robust edge currents in Sierpiński fractals. Phys. Rev. Res. 2, 013044 (2020).

    Article  Google Scholar 

  18. Agarwala, A., Pai, S. & Shenoy, V. B. Fractalized metals. Preprint at https://arxiv.org/abs/1803.01404 (2018).

  19. Iliasov, A. A., Katsnelson, M. I. & Yuan, S. Hall conductivity of a Sierpiński carpet. Phys. Rev. B 101, 045413 (2020).

    Article  ADS  Google Scholar 

  20. Ivaki, M. N., Sahlberg, I., Pöyhönen, K. & Ojanen, T. Topological random fractals. Commun. Phys. 5, 1 (2022).

    Article  Google Scholar 

  21. Brzezińska, M., Cook, A. M. & Neupert, T. Topology in the Sierpiński-Hofstadter problem. Phys. Rev. B 98, 205116 (2018).

    Article  ADS  Google Scholar 

  22. Manna, S., Nandy, S. & Roy, B. Higher-order topological phases on fractal lattices. Phys. Rev. B 105, L201301 (2022).

    Article  ADS  Google Scholar 

  23. Zheng, S. et al. Observation of fractal topological states in acoustic metamaterials. Sci. Bull. 67, 2069 (2022).

    Article  Google Scholar 

  24. Li, J., Mo, Q., Jiang, J.-H. & Yang, Z. Higher-order topological phase in an acoustic fractal lattice. Sci. Bull. 67, 2040 (2022).

    Article  Google Scholar 

  25. Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Science 357, 61 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  26. Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators. Phys. Rev. B 96, 245115 (2017).

    Article  ADS  Google Scholar 

  27. Shang, J. et al. Assembling molecular Sierpiński triangle fractals. Nat. Chem. 7, 389 (2015).

    Article  Google Scholar 

  28. Liu, C. et al. Sierpiński structure and electronic topology in Bi thin films on InSb(111)B surfaces. Phys. Rev. Lett. 126, 176102 (2021).

  29. Latge, L. L. & Latge, A. Electronic fractal patterns in building Sierpiński -triangles molecular systems. Phys. Chem. Chem. Phys. 24, 19576 (2022).

    Article  Google Scholar 

  30. Yoshiyuki O. et al. Growth of 2D topological material Bi on InSb(111)B with fractal surface structures. Preprint at https://arxiv.org/pdf/2212.14493.pdf (2023).

  31. Shumiya, N. et al. Evidence of a room-temperature quantum spin Hall edge state in a higher-order topological insulator. Nat. Mat. 21, 1111 (2022).

    Article  Google Scholar 

  32. Kempkes, S. N. et al. Robust zero-energy modes in an electronic higher-order topological insulator. Nat. Mat. 18, 1292 (2019).

    Article  Google Scholar 

  33. Herrera, M. A. J. et al. Corner modes of the breathing Kagomé lattice: Origin and robustness. Phys. Rev. B 105, 085411 (2022).

    Article  ADS  Google Scholar 

  34. Kempkes, S. N. et al. Compact localized boundary states in a quasi-1D electronic diamond-necklace chain. Quantum Front. 2, 1 (2023).

    Article  ADS  Google Scholar 

  35. Conte, M. et al. The fractal lattice Hubbard model. Preprint at https://doi.org/10.48550/arXiv.2310.07813 (2023).

  36. Xie, Y. et al. Fractal-like photonic lattices and localized states arising from singular and nonsingular flatbands. APL Photonics 6, 116104 (2021).

    Article  ADS  Google Scholar 

  37. Biswas, S. & Charabarti, A. Designer quantum states on a fractal substrate: compact localization, flat bands and the edge modes. Phys. E 153, 115762 (2023).

    Article  Google Scholar 

  38. Schindler, F. et al. Fractional corner charges in spin-orbit coupled crystals. Phys. Rev. Res. 1, 033074 (2019).

    Article  Google Scholar 

  39. Khalaf, E., Benalcazar, W. A., Hughes, T. L. & Queiroz, R. Boundary-obstructed topological phases. Phys. Rev. Res. 3, 13239 (2021).

    Article  Google Scholar 

  40. Beugeling, W., Goldman, N. & Smith, C. M. Topological phases in a two-dimensional lattice: Magnetic field versus spin-orbit coupling. Phys. Rev. B 86, 075118 (2012).

    Article  ADS  Google Scholar 

  41. Li, H. & Haldane, F. D. M. Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-Abelian fractional quantum Hall effect states. Phys. Rev. Lett. 101, 010504 (2008).

    Article  ADS  Google Scholar 

  42. Zhu, P., Loehr, K. & Hughes, T. L. Identifying Cn-symmetric higher-order topology and fractional corner charge using entanglement spectra. Phys. Rev. B 101, 115140 (2020).

    Article  ADS  Google Scholar 

  43. Arouca, R., Cappeli, A. & Hansson, T. H. Quantum field theory anomalies in condensed matter physics. SciPost Lect. Notes 62, 148 (2022).

    Google Scholar 

  44. Cerjan, A. & Loring, T. A. Local invariants identify topology in metals and gapless systems. Phys. Rev. B 106, 064109 (2022).

    Article  ADS  Google Scholar 

  45. LeVeque, R. J. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems (Society for Industrial and Applied Mathematics, 2007).

  46. Wang, Z., Jin, K. H. & Liu, F. Quantum spin Hall phase in 2D trigonal lattice. Nat. Commun. 7, 12746 (2016).

    Article  ADS  Google Scholar 

  47. Li, Q. et al. Localized Wannier function based tight-binding models for two-dimensional allotropes of bismuth. New J. Phys. 23, 063042 (2021).

    Article  ADS  Google Scholar 

  48. Chou, C., Wu, B. X. & Lin, H. H. Structural properties of Bi thin film grown on Si (111) by quasi-van der Waals epitaxy. Sci. Rep. 12, 2764 (2022).

    Article  ADS  Google Scholar 

  49. Saito, K. et al. Tight-binding theory of surface spin states on bismuth thin films. Phys. Rev. B 93, 041301(R) (2016).

    Article  ADS  Google Scholar 

  50. Beugeling, W. et al. Topological states in multi-orbital HgTe honeycomb lattices. Nat. Commun. 6, 6316 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Moustaj for useful insights about the underlying symmetry of the fractal and for helping to set up the model to perform the multi-orbital tight-binding calculations. We are also grateful to M. Röntgen for insightful discussions about latent symmetry and to T. Cysne for useful discussions about spin–orbit coupling in honeycomb lattices. R.C., L.E. and C.M.S. acknowledge the research programme “Materials for the Quantum Age” (QuMat) for financial support. This programme (registration number 024.005.006) is part of the Gravitation programme financed by the Dutch Ministry of Education, Culture and Science (OCW). R.A. thanks the Knut and Alice Wallenberg Foundation for financial support. Authors from SJTU thank the Ministry of Science and Technology of China (Grants No. 2019YFA0308600, 2020YFA0309000), NSFC (Grant Nos. 11790313, 92065201, 11874256, 11874258, 12074247, 12104292, 12174252 and 11861161003), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000), the Science and Technology Commission of Shanghai Municipality (Grants Nos. 2019SHZDZX01, 19JC1412701 and 20QA1405100), Innovation programme for Quantum Science and Technology (Grant No. 2021ZD0302500) and the China Postdoctoral Science Foundation (Grant BX2021184) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

C.M.S. and J.J. led the project. R.C. performed the theoretical calculations under the supervision of C.M.S. and R.A. R.C. and L.E. did the tight-binding calculations. Chen Liu, G.W. and Y.Y. carried out the experiments under the supervision of J.J., while D.G., Y.L., S.W., H.Z. and Canhua Liu did the data analysis. C.M.S. wrote the main paper; R.C., R.A. and C.L. wrote the Supplementary Information, with input from all authors. The manuscript reflects the contributions and ideas of all authors.

Corresponding authors

Correspondence to Jinfeng Jia or C. Morais Smith.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Arunava Chakrabarti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Effects of Disorder.

a-e Geometric disorder, f-j potential disorder, k-o displacement disorder. a,f, and k show the type of disorder studied, and the other plots are the LDOS in presence of the specific disorder. All different types of disorder have been simulated using the same parameters as before; a number of grid points nx = ny = 200, an effective electron mass meff = 0.42, a lattice parameter \({a}_{0}\) = 1 nm, an intrinsic spin-orbit parameter λISOC = 106, a potential height u = 0.9 eV, and FWHM of the Gaussian potential d = 0.62 nm. For geometric disorder, we used 1500 waves, but for the other two types of disorder only 750 waves. In the potential disorder, we introduced an error to the potential height taken from a uniform distribution between [-0.1 u, 0.1 u]. For the position disorder, the scatterers coordinates are modified using a uniform distribution between [-0.1\({a}_{0}\), 0.1\({a}_{0}\)] for both axes.

Source data

Extended Data Table 1 The Slater-Koster parameters

Supplementary information

Supplementary Information

Supplementary Figs. 1–22 and Discussion.

Source data

Source Data Fig. 1

Fig. 1e, dI/dV for substrate and wetting layer (0) for different bias voltages V. Fig 1f, dI/dV for different positions in the sample and bias voltage. The numbering in the data follows the positions in Fig. 1c.

Source Data Fig. 2

Fig. 2a, Calculated density of states for different positions in the muffin-tin simulation without spin–orbit coupling. The coordinates are indicated in the beginning of each row and are also shown in the inset of Fig. 2k. Fig. 2f, Calculated density of states for different positions in the muffin-tin simulation with intrinsic spin–orbit coupling. The coordinates are indicated in the beginning of each row and are also shown in the inset of Fig. 2k. Fig. 2k, Calculated density of states for different positions in the muffin-tin simulation with intrinsic and Rashba spin–orbit coupling. The coordinates are indicated in the beginning of each row and are also shown in the inset of Fig. 2k.

Source Data Fig. 4b

Calculated density of states for different positions in the muffin-tin simulation with straight edges. The coordinates are indicated in the beginning of each row and are also shown in Fig. 4c.

Source Data Extended Data Fig. 1

Extended Data Fig. 1g, Calculated density of states for different positions in the muffin-tin simulation with potential disorder. The coordinates are indicated in the beginning of each row and are also shown in Extended Data Fig. 1f. Extended Data Fig. 1l, Calculated density of states for different positions in the muffin-tin simulation with displacement disorder. The coordinates are indicated in the beginning of each row and are also shown in Extended Data Fig. 1k.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canyellas, R., Liu, C., Arouca, R. et al. Topological edge and corner states in bismuth fractal nanostructures. Nat. Phys. 20, 1421–1428 (2024). https://doi.org/10.1038/s41567-024-02551-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-024-02551-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing