Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dissipative time crystal in a strongly interacting Rydberg gas

Abstract

The notion of spontaneous symmetry breaking has been well established to characterize classical and quantum phase transitions of matter, such as condensation, crystallization or quantum magnetism. Generalizations of this paradigm to the time dimension can lead to a time crystal phase, which spontaneously breaks the time-translation symmetry of the system. Although the existence of a continuous time crystal at equilibrium has been challenged by no-go theorems, this difficulty can be circumvented by dissipation in an open system. Here we report the experimental observation of such a dissipative time-crystalline order in a room-temperature atomic gas, where ground-state atoms are continuously driven to Rydberg states. The emergent time crystal is revealed by persistent oscillations of the photon transmission, and we show that the observed limit cycles arise from the coexistence and competition between distinct Rydberg components. The non-decaying autocorrelation of the oscillation, together with the robustness against temporal noises, indicates the establishment of true long-range temporal order and demonstrates the realization of a continuous time crystal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental protocol and mean-field phase diagram.
Fig. 2: Transmission spectrum and experimental phase diagram.
Fig. 3: Establishment of the long-range temporal order.
Fig. 4: Robustness against temporal perturbations and melting of the observed time crystal.

Similar content being viewed by others

Data availability

The data are available from the corresponding authors on reasonable request. Source data are provided with this paper.

Code availability

The codes are available from the corresponding authors upon reasonable request.

References

  1. Sondhi, S. L., Girvin, S. M., Carini, J. P. & Shahar, D. Continuous quantum phase transitions. Rev. Mod. Phys. 69, 315 (1997).

    Article  ADS  Google Scholar 

  2. Eisert, J., Friesdorf, M. & Gogolin, C. Quantum many-body systems out of equilibrium. Nat. Phys. 11, 124–130 (2015).

    Article  Google Scholar 

  3. Haken, H. Information and Self-Organization: A Macroscopic Approach to Complex Systems (Springer Science & Business Media, 2006).

  4. Keßler, H., Cosme, J. G., Hemmerling, M., Mathey, L. & Hemmerich, A. Emergent limit cycles and time crystal dynamics in an atom-cavity system. Phys. Rev. A 99, 053605 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  5. Buča, B., Tindall, J. & Jaksch, D. Non-stationary coherent quantum many-body dynamics through dissipation. Nat. Commun. 10, 1730 (2019).

    Article  ADS  Google Scholar 

  6. Dogra, N. et al. Dissipation-induced structural instability and chiral dynamics in a quantum gas. Science 366, 1496–1499 (2019).

    Article  ADS  Google Scholar 

  7. Dreon, D. et al. Self-oscillating pump in a topological dissipative atom–cavity system. Nature 608, 494–498 (2022).

    Article  ADS  Google Scholar 

  8. Shapere, A. & Wilczek, F. Classical time crystals. Phys. Rev. Lett. 109, 160402 (2012).

    Article  ADS  Google Scholar 

  9. Sacha, K. & Zakrzewski, J. Time crystals: a review. Rep. Prog. Phys. 81, 016401 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  10. Zhang, J. et al. Observation of a discrete time crystal. Nature 543, 217–220 (2017).

    Article  ADS  Google Scholar 

  11. Choi, S. et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature 543, 221–225 (2017).

    Article  ADS  Google Scholar 

  12. Rovny, J., Blum, R. L. & Barrett, S. E. Observation of discrete-time-crystal signatures in an ordered dipolar many-body system. Phys. Rev. Lett. 120, 180603 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  13. Riera-Campeny, A., Moreno-Cardoner, M. & Sanpera, A. Time crystallinity in open quantum systems. Quantum 4, 270 (2020).

    Article  Google Scholar 

  14. Randall, J. et al. Many-body–localized discrete time crystal with a programmable spin-based quantum simulator. Science 374, 1474–1478 (2021).

    Article  ADS  Google Scholar 

  15. Kyprianidis, A. et al. Observation of a prethermal discrete time crystal. Science 372, 1192–1196 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  16. Keßler, H. et al. Observation of a dissipative time crystal. Phys. Rev. Lett. 127, 043602 (2021).

    Article  ADS  Google Scholar 

  17. Mi, X. et al. Time-crystalline eigenstate order on a quantum processor. Nature 601, 531–536 (2022).

    Article  ADS  Google Scholar 

  18. Taheri, H., Matsko, A. B., Maleki, L. & Sacha, K. All-optical dissipative discrete time crystals. Nat. Commun. 13, 848 (2022).

    Article  ADS  Google Scholar 

  19. Wilczek, F. Quantum time crystals. Phys. Rev. Lett. 109, 160401 (2012).

    Article  ADS  Google Scholar 

  20. Nozières, P. Time crystals: can diamagnetic currents drive a charge density wave into rotation? Europhys. Lett. 103, 57008 (2013).

    Article  ADS  Google Scholar 

  21. Bruno, P. Impossibility of spontaneously rotating time crystals: a no-go theorem. Phys. Rev. Lett. 111, 070402 (2013).

    Article  ADS  Google Scholar 

  22. Watanabe, H. & Oshikawa, M. Absence of quantum time crystals. Phys. Rev. Lett. 114, 251603 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  23. Iemini, F. et al. Boundary time crystals. Phys. Rev. Lett. 121, 035301 (2018).

    Article  ADS  Google Scholar 

  24. Bakker, L. R. et al. Driven-dissipative time crystalline phases in a two-mode bosonic system with Kerr nonlinearity. Phys. Rev. Lett. 129, 250401 (2022).

    Article  ADS  Google Scholar 

  25. Carollo, F. & Lesanovsky, I. Exact solution of a boundary time-crystal phase transition: time-translation symmetry breaking and non-Markovian dynamics of correlations. Phys. Rev. A 105, L040202 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  26. Krishna, M., Solanki, P., Hajdušek, M. & Vinjanampathy, S. Measurement-induced continuous time crystals. Phys. Rev. Lett. 130, 150401 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  27. Nie, X. & Zheng, W. Mode softening in time-crystalline transitions of open quantum systems. Phys. Rev. A 107, 033311 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  28. Kongkhambut, P. et al. Observation of a continuous time crystal. Science 377, 670–673 (2022).

    Article  ADS  Google Scholar 

  29. Carr, C., Ritter, R., Wade, C. G., Adams, C. S. & Weatherill, K. J. Nonequilibrium phase transition in a dilute Rydberg ensemble. Phys. Rev. Lett. 111, 113901 (2013).

    Article  ADS  Google Scholar 

  30. Malossi, N. et al. Full counting statistics and phase diagram of a dissipative Rydberg gas. Phys. Rev. Lett. 113, 023006 (2014).

    Article  ADS  Google Scholar 

  31. Ding, D.-S., Busche, H., Shi, B.-S., Guo, G.-C. & Adams, C. S. Phase diagram and self-organizing dynamics in a thermal ensemble of strongly interacting Rydberg atoms. Phys. Rev. X 10, 021023 (2020).

    Google Scholar 

  32. Wu, X. et al. A concise review of Rydberg atom based quantum computation and quantum simulation. Chinese Phys. B 30, 020305 (2021).

    Article  ADS  Google Scholar 

  33. Horowicz, Y., Katz, O., Raz, O. & Firstenberg, O. Critical dynamics and phase transition of a strongly interacting warm spin gas. Proc. Natl Acad. Sci. USA 118, e2106400118 (2021).

    Article  Google Scholar 

  34. Franz, T. et al. Observation of universal relaxation dynamics in disordered quantum spin systems. Preprint at https://arxiv.org/abs/2209.08080v3 (2024).

  35. Su, H.-J., Liou, J.-Y., Lin, I.-C. & Chen, Y.-H. Optimizing the Rydberg EIT spectrum in a thermal vapor. Opt. Express 30, 1499–1510 (2022).

    Article  ADS  Google Scholar 

  36. Medenjak, M., Buča, B. & Jaksch, D. Isolated Heisenberg magnet as a quantum time crystal. Phys. Rev. B 102, 041117 (2020).

    Article  ADS  Google Scholar 

  37. Guo, T.-C. & You, L. Quantum phases of time order in many-body ground states. Front. Phys. 10, 847409 (2022).

  38. Greilich, A. et al. Robust continuous time crystal in an electron-nuclear spin system. Nat. Phys. 20, 631–636 (2023).

    Article  Google Scholar 

  39. Else, D. V., Bauer, B. & Nayak, C. Floquet time crystals. Phys. Rev. Lett. 117, 090402 (2016).

    Article  ADS  Google Scholar 

  40. Gong, Z., Hamazaki, R. & Ueda, M. Discrete time-crystalline order in cavity and circuit QED systems. Phys. Rev. Lett. 120, 040404 (2018).

    Article  ADS  Google Scholar 

  41. Lazarides, A., Roy, S., Piazza, F. & Moessner, R. Time crystallinity in dissipative Floquet systems. Phys. Rev. Research 2, 022002 (2020).

    Article  ADS  Google Scholar 

  42. Cabot, A., Carollo, F. & Lesanovsky, I. Metastable discrete time-crystal resonances in a dissipative central spin system. Phys. Rev. B 106, 134311 (2022).

    Article  ADS  Google Scholar 

  43. Pal, S., Nishad, N., Mahesh, T. S. & Sreejith, G. J. Temporal order in periodically driven spins in star-shaped clusters. Phys. Rev. Lett. 120, 180602 (2018).

    Article  ADS  Google Scholar 

  44. Cosme, J. G., Skulte, J. & Mathey, L. Time crystals in a shaken atom-cavity system. Phys. Rev. A 100, 053615 (2019).

    Article  ADS  Google Scholar 

  45. Gambetta, F. M., Carollo, F., Marcuzzi, M., Garrahan, J. P. & Lesanovsky, I. Discrete time crystals in the absence of manifest symmetries or disorder in open quantum systems. Phys. Rev. Lett. 122, 015701 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  46. Tuquero, R. J. L., Skulte, J., Mathey, L. & Cosme, J. G. Dissipative time crystal in an atom-cavity system: influence of trap and competing interactions. Phys. Rev. A 105, 043311 (2022).

    Article  ADS  Google Scholar 

  47. Khasseh, R., Fazio, R., Ruffo, S. & Russomanno, A. Many-body synchronization in a classical Hamiltonian system. Phys. Rev. Lett. 123, 184301 (2019).

    Article  ADS  Google Scholar 

  48. Buča, B., Booker, C. & Jaksch, D. Algebraic theory of quantum synchronization and limit cycles under dissipation. SciPost Phys. 12, 097 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  49. Ilias, T., Yang, D., Huelga, S. F. & Plenio, M. B. Criticality-enhanced quantum sensing via continuous measurement. PRX Quantum 3, 010354 (2022).

    Article  ADS  Google Scholar 

  50. Cabot, A., Carollo, F. & Lesanovsky, I. Continuous sensing and parameter estimation with the boundary time-crystal. Phys. Rev. Lett. 132, 050801 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  51. Ding, D.-S. et al. Ergodicity breaking from Rydberg clusters in a driven-dissipative many-body system. Sci. Adv. 10, eadl5893 (2024).

    Article  Google Scholar 

  52. Wadenpfuhl, K. & Adams, C. S. Emergence of synchronisation in a driven-dissipative hot Rydberg vapor. Phys. Rev. Lett. 131, 143002 (2023).

    Article  ADS  Google Scholar 

  53. Lee, T. E., Häffner, H. & Cross, M. C. Antiferromagnetic phase transition in a nonequilibrium lattice of Rydberg atoms. Phys. Rev. A 84, 031402 (2011).

    Article  ADS  Google Scholar 

  54. Qian, J., Dong, G., Zhou, L. & Zhang, W. Phase diagram of Rydberg atoms in a nonequilibrium optical lattice. Phys. Rev. A 85, 065401 (2012).

    Article  ADS  Google Scholar 

  55. Šibalić, N., Wade, C. G., Adams, C. S., Weatherill, K. J. & Pohl, T. Driven-dissipative many-body systems with mixed power-law interactions: bistabilities and temperature-driven nonequilibrium phase transitions. Phys. Rev. A 94, 011401 (2016).

    Article  ADS  Google Scholar 

  56. He, Y., Bai, Z., Jiao, Y., Zhao, J. & Li, W. Superradiance-induced multistability in one-dimensional driven Rydberg lattice gases. Phys. Rev. A 106, 063319 (2022).

    Article  ADS  Google Scholar 

  57. Marcuzzi, M., Levi, E., Diehl, S., Garrahan, J. P. & Lesanovsky, I. Universal nonequilibrium properties of dissipative Rydberg gases. Phys. Rev. Lett. 113, 210401 (2014).

    Article  ADS  Google Scholar 

  58. Strogatz, S. H. Nonlinear Dynamics and Chaos with Student Solutions Manual: With Applications to Physics, Biology, Chemistry, and Engineering (CRC Press, 2018).

  59. Miller, S. A., Anderson, D. A. & Raithel, G. Radio-frequency-modulated Rydberg states in a vapor cell. New J. Phys. 18, 053017 (2016).

    Article  ADS  Google Scholar 

  60. Ripka, F., Kübler, H., Löw, R. & Pfau, T. A room-temperature single-photon source based on strongly interacting Rydberg atoms. Science 362, 446–449 (2018).

    Article  ADS  Google Scholar 

  61. Li, W., Du, J., Lam, M. & Li, W. Telecom-wavelength spectra of a Rydberg state in a hot vapor. Opt. Lett. 47, 4399–4402 (2022).

    Article  ADS  Google Scholar 

  62. Chan, C.-K., Lee, T. E. & Gopalakrishnan, S. Limit-cycle phase in driven-dissipative spin systems. Phys. Rev. A 91, 051601 (2015).

    Article  ADS  Google Scholar 

  63. Weller, D., Urvoy, A., Rico, A., Löw, R. & Kübler, H. Charge-induced optical bistability in thermal Rydberg vapor. Phys. Rev. A 94, 063820 (2016).

    Article  ADS  Google Scholar 

  64. Wade, C. G. et al. A terahertz-driven non-equilibrium phase transition in a room temperature atomic vapour. Nat. Commun. 9, 3567 (2018).

    Article  ADS  Google Scholar 

  65. Weller, D., Shaffer, J. P., Pfau, T., Löw, R. & Kübler, H. Interplay between thermal Rydberg gases and plasmas. Phys. Rev. A 99, 043418 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge valuable discussions with K. Mølmer, S. Hofferberth, Y. Xiao, Y. Chen, F. Chen, Y. Tang, H. Yarloo and H. Zhang, as well as support from L. Yang. This work is supported by the National Natural Science Foundation of China (NSFC) (grant nos 92265205 and 12361131576), the Innovation Program for Quantum Science and Technology (2021ZD0302100) and National Key R&D Program of China (grant nos 2018YFA0306504 and 2018YFA0306503). L.Y. also acknowledges the support from the ‘Gravitational Wave Detection’ program (2023YFC2205800) funded by the National Natural Science Foundation of China. F.Y. and T.P. acknowledge support from the Carlsberg Foundation through the ‘Semper Ardens’ Research Project QCooL and from the Danish National Research Foundation (DNRF) through the Center of Excellence ‘CCQ’ (grant no. DNRF156). T.P. acknowledges support from the Austrian Science Fund (FWF) (10.55776/COE1) and the European Union—NextGenerationEU, and the Horizon Europe ERC synergy grant SuperWave (grant no. 101071882).

Author information

Authors and Affiliations

Authors

Contributions

X.W. constructed the initial experimental setup and observed the primary phenomenon, whereas Z.W. and X.L. gave crucial assistance. Z.W., R.G. and X.W. performed the experiments and analysed the data after thorough discussions with F.Y. The theoretical model was proposed by X.W., Z.W., F.Y. and T.P. The theoretical analysis and numerical simulations are conducted by F.Y. All authors discussed the results and contributed to the manuscript. X.L., T.P. and L.Y. supervised the study.

Corresponding authors

Correspondence to Xiangliang Li, Thomas Pohl or Li You.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Federico Carollo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Mean-field dynamics.

The calculations are performed with Ω = 3γ, χ = − 16γ, and δ = 8γ. For the limit cycle phase shown in a with Δ = − 3γ, the order parameters exhibit persistent oscillations. For the stationary phase shown in b with Δ = 3γ, the order parameters converge to steady-state values.

Extended Data Fig. 2 Comparison between experiment and theory.

a Experimentally extracted oscillation frequency as a function of the effective two-photon Rabi frequency Ωeff = ΩcΩp/2Δp. In the experiment, we only vary the intensity of the coupling field (Ωc), and keep all other conditions the same as in Fig. 2d. b Theoretically predicted oscillation frequency as a function of the Rabi frequency Ω. The parameters chosen are close to the experiment. For example, the decay rate is evaluated to be γ/2π = 18.0 kHz, consisting of the contribution from the Rydberg spontaneous decay (γd) and the transient time broadening \({\gamma }_{t}={\bar{v}}_{\perp }/D\) with D the diameter of the beam and \({\bar{v}}_{\perp }=\sqrt{\pi kT/2m}\) the transverse mean velocity. The other parameters δ/2π = 0.306 MHz, Δ/2π = − 0.186 MHz, and χ/2π = − 0.951 MHz are also typical in our experiment.

Extended Data Fig. 3 A detailed schematic diagram of the experimental setup.

The 780 nm probe and reference beams generated from a calcite beam displacer are propagating in parallel through a room-temperature Rb vapor cell, with the probe beam overlapping with a counterpropagating coupling beam. Their transmission signals are detected on a balanced photon detector (PD) for differential measurement. The output intensity of the 780 nm laser from the fiber (monitored by an independent PD) is controlled by an AOM, whose RF driving is modulated by a waveform generator. QWPs are used to control the polarization of the lasers illuminating the atoms.

Extended Data Fig. 4 Transmission spectrum at different principal quantum number n.

a Oscillations do not occur at relatively low n. b-d As n increases, \(\left\vert n{D}_{3/2}\right\rangle\) and \(\left\vert n{D}_{5/2}\right\rangle\) states move closer, and their corresponding transmission peaks begin to merge. Oscillation appears and is enhanced for a sufficiently large n.

Extended Data Fig. 5 Long-term stability of the oscillation frequency and breaking of continuous time translation symmetry.

a The long-term frequency drift in 200 independent realizations of the quench dynamics by extracting peak frequencies in the stable periodic region (50-100 ms). The data encircled by the red box are of the same frequency, and are postselected for b, which displays the distribution of the Fourier amplitudes (at the same peak frequency) on the complex plane. c Single-shot and average transmission signals over 36 realizations with a same stable frequency indicated by the red box in a.

Extended Data Fig. 6 Fluorescence measurements in our Rydberg gas.

a and d are transmission signals at different principal quantum number n = 55 and n = 75, respectively. Red squares represent the counts of 780 nm phontons collected by the spectrometer. b-c and e-f show the full spectra from 200 nm to 1000 nm at different dutunings indicated in a and d.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Wang, Z., Yang, F. et al. Dissipative time crystal in a strongly interacting Rydberg gas. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02542-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-024-02542-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing