Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of the 2D–1D crossover in strongly interacting ultracold bosons

Abstract

Dimensionality plays an essential role in determining the nature and properties of a physical system. This is particularly evident in quantum systems, where interactions and fluctuations are enhanced in lower dimensions, leading to various different quantum effects. Here we show that strongly interacting ultracold bosons perceive their dimensionality as either one or two, depending on whether they are probed on short or long distances, respectively. We probe this dimensional crossover using a thorough analysis of the momentum distribution to study the characteristic decay of the one-body correlation function in the two dimensionalities and track how the decay is modified during the crossover. We find a varying two-slope structure, which substantiates the main result. These observations demonstrate how quantum properties in the strongly correlated regime evolve in the dimensional crossover as a result of the interplay between dimensionality, interactions and temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual sketch of the experiment.
Fig. 2: Characteristic decay of the longitudinal correlation function G(1)(x, 0).
Fig. 3: Illustration of the mechanism behind the first-order correlation function and its interpretation.
Fig. 4: Dimensional crossover analysis.

Similar content being viewed by others

Data availability

The data that support the findings of this study are made publicly available from Zenodo by the authors at https://doi.org/10.5281/zenodo.10557145 (ref. 49).

References

  1. Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    Article  ADS  Google Scholar 

  2. Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).

    Article  ADS  Google Scholar 

  3. Pitaevskii, L. & Stringari, S. Bose–Einstein Condensation (Clarendon, 2003).

  4. Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C: Solid State Phys. 6, 1181 (1973).

  5. Hadzibabic, Z., Krüger, P., Cheneau, M., Battelier, B. & Dalibard, J. Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas. Nature 441, 1118–1121 (2006).

  6. Giamarchi, T. Quantum Physics in One Dimension Vol. 121 (Oxford Univ. Press, 2004).

  7. Girardeau, M. Relationship between systems of impenetrable bosons and fermions in one dimension. J. Math. Phys. 1, 516–523 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  8. Paredes, B. et al. Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277–281 (2004).

  9. Kinoshita, T., Wenger, T. & Weiss, D. S. Observation of a one-dimensional Tonks–Girardeau gas. Science 305, 1125–1128 (2004).

    Article  ADS  Google Scholar 

  10. Giamarchi, T. in Quantum Phase Transitions in Quasi-One Dimensional Systems (ed. Carr, L. D.) 291 (CRC; Taylor and Francis, 2010).

  11. Lebed, A. G. The Physics of Organic Superconductors and Conductors Vol. 110 (Springer, 2008).

  12. Giamarchi, T. Theoretical framework for quasi-one dimensional systems. Chem. Rev. 104, 5037–5056 (2004).

  13. Orenstein, J. & Millis, A. Advances in the physics of high-temperature superconductivity. Science 288, 468–474 (2000).

    Article  ADS  Google Scholar 

  14. Ho, A. F., Cazalilla, M. A. & Giamarchi, T. Deconfinement in a 2D optical lattice of coupled 1D boson systems. Phys. Rev. Lett. 92, 130405 (2004).

    Article  ADS  Google Scholar 

  15. Cazalilla, M., Ho, A. & Giamarchi, T. Interacting Bose gases in quasi-one dimensional optical lattices. New J. Phys. 8, 158 (2006).

    Article  ADS  Google Scholar 

  16. Klanjšek, M. et al. Controlling Luttinger liquid physics in spin ladders under a magnetic field. Phys. Rev. Lett. 101, 137207 (2008).

    Article  ADS  Google Scholar 

  17. Hong, T. et al. Field-induced Tomonaga–Luttinger liquid phase of a two-leg spin-1/2 ladder with strong leg interactions. Phys. Rev. Lett. 105, 137207 (2010).

    Article  ADS  Google Scholar 

  18. Bollmark, G., Laflorencie, N. & Kantian, A. Dimensional crossover and phase transitions in coupled chains: density matrix renormalization group results. Phys. Rev. B 102, 195145 (2020).

    Article  ADS  Google Scholar 

  19. Yao, H., Pizzino, L. & Giamarchi, T. Strongly-interacting bosons at 2D–1D dimensional crossover. SciPost Phys. 15, 050 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  20. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    Article  ADS  Google Scholar 

  21. Hofferberth, S., Lesanovsky, I., Fischer, B., Schumm, T. & Schmiedmayer, J. Non-equilibrium coherence dynamics in one-dimensional Bose gases. Nature 449, 324–327 (2007).

    Article  ADS  Google Scholar 

  22. Li, C. et al. Relaxation of bosons in one dimension and the onset of dimensional crossover. SciPost Phys. 9, 058 (2020).

    Article  ADS  Google Scholar 

  23. Møller, F. et al. Extension of the generalized hydrodynamics to the dimensional crossover regime. Phys. Rev. Lett. 126, 090602 (2021).

    Article  ADS  Google Scholar 

  24. Stöferle, T., Moritz, H., Schori, C., Köhl, M. & Esslinger, T. Transition from a strongly interacting 1D superfluid to a Mott insulator. Phys. Rev. Lett. 92, 130403 (2004).

    Article  ADS  Google Scholar 

  25. Chauveau, G. et al. Superfluid fraction in an interacting spatially modulated Bose–Einstein condensate. Phys. Rev. Lett. 130, 226003 (2023).

    Article  ADS  Google Scholar 

  26. Kraemer, T. et al. Optimized production of a cesium Bose–Einstein condensate. Appl. Phys. B 79, 1013–1019 (2004).

    Article  ADS  Google Scholar 

  27. Hadzibabic, Z. & Dalibard, J. Two-dimensional Bose fluids: an atomic physics perspective. Riv. Nuovo Cimento 34, 389–434 (2011).

    Google Scholar 

  28. Cazalilla, M. A., Citro, R., Giamarchi, T., Orignac, E. & Rigol, M. One dimensional bosons: from condensed matter systems to ultracold gases. Rev. Mod. Phys. 83, 1405–1466 (2011).

    Article  ADS  Google Scholar 

  29. Weber, V., Herbig, J., Mark, M., Nägerl, H.-C. & Grimm, R. Bose–Einstein condensation of cesium. Science 299, 232–235 (2003).

  30. Boettcher, I. & Holzmann, M. Quasi-long-range order in trapped two-dimensional Bose gases. Phys. Rev. A 94, 011602 (2016).

    Article  ADS  Google Scholar 

  31. Murthy, P. A. et al. Observation of the Berezinskii–Kosterlitz–Thouless phase transition in an ultracold Fermi gas. Phys. Rev. Lett. 115, 010401 (2015).

    Article  ADS  Google Scholar 

  32. Murthy, P. A. et al. Quantum scale anomaly and spatial coherence in a 2D Fermi superfluid. Science 365, 268–272 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  33. Sunami, S. et al. Observation of the Berezinskii–Kosterlitz–Thouless transition in a two-dimensional Bose gas via matter-wave interferometry. Phys. Rev. Lett. 128, 250402 (2022).

    Article  ADS  Google Scholar 

  34. Minguzzi, A. & Vignolo, P. Strongly interacting trapped one-dimensional quantum gases: exact solution. AVS Quantum Sci. 4, 027102 (2022).

    Article  Google Scholar 

  35. Gautier, R., Yao, H. & Sanchez-Palencia, L. Strongly interacting bosons in a two-dimensional quasicrystal lattice. Phys. Rev. Lett. 126, 110401 (2021).

    Article  ADS  Google Scholar 

  36. Haller, E. et al. Three-body correlation functions and recombination rates for bosons in three dimensions and one dimension. Phys. Rev. Lett. 107, 230404 (2011).

    Article  ADS  Google Scholar 

  37. Meinert, F. et al. Probing the excitations of a Lieb–Liniger gas from weak to strong coupling. Phys. Rev. Lett. 115, 085301 (2015).

    Article  ADS  Google Scholar 

  38. Guo, Y. et al. Anomalous cooling of bosons by dimensional reduction. Sci. Adv. 10, eadk6870 (2024).

  39. Bevington, P. R., Robinson, D. K., Blair, J. M., Mallinckrodt, A. J. & McKay, S. Data reduction and error analysis for the physical sciences. Comput. Phys. 7, 415–416 (1993).

    Article  ADS  Google Scholar 

  40. Plisson, T. et al. Coherence properties of a two-dimensional trapped Bose gas around the superfluid transition. Phys. Rev. A 84, 061606 (2011).

    Article  ADS  Google Scholar 

  41. Ceperley, D. M. Path integrals in the theory of condensed helium. Rev. Mod. Phys. 67, 279–355 (1995).

    Article  ADS  Google Scholar 

  42. Yao, H., Clément, D., Minguzzi, A., Vignolo, P. & Sanchez-Palencia, L. Tan’s contact for trapped Lieb–Liniger bosons at finite temperature. Phys. Rev. Lett. 121, 220402 (2018).

    Article  ADS  Google Scholar 

  43. Yao, H., Giamarchi, T. & Sanchez-Palencia, L. Lieb–Liniger bosons in a shallow quasiperiodic potential: Bose glass phase and fractal Mott lobes. Phys. Rev. Lett. 125, 060401 (2020).

    Article  ADS  Google Scholar 

  44. Boninsegni, M., Prokof’ev, N. & Svistunov, B. Worm algorithm for continuous-space path integral Monte Carlo simulations. Phys. Rev. Lett. 96, 070601 (2006).

    Article  ADS  Google Scholar 

  45. Boninsegni, M., Prokof’ev, N. V. & Svistunov, B. V. Worm algorithm and diagrammatic Monte Carlo: a new approach to continuous-space path integral Monte Carlo simulations. Phys. Rev. E 74, 036701 (2006).

    Article  ADS  Google Scholar 

  46. Troyer, M., Ammon, B. & Heeb, E. Parallel object oriented Monte Carlo simulations. In International Symposium on Computing in Object-Oriented Parallel Environments (eds Caromel, D. et al.) 191–198 (Springer, 1998).

  47. Albuquerque, A. F. et al. The ALPS project release 1.3: open-source software for strongly correlated systems. J. Magn. Magn. Mater. 310, 1187–1193 (2007).

  48. Bauer, B. et al. The ALPS project release 2.0: open source software for strongly correlated systems. J. Stat. Mech.: Th. Exp. 05, 05001 (2011).

    Article  Google Scholar 

  49. Guo, Y. et al. Observation of the 2D–1D dimensional crossover in strongly interacting ultracold Bosons. Zenodo https://doi.org/10.5281/zenodo.10557145 (2024).

Download references

Acknowledgements

The Innsbruck team acknowledges funding by a Wittgenstein prize grant under project number Z336-N36 and by the European Research Council (ERC) under project number 789017. This research was funded in part by the Austrian Science Fund (FWF) W1259-N27 and M.H. thanks the doctoral school Atoms, Light and Molecules (ALM) for hospitality. This work is also supported by the Swiss National Science Foundation under grant number 200020-188687. Numerical calculations make use of the ALPS scheduler library and statistical analysis tools46,47,48.

Author information

Authors and Affiliations

Authors

Contributions

The work was conceived by T.G., H.-C.N., M.L., H.Y. and Y.G. Experiments were performed by Y.G. and S.D. Data were analysed by Y.G., H.Y. and S.R. Theoretical models and simulation were done by H.Y., L.P. and T.G. Preparation of experiments was carried out by Y.G, S.D. and M.H. The main contributors to the preparation of the manuscript were H.-C.N., T.G., Y.G., H.Y. and M.L.

Corresponding author

Correspondence to Hanns-Christoph Nägerl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 A schematic of our imaging setup and an example of the image.

(a) The vectors ky, kz, kw and the imaging direction (blue arrows) all lie in one plane, with kx perpendicular to this plane, see also inset. The red 3D ellipsoid along the kz direction indicates the atomic cloud after TOF starting from an ensemble of 2D layers for Vy = 0Er. The light red 2D ellipsoid along kw direction is the shadow in our absorption image. (b) An example of a projected image after TOF for Vy = 0Er.

Extended Data Fig. 2 Experimental momentum distribution n(kx) along the unmodulated direction x for the 2D and the 1D case, folded over kxa = 0 and rescaled by the maximum density.

The shaded area indicates the error given by the standard deviation for 30 repetitions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Yao, H., Ramanjanappa, S. et al. Observation of the 2D–1D crossover in strongly interacting ultracold bosons. Nat. Phys. 20, 934–938 (2024). https://doi.org/10.1038/s41567-024-02459-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-024-02459-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing