Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Room-temperature flexible manipulation of the quantum-metric structure in a topological chiral antiferromagnet

Abstract

The quantum metric and Berry curvature are two fundamental and distinct factors that describe the geometry of quantum eigenstates. Although the role of the Berry curvature in governing various condensed-matter states has been investigated extensively, the quantum metric, which has also been predicted to induce topological phenomena, has rarely been studied, particularly at ambient conditions. Here we demonstrate the room-temperature manipulation of the quantum-metric structure of electronic states through its interplay with the interfacial spin texture in a topological chiral antiferromagnet/heavy metal Mn3Sn/Pt heterostructure, which is manifested in a time-reversal-odd second-order Hall effect. We also show the flexibility in controlling the quantum-metric structure with moderate magnetic fields. Our results open the possibility of building applicable nonlinear devices by harnessing the quantum-metric structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematics and characterization of the MgO (111) substrate/MgO (1.3 nm)/Ru (5 nm)/Mn3Sn (15 or 30 nm)/MgO sample.
Fig. 2: Measurement of the ScHE in the (0001)-oriented Mn3Sn/Pt at room temperature.
Fig. 3: Theoretical modelling of the manipulation of the quantum-metric structure and the intrinsic ScHE.
Fig. 4: Temperature dependence of the ScHE and the AHE in (0001)-oriented Mn3Sn/Pt.

Similar content being viewed by others

Data availability

The data that support the findings of this study are shown in the main text figures and the extended data figures. Source data are provided with this paper.

Code availability

Simulation codes in this paper are available from the corresponding authors upon reasonable request.

References

  1. Provost, J. P. & Vallee, G. Riemannian structure on manifolds of quantum states. Commun. Math. Phys. 76, 289–301 (1980).

    ADS  MathSciNet  Google Scholar 

  2. Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A. 392, 45–57 (1984).

    ADS  MathSciNet  Google Scholar 

  3. Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    ADS  Google Scholar 

  4. Feng, Z. et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electron. 5, 735–743 (2022).

    Google Scholar 

  5. Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).

    ADS  Google Scholar 

  6. Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018).

    Google Scholar 

  7. Gao, Y., Yang, S. A. & Niu, Q. Field induced positional shift of Bloch electrons and its dynamical implications. Phys. Rev. Lett. 112, 166601 (2014).

    ADS  Google Scholar 

  8. Neupert, T., Chamon, C. & Mudry, C. Measuring the quantum geometry of Bloch bands with current noise. Phys. Rev. B 87, 245103 (2013).

    ADS  Google Scholar 

  9. Piéchon, F., Raoux, A., Fuchs, J.-N. & Montambaux, G. Geometric orbital susceptibility: quantum metric without Berry curvature. Phys. Rev. B 94, 134423 (2016).

    ADS  Google Scholar 

  10. Rhim, J. W., Kim, K. & Yang, B. J. Quantum distance and anomalous Landau levels of flat bands. Nature 584, 59–63 (2020).

    ADS  Google Scholar 

  11. Peotta, S. & Törmä, P. Superfluidity in topologically nontrivial flat bands. Nat. Commun. 6, 8944 (2015).

    ADS  Google Scholar 

  12. Lai, S. et al. Third-order nonlinear Hall effect induced by the Berry-connection polarizability tensor. Nat. Nanotechnol. 16, 869–873 (2021).

    ADS  Google Scholar 

  13. Gao, A. et al. Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure. Science 381, 181–186 (2023).

    ADS  Google Scholar 

  14. Wang, N. et al. Quantum metric-induced nonlinear transport in a topological antiferromagnet. Nature 621, 487–492 (2023).

    ADS  Google Scholar 

  15. Cohen, E. et al. Geometric phase from Aharonov–Bohm to Pancharatnam–Berry and beyond. Nat. Rev. Phys. 1, 437–449 (2019).

    Google Scholar 

  16. Michishita, Y. & Nagaosa, N. Dissipation and geometry in nonlinear quantum transports of multiband electronic systems. Phys. Rev. B 106, 125114 (2022).

    ADS  Google Scholar 

  17. Wang, C., Gao, Y. & Xiao, D. Intrinsic nonlinear Hall effect in antiferromagnetic tetragonal CuMnAs. Phys. Rev. Lett. 127, 277201 (2021).

    ADS  Google Scholar 

  18. Liu, H. et al. Intrinsic second-order anomalous Hall effect and its application in compensated antiferromagnets. Phys. Rev. Lett. 127, 277202 (2021).

    Google Scholar 

  19. Jeon, K. R. et al. Long-range supercurrents through a chiral non-collinear antiferromagnet in lateral Josephson junctions. Nat. Mater. 20, 1358–1363 (2021).

    ADS  Google Scholar 

  20. Qin, P. et al. Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction. Nature 613, 485–489 (2023).

    ADS  Google Scholar 

  21. Chen, X. et al. Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction. Nature 613, 490–495 (2023).

    ADS  Google Scholar 

  22. Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020).

    ADS  Google Scholar 

  23. Takeuchi, Y. et al. Chiral-spin rotation of non-collinear antiferromagnet by spin–orbit torque. Nat. Mater. 20, 1364–1370 (2021).

    ADS  Google Scholar 

  24. Han, J., Cheng, R., Liu, L., Ohno, H. & Fukami, S. Coherent antiferromagnetic spintronics. Nat. Mater. 22, 684–695 (2023).

    ADS  Google Scholar 

  25. Yoon, J. et al. Crystal orientation and anomalous Hall effect of sputter-deposited non-collinear antiferromagnetic Mn3Sn thin films. Appl. Phys. Express 13, 013001 (2020).

    ADS  Google Scholar 

  26. Nembach, H. T., Shaw, J. M., Weiler, M., Jué, E. & Silva, T. J. Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii–Moriya interaction in metal films. Nat. Phys. 11, 825–829 (2015).

    Google Scholar 

  27. Cheng, Y., Yu, S., Zhu, M., Hwang, J. & Yang, F. Tunable topological Hall effects in noncollinear antiferromagnet Mn3Sn/Pt bilayers. APL Mater. 9, 051121 (2021).

    ADS  Google Scholar 

  28. Liu, J. J. et al. Robust interface-induced unusual anomalous Hall effect in Mn3Sn/Pt bilayers. Rare Met. 41, 3012–3018 (2022).

    Google Scholar 

  29. Wang, X. et al. Topological Hall effect in thin films of an antiferromagnetic Weyl semimetal integrated on Si. ACS Appl. Mater. Interfaces 15, 7572–7577 (2023).

    Google Scholar 

  30. Kang, K., Li, T., Sohn, E., Shan, J. & Mak, K. F. Nonlinear anomalous Hall effect in few-layer WTe2. Nat. Mater. 18, 324–328 (2019).

    ADS  Google Scholar 

  31. Kumar, D. et al. Room-temperature nonlinear Hall effect and wireless radiofrequency rectification in Weyl semimetal TaIrTe4. Nat. Nanotechnol. 16, 421–425 (2021).

    ADS  Google Scholar 

  32. Avci, C. O. et al. Unidirectional spin Hall magnetoresistance in ferromagnet/normal metal bilayers. Nat. Phys. 11, 570–575 (2015).

    Google Scholar 

  33. Yokouchi, T. et al. Electrical magnetochiral effect induced by chiral spin fluctuations. Nat. Commun. 8, 866 (2017).

    ADS  Google Scholar 

  34. Yasuda, K. Current-nonlinear Hall effect and spin-orbit torque magnetization switching in a magnetic topological insulator. Phys. Rev. Lett. 119, 137204 (2017).

    ADS  Google Scholar 

  35. He, P. et al. Nonlinear planar Hall effect. Phys. Rev. Lett. 123, 016801 (2019).

    ADS  Google Scholar 

  36. Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017).

    ADS  Google Scholar 

  37. Uchimura, T. et al. Observation of domain structure in non-collinear antiferromagnetic Mn3Sn thin films by magneto-optical Kerr effect. Appl. Phys. Lett. 120, 172405 (2022).

    ADS  Google Scholar 

  38. Li, S. et al. Nanoscale magnetic domains in polycrystalline Mn3Sn films imaged by a scanning single-spin magnetometer. Nano Lett. 23, 5326–5333 (2023).

    ADS  Google Scholar 

  39. Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    ADS  MathSciNet  Google Scholar 

  40. He, P. et al. Graphene moiré superlattices with giant quantum nonlinearity of chiral Bloch electrons. Nat. Nanotechnol. 17, 378–383 (2022).

    ADS  Google Scholar 

  41. Tokura, Y. & Nagaosa, N. Nonreciprocal responses from non-centrosymmetric quantum materials. Nat. Commun. 9, 3740 (2018).

    ADS  Google Scholar 

  42. Du, Z. Z., Wang, C. M., Sun, H. P., Lu, H. Z. & Xie, X. C. Quantum theory of the nonlinear Hall effect. Nat. Commun. 12, 5038 (2021).

    ADS  Google Scholar 

  43. Isobe, H., Xu, S. Y. & Fu, L. High-frequency rectification via chiral Bloch electrons. Sci. Adv. 6, aay2497 (2020).

    ADS  Google Scholar 

  44. Lebrun, R. et al. Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide. Nature 561, 222–225 (2018).

    ADS  Google Scholar 

  45. Yoon, J.-Y. et al. Handedness anomaly in a non-collinear antiferromagnet under spin–orbit torque. Nat. Mater. 22, 1106–1113 (2023).

    ADS  Google Scholar 

  46. Schlotter, S., Agrawal, P. & Beach, G. S. D. Temperature dependence of the Dzyaloshinskii–Moriya interaction in Pt/Co/Cu thin film heterostructures. Appl. Phys. Lett. 113, 092412 (2018).

    ADS  Google Scholar 

  47. Ito, N. & Nomura, K. Anomalous Hall effect and spontaneous orbital magnetization in antiferromagnetic Weyl metal. J. Phys. Soc. Jpn 86, 063703 (2017).

    ADS  Google Scholar 

  48. Watanabe, J., Araki, Y., Kobayashi, K., Ozawa, A. & Nomura, K. Magnetic orderings from spin–orbit coupled electrons on kagome lattice. J. Phys. Soc. Jpn 91, 083702 (2022).

    ADS  Google Scholar 

  49. Hu, J., Xu, S., Ni, N. & Mao, Z. Transport of topological semimetals. Annu. Rev. Mater. Res. 49, 207–252 (2019).

    ADS  Google Scholar 

  50. Bai, H. et al. Size-dependent anomalous Hall effect in noncollinear antiferromagnetic Mn3Sn films. Appl. Phys. Lett. 117, 052404 (2020).

    ADS  Google Scholar 

  51. Min, L. et al. Strong room-temperature bulk nonlinear Hall effect in a spin-valley locked Dirac material. Nat. Commun. 14, 364 (2023).

    ADS  Google Scholar 

  52. Ikhlas, M. et al. Piezomagnetic switching of the anomalous Hall effect in an antiferromagnet at room temperature. Nat. Phys. 18, 1086–1093 (2022).

    Google Scholar 

  53. Han, J. H. et al. Antiferromagnet-controlled spin current transport in SrMnO3/Pt hybrids. Phys. Rev. B 90, 144431 (2014).

    ADS  Google Scholar 

  54. Ji, Y. et al. Spin Hall magnetoresistance in an antiferromagnetic magnetoelectric Cr2O3/heavy-metal W heterostructure. Appl. Phys. Lett. 110, 262401 (2017).

    ADS  Google Scholar 

  55. Althammer, M. et al. Quantitative study of the spin Hall magnetoresistance in ferromagnetic insulator/normal metal hybrids. Phys. Rev. B 87, 224401 (2013).

    ADS  Google Scholar 

  56. Olejník, K., Novák, V., Wunderlich, J. & Jungwirth, T. Electrical detection of magnetization reversal without auxiliary magnets. Phys. Rev. B 91, 180402(R) (2015).

    ADS  Google Scholar 

  57. Yasuda, K. et al. Large unidirectional magnetoresistance in a magnetic topological insulator. Phys. Rev. Lett. 117, 127202 (2016).

    ADS  Google Scholar 

  58. Liu, Y. T. et al. Determination of spin–orbit-torque efficiencies in heterostructures with in-plane magnetic anisotropy. Phys. Rev. Appl. 13, 044032 (2020).

    ADS  Google Scholar 

  59. Fan, Y., Saha, R., Yang, Y. & Wang, J. P. Origins of observational errors in field sweep DC measurements for unidirectional magnetoresistance. J. Appl. Phys. 132, 213907 (2022).

    ADS  Google Scholar 

  60. Liu, J. & Balents, L. Anomalous Hall effect and topological defects in antiferromagnetic Weyl semimetals: Mn3Sn/Ge. Phys. Rev. Lett. 119, 087202 (2017).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank T. Dietl for valuable discussions. A portion of this work was supported by the Japan Society for the Promotion of Science (JSPS; KAKENHI Grant Nos. 19H05622 to S.F., 22K03538 to Y.A. and 22KF0035 to J.H.), the Initiative to Establish Next-Generation Novel Integrated Circuits Centers (X-NICS) funded by the Ministry of Education, Culture, Sports, Science and Technology (Grant No. JPJ011438 to S.F.) and the Casio Science and Technology Foundation (Grant No. 40-4 to Y.T.). J.H. acknowledges support from the JSPS Postdoctoral Fellowship for Research in Japan. T.U. and J.-Y.Y. acknowledge support from GP-Spin at Tohoku University.

Author information

Authors and Affiliations

Authors

Contributions

S.F. and J.H. planned the study. T.U. prepared and characterized the stacks and fabricated the devices with input from J.H., J.-Y.Y. and Y.T. J.H. and T.U. performed the transport measurements and analysed the data with input from Y.Y., S.K. and S.F. Y.A. performed the theoretical modelling with input from J.I. All authors discussed the results. J.H., Y.A. and S.F. wrote the paper with input from T.U., J.I. and H.O.

Corresponding authors

Correspondence to Jiahao Han or Shunsuke Fukami.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Haizhou Lu, Su-Yang Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Six degenerate configurations of the chiral-spin structure of Mn3Sn and corresponding directions of the applied magnetic field.

The Mn atoms in red and yellow locate in two neighboring kagome planes, respectively.

Extended Data Fig. 2 ScHE measured at different frequencies of the applied current I = 4 mA.

The applied magnetic field of 0.4T is along the +x axis of Fig. 2a. The solid line indicates that we do not observe a frequency dependence of \({V}_{{\rm{H}}}^{\;2{\rm{\omega }}}\).

Source data

Extended Data Fig. 3 Longitudinal angle-dependent magnetoresistance of the (0001)-oriented Mn3Sn/Pt measured by a d.c. of 4 mA and magnetic fields of 0.4 and 4 T.

The solid lines are fits to 180°-periodic sinusoidal functions.

Source data

Extended Data Fig. 4 ScHE and AHE of the (0001)-oriented Mn3Sn/MgO or Ta.

a, ScHE measured by applying an a.c. of 4 mA and rotating an in-plane magnetic field of 0.4 T. No field angle dependence is observed at even higher fields. b, Hall resistance measured by applying a d.c. of 0.5 mA and sweeping a magnetic field along the film normal. The linear background is kept here.

Source data

Extended Data Fig. 5 AHE and ScHE of the \(({\mathbf{1}}{\mathbf{\bar{1}}}{\mathbf{00}})\) -oriented Mn3Sn/Pt.

a, Measurement configuration. The current is applied along the \([11\bar{2}0]\) direction. β and γ scans correspond to the field rotation in zx and yz planes, respectively. b, Hall resistance measured by applying a d.c. of 0.5 mA as well as sweeping a magnetic field perpendicular to the film plane or rotating a magnetic field of 4 T for β scan. A large field of 4 T overcomes the perpendicular magnetic anisotropy and ensures a coherent rotation of the chiral-spin structure with the field. c, ScHE measured by applying an ac current of 4 mA and rotating a magnetic field of 4 T for β and γ scans. The β scan of 0.4 T has the same trend as that of 4 T but even smaller bumps. The result of the (0001)-oriented Mn3Sn/Pt at 4 mA and 0.4 T (α scan) is accompanied for comparison.

Source data

Extended Data Fig. 6 Structure of the effective model used in the theoretical calculations.

a, Kagome bilayer lattice. A unit cell contains six sites, (Ab, Bb, Cb) on the bottom layer and (At, Bt, Ct) on the top layer. The black dot represents the inversion center of the unit cell. b, c, Directions of the DMI vectors Dij (red arrows) for the nearest neighboring sites. If one takes i and j as the starting and end points of each link, Dij points to the direction shown as the small red arrow. Panels b and c denote \({{\bf{D}}}_{{ij}}^{{\rm{loc}}}\) and \({{\bf{D}}}_{{ij}}^{\mathrm{int}}\), respectively. The directions of the spin-orbit field vectors νij for the nearest neighboring sites follow the red arrows in panel b. The brown and grey arrows denote the displacement from one atom site to another.

Extended Data Fig. 7 Momentum-space distributions of the built-in Berry curvature \({[{{\boldsymbol{\Omega }}}_{\boldsymbol{n}}({\bf{k}})]}^{\boldsymbol{z}}\), the electrically induced Berry curvature \({[{{\boldsymbol{\Omega }}}_{\boldsymbol{n}}^{{\boldsymbol{(E\;)}}}({\bf{k}})]}^{\boldsymbol{z}}\), and its symmetric part \({[{{\boldsymbol{\Omega }}}_{\boldsymbol{n}}^{{\boldsymbol{(E\;)}}}({\bf{k}})]}_{{\mathbf{symm}}}^{\boldsymbol{z}}\) (unit: \({\boldsymbol{a}}_{\mathbf{0}}^{\mathbf{2}}\)) under the inverse triangular chiral-spin structure, calculated from the kagome bilayer model (\({\bf{E}}{\boldsymbol{\parallel}} +{\boldsymbol{x}}\) and \({\boldsymbol{\alpha}} ={\mathbf{0}}^{\boldsymbol{\circ}}\)).

ac, Results without out-of-plane spin canting. d, e, f, Results with out-of-plane spin canting of the top layer due to the i-DMI. The solid-line hexagons correspond to the first Brillouin zone of the kagome lattice. Panels c and f have been shown in Fig. 3c. These results are calculated from the third lowest band in Fig. 3b.

Extended Data Fig. 8 ScHE in the (0001)-oriented Mn3Sn/Pt device with the applied current along \({\boldsymbol{y}}{\boldsymbol{\parallel}} {\boldsymbol{[}}{\mathbf{1}}{\mathbf{\bar{1}}}{\mathbf{00}}{\boldsymbol{]}}\).

a, Theoretical modeling. b, Experiment.

Source data

Extended Data Fig. 9 Theoretically calculated second-order longitudinal and transverse conductivity \({\boldsymbol{\sigma }}_{{\mathbf{s}}}^{\;\boldsymbol{xxx}}\) and \({\boldsymbol{\sigma }}_{{\bf{s}}}^{\;\boldsymbol{yxx}}\) under two mechanisms.

a, Scattering on the asymmetric Fermi surface. b, Intrinsic quantum-metric structure.

Source data

Source data

Source Data for Fig. 1

Source data for Fig. 1d–f.

Source Data for Fig. 2

Source data for Fig. 2b–d.

Source Data for Fig. 3

Source data for Fig. 3a,b,d,e.

Source Data for Fig. 4

Source data for Fig. 4a–d.

Source Data for Extended Data Fig. 2

Source data for Extended Data Fig. 2.

Source Data for Extended Data Fig. 3

Source data for Extended Data Fig. 3.

Source Data for Extended Data Fig. 4

Source data for Extended Data Fig. 4.

Source Data for Extended Data Fig. 5

Source data for Extended Data Fig. 5.

Source Data for Extended Data Fig. 8

Source data for Extended Data Fig. 8.

Source Data for Extended Data Fig. 9

Source data for Extended Data Fig. 9.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Uchimura, T., Araki, Y. et al. Room-temperature flexible manipulation of the quantum-metric structure in a topological chiral antiferromagnet. Nat. Phys. 20, 1110–1117 (2024). https://doi.org/10.1038/s41567-024-02476-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-024-02476-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing