Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cold trapped molecular ions and hybrid platforms for ions and neutral particles

Abstract

Recent years have seen the emergence of a new generation of collision and cold-chemistry experiments in which cold atoms and ions are brought into contact in a controlled way in hybrid platforms. Furthermore, new possibilities for the preparation and detection of molecular quantum states with high sensitivity and precision have been demonstrated based on quantum-logic schemes. Here we review experimental progress in the fields of hybrid atom–ion platforms and molecular ions. Our discussion includes the generation and control of motional and internal states of molecular ions, precision spectroscopy, cold collisions between ions and neutral atoms, as well as reactive and inelastic processes. These advances represent important stepping stones for new directions in fundamental research and technological applications across various domains ranging from precision measurements and studies of chemical dynamics to quantum technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hybrid platforms for ions and neutral particles.
Fig. 2: Formation processes of a molecular cation.
Fig. 3: Detection of molecular ions.
Fig. 4: Ion trapping.
Fig. 5: Inelastic and reactive processes.
Fig. 6: Charge-transfer reaction in a cold atom–ion hybrid trap.

Similar content being viewed by others

References

  1. Härter, A. & Hecker Denschlag, J. Cold atom–ion experiments in hybrid traps. Contemp. Phys. 55, 33–45 (2014).

    ADS  Google Scholar 

  2. Willitsch, S. Coulomb-crystallised molecular ions in traps: methods, applications, prospects. Int. Rev. Phys. Chem. 31, 175–199 (2012).

    Google Scholar 

  3. Lous, R. S. & Gerritsma, R. Ultracold ion–atom experiments: cooling, chemistry and quantum effects. Adv. At. Mol. Opt. Phys. 71, 65–133 (2022).

    Google Scholar 

  4. Tomza, M. et al. Cold hybrid ion–atom systems. Rev. Mod. Phys. 91, 035001 (2019).

    ADS  MathSciNet  Google Scholar 

  5. Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).

    ADS  Google Scholar 

  6. Häffner, H., Roos, C. F. & Blatt, R. Quantum computing with trapped ions. Phys. Rep. 469, 155–203 (2008).

    ADS  MathSciNet  Google Scholar 

  7. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    ADS  Google Scholar 

  8. Quéméner, G. & Julienne, P. S. Ultracold molecules under control!. Chem. Rev. 112, 4949–5011 (2012).

    Google Scholar 

  9. Softley, T. P. Cold and ultracold molecules in the twenties. Proc. R. Soc. A 479, 20220806 (2023).

    ADS  Google Scholar 

  10. Langen, T., Valtolina, G., Wang, D. & Ye, J. Quantum state manipulation and cooling of ultracold molecules. Nat. Phys. https://doi.org/10.1038/s41567-024-02423-1 (2024).

  11. Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).

    ADS  Google Scholar 

  12. Roth, B. et al. in Precision Physics of Simple Atoms and Molecules. Lecture Notes in Physics Vol. 745 (ed. Karshenboim, S. G.) 205 (Springer, 2008).

  13. Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).

    ADS  MathSciNet  Google Scholar 

  14. McGuire, B., Asvany, O., Brünken, S. & Schlemmer, S. Laboratory spectroscopy techniques to enable observations of interstellar ion chemistry. Nat. Rev. Phys. 2, 402–410 (2020).

    Google Scholar 

  15. Wester, R. Radiofrequency multipole traps: tools for spectroscopy and dynamics of cold molecular ions. J. Phys. B 42, 154001 (2009).

    ADS  Google Scholar 

  16. Gerlich, D. in Advances in Chemical Physics: State‐Selected and State‐To‐State Ion‐Molecule Reaction Dynamics, Part 1. Experiment 1–176 (Wiley, 1992).

  17. Jones, K. M., Tiesinga, E., Lett, P. D. & Julienne, P. S. Ultracold photoassociation spectroscopy: long-range molecules and atomic scattering. Rev. Mod. Phys. 78, 483–535 (2006).

    Google Scholar 

  18. Zuber, N. et al. Observation of a molecular bond between ions and Rydberg atoms. Nature 605, 453–456 (2022).

    ADS  Google Scholar 

  19. Tong, X., Winney, A. H. & Willitsch, S. Sympathetic cooling of molecular ions in selected rotational and vibrational states produced by threshold photoionization. Phys. Rev. Lett. 105, 143001 (2010).

    ADS  Google Scholar 

  20. Zhang, Y. et al. Generation of rotational-ground-state HD+ ions in an ion trap using a resonance-enhanced threshold photoionization process. Phys. Rev. A 107, 043101 (2023).

    ADS  Google Scholar 

  21. Mølhave, K. & Drewsen, M. Formation of translationally cold MgH+ and MgD+ molecules in an ion trap. Phys. Rev. A 62, 011401 (2000).

    ADS  Google Scholar 

  22. Rugango, R. et al. Sympathetic cooling of molecular ion motion to the ground state. New J. Phys. 17, 035009 (2015).

    ADS  Google Scholar 

  23. Wan, Y., Gebert, F., Wolf, F. & Schmidt, P. O. Efficient sympathetic motional-ground-state cooling of a molecular ion. Phys. Rev. A 91, 043425 (2015).

    ADS  Google Scholar 

  24. Rellergert, W. G. et al. Evidence for sympathetic vibrational cooling of translationally cold molecules. Nature 495, 490–494 (2013).

    ADS  Google Scholar 

  25. Hansen, A. K. et al. Efficient rotational cooling of Coulomb-crystallized molecular ions by a helium buffer gas. Nature 508, 76–79 (2014).

    ADS  Google Scholar 

  26. Tauch, J. et al. Laser-induced forced evaporative cooling of molecular anions below 4 K. Nat. Phys. 19, 1270–1274 (2023).

    Google Scholar 

  27. Staanum, P. F., Højbjerre, K., Skyt, P. S., Hansen, A. K. & Drewsen, M. Rotational laser cooling of vibrationally and translationally cold molecular ions. Nat. Phys. 6, 271–274 (2010).

    Google Scholar 

  28. Schneider, T., Roth, B., Duncker, H., Ernsting, I. & Schiller, S. All-optical preparation of molecular ions in the rovibrational ground state. Nat. Phys. 6, 275–278 (2010).

    Google Scholar 

  29. Lien, C.-Y. et al. Broadband optical cooling of molecular rotors from room temperature to the ground state. Nat. Commun. 5, 4783 (2014).

    ADS  Google Scholar 

  30. Stollenwerk, P. R., Antonov, I. O., Venkataramanababu, S., Lin, Y.-W. & Odom, B. C. Cooling of a zero-nuclear-spin molecular ion to a selected rotational state. Phys. Rev. Lett. 125, 113201 (2020).

    ADS  Google Scholar 

  31. Bressel, U. et al. Manipulation of individual hyperfine states in cold trapped molecular ions and application to HD+ frequency metrology. Phys. Rev. Lett. 108, 183003 (2012).

    ADS  Google Scholar 

  32. Drewsen, M., Mortensen, A., Martinussen, R., Staanum, P. & Sørensen, J. L. Nondestructive identification of cold and extremely localized single molecular ions. Phys. Rev. Lett. 93, 243201 (2004).

    ADS  Google Scholar 

  33. Fan, M. et al. Optical mass spectrometry of cold RaOH+ and RaOCH3+. Phys. Rev. Lett. 126, 023002 (2021).

    ADS  Google Scholar 

  34. Schowalter, S. J., Chen, K., Rellergert, W. G., Sullivan, S. T. & Hudson, E. R. An integrated ion trap and time-of-flight mass spectrometer for chemical and photo-reaction dynamics studies. Rev. Sci. Instrum. 83, 043103 (2012).

    ADS  Google Scholar 

  35. Rösch, D., Gao, H., Kilaj, A. & Willitsch, S. Design and characterization of a linear quadrupole ion trap for high-resolution Coulomb-crystal time-of-flight mass spectrometry. EPJ Techn. Instrum. 3, 5 (2016).

    Google Scholar 

  36. Schmid, P. C., Greenberg, J., Miller, M. I., Loeffler, K. & Lewandowski, H. J. An ion trap time-of-flight mass spectrometer with high mass resolution for cold trapped ion experiments. Rev. Sci. Instrum. 88, 123107 (2017).

    ADS  Google Scholar 

  37. Willitsch, S. in Handbook of High-Resolution Spectroscopy Vol. 3 (eds. Quack, M. & Merkt, F.) 1691 (Wiley, 2011).

  38. Sinhal, M. & Willitsch, S. in Photonic Quantum Technologies: Science and Applications (ed. Benyoucef, M.) 305 (Wiley, 2023).

  39. Calvin, A. et al. Single molecule infrared spectroscopy in the gas phase. Nature 621, 295–299 (2023).

    ADS  Google Scholar 

  40. Khanyile, N. B., Shu, G. & Brown, K. R. Observation of vibrational overtones by single-molecule resonant photodissociation. Nat. Commun. 6, 7825 (2015).

    ADS  Google Scholar 

  41. Schmidt, P. O. et al. Spectroscopy using quantum logic. Science 309, 749–752 (2005).

    ADS  Google Scholar 

  42. Wolf, F. et al. Non-destructive state detection for quantum logic spectroscopy of molecular ions. Nature 530, 457–460 (2016).

    ADS  Google Scholar 

  43. Chou, C.-w. et al. Preparation and coherent manipulation of pure quantum states of a single molecular ion. Nature 545, 203–207 (2017).

    ADS  Google Scholar 

  44. Sinhal, M., Meir, Z., Najafian, K., Hegi, G. & Willitsch, S. Quantum-nondemolition state detection and spectroscopy of single trapped molecules. Science 367, 1213–1218 (2020).

    ADS  Google Scholar 

  45. Campbell, W. C. & Hudson, E. R. Dipole-phonon quantum logic with trapped polar molecular ions. Phys. Rev. Lett. 125, 120501 (2020).

    ADS  Google Scholar 

  46. Najafian, K., Meir, Z., Sinhal, M. & Willitsch, S. Identification of molecular quantum states using phase-sensitive forces. Nat. Commun. 11, 4470 (2020).

    ADS  Google Scholar 

  47. Berkeland, D. J., Miller, J. D., Bergquist, J. C., Itano, W. M. & Wineland, D. J. Minimization of ion micromotion in a Paul trap. J. Appl. Phys. 83, 5025–5033 (1998).

    ADS  Google Scholar 

  48. DeVoe, R. G. Power-law distributions for a trapped ion interacting with a classical buffer gas. Phys. Rev. Lett. 102, 063001 (2009).

    ADS  Google Scholar 

  49. Meir, Z. et al. Direct observation of atom-ion nonequilibrium sympathetic cooling. Phys. Rev. Lett. 121, 053402 (2018).

    ADS  Google Scholar 

  50. Rouse, I. & Willitsch, S. Superstatistical energy distributions of an ion in an ultracold buffer gas. Phys. Rev. Lett. 118, 143401 (2017).

    ADS  Google Scholar 

  51. Cetina, M., Grier, A. T. & Vuletić, V. Micromotion-induced limit to atom–ion sympathetic cooling in Paul traps. Phys. Rev. Lett. 109, 253201 (2012).

    ADS  Google Scholar 

  52. Rouse, I. & Willitsch, S. The energy distribution of an ion in a radiofrequency trap interacting with a nonuniform neutral buffer gas. Mol. Phys. 117, 3120–3131 (2019).

    ADS  Google Scholar 

  53. Rouse, I. & Willitsch, S. Energy distributions of an ion in a radio-frequency trap immersed in a buffer gas under the influence of additional external forces. Phys. Rev. A 97, 042712 (2018).

    ADS  Google Scholar 

  54. Pinkas, M., Katz, O., Wengrowicz, J., Akerman, N. & Ozeri, R. Trap-assisted formation of atom-ion bound states. Nat. Phys 19, 1573–1578 (2023).

    Google Scholar 

  55. Hirzler, H., Trimby, E., Gerritsma, R., Safavi-Naini, A. & Pérez-Ríos, J. Trap-assisted complexes in cold atom-ion collisions. Phys. Rev. Lett. 130, 143003 (2023).

    ADS  Google Scholar 

  56. Idziaszek, Z., Calarco, T., Julienne, P. S. & Simoni, A. Quantum theory of ultracold atom-ion collisions. Phys. Rev. A 79, 010702 (2009).

    ADS  Google Scholar 

  57. Zhang, D. & Willitsch, S. in Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero (eds. Dulieu, O. & Osterwalder, A.) 496 (RSC Publishing, 2017).

  58. Feldker, T. et al. Buffer gas cooling of a trapped ion to the quantum regime. Nat. Phys. 16, 413–416 (2020).

    Google Scholar 

  59. Weckesser, P. et al. Observation of Feshbach resonances between a single ion and ultracold atoms. Nature 600, 429–433 (2021).

    ADS  Google Scholar 

  60. Schmidt, J., Weckesser, P., Thielemann, F., Schaetz, T. & Karpa, L. Optical traps for sympathetic cooling of ions with ultracold neutral atoms. Phys. Rev. Lett. 124, 053402 (2020).

    ADS  Google Scholar 

  61. Sikorsky, T. et al. Phase locking between different partial waves in atom-ion spin-exchange collisions. Phys. Rev. Lett. 121, 173402 (2018).

    ADS  Google Scholar 

  62. Côté, R. & Simbotin, I. Signature of the s-wave regime high above ultralow temperatures. Phys. Rev. Lett. 121, 173401 (2018).

    ADS  Google Scholar 

  63. Katz, O., Pinkas, M., Akerman, N. & Ozeri, R. Quantum suppression of cold reactions far from the quantum regime. Preprint at https://arxiv.org/pdf/2208.07725.pdf (2022).

  64. Ewald, N. V., Feldker, T., Hirzler, H., Fürst, H. A. & Gerritsma, R. Observation of interactions between trapped ions and ultracold Rydberg atoms. Phys. Rev. Lett. 122, 253401 (2019).

    ADS  Google Scholar 

  65. Wang, L., Deiß, M., Raithel, G. & Hecker Denschlag, J. Optical control of atom-ion collisions using a Rydberg state. J. Phys. B 53, 134005 (2020).

    ADS  Google Scholar 

  66. Secker, T. et al. Trapped ions in Rydberg-dressed atomic gases. Phys. Rev. Lett. 118, 263201 (2017).

    ADS  Google Scholar 

  67. Karman, T., Tomza, M. & Pérez-Ríos, J. Ultracold chemistry as a testbed for few-body physics. Nat. Phys. https://doi.org/10.1038/s41567-024-02467-3 (2024).

  68. da Silva Jr, H., Raoult, M., Aymar, M. & Dulieu, O. Formation of molecular ions by radiative association of cold trapped atoms and ions. New J. Phys. 17, 045015 (2015).

    ADS  Google Scholar 

  69. Hall, F. H. J., Aymar, M., Bouloufa-Maafa, N., Dulieu, O. & Willitsch, S. Light-assisted ion-neutral reactive processes in the cold regime: radiative molecule formation versus charge exchange. Phys. Rev. Lett. 107, 243202 (2011).

    ADS  Google Scholar 

  70. Hall, F. H. J., Aymar, M., Raoult, M., Dulieu, O. & Willitsch, S. Light-assisted cold chemical reactions of barium ions with rubidium atoms. Mol. Phys. 111, 1683–1690 (2013).

    ADS  Google Scholar 

  71. Xing, X. et al. Ion-loss events in a hybrid trap of cold Rb-Ca+: photodissociation, blackbody radiation and nonradiative charge exchange. Phys. Rev. A 106, 062809 (2022).

    ADS  Google Scholar 

  72. Rellergert, W. G. et al. Measurement of a large chemical reaction rate between ultracold closed-shell 40Ca atoms and open-shell 174Yb+ ions held in a hybrid atom-ion trap. Phys. Rev. Lett. 107, 243201 (2011).

    ADS  Google Scholar 

  73. Härter, A. et al. Single ion as a three-body reaction center in an ultracold atomic gas. Phys. Rev. Lett. 109, 123201 (2012).

    ADS  Google Scholar 

  74. Krükow, A. et al. Energy scaling of cold atom-atom-ion three-body recombination. Phys. Rev. Lett. 116, 193201 (2016).

    ADS  Google Scholar 

  75. Krükow, A., Mohammadi, A., Härter, A. & Hecker Denschlag, J. Reactive two-body and three-body collisions of Ba+ in an ultracold Rb gas. Phys. Rev. A 94, 030701 (2016).

    ADS  Google Scholar 

  76. Mohammadi, A. et al. Life and death of a cold BaRb+ molecule inside an ultracold cloud of Rb atoms. Phys. Rev. Res. 3, 013196 (2021).

    Google Scholar 

  77. Hirzler, H. et al. Observation of chemical reactions between a trapped ion and ultracold Feshbach dimers. Phys. Rev. Lett. 128, 103401 (2022).

    ADS  Google Scholar 

  78. Härter, A. et al. Population distribution of product states following three-body recombination in an ultracold atomic gas. Nat. Phys. 9, 512–517 (2013).

    ADS  Google Scholar 

  79. Jyothi, S. et al. Photodissociation of trapped Rb2+: implications for simultaneous trapping of atoms and molecular ions. Phys. Rev. Lett. 117, 213002 (2016).

    ADS  Google Scholar 

  80. Hall, F. H. J. & Willitsch, S. Millikelvin reactive collisions between sympathetically cooled molecular ions and laser-cooled atoms in an ion-atom hybrid trap. Phys. Rev. Lett. 109, 233202 (2012).

    ADS  Google Scholar 

  81. Zrafi, W., Ladjimi, H., Said, H., Berriche, H. & Tomza, M. Ab initio electronic structure and prospects for the formation of ultracold calcium-alkali-metal-atom molecular ions. New J. Phys. 22, 073015 (2020).

    ADS  Google Scholar 

  82. Zou, Y.-Q. et al. Observation of vibrational dynamics of orientated Rydberg-atom-ion molecules. Phys. Rev. Lett. 130, 023002 (2023).

    ADS  Google Scholar 

  83. Deiß, M., Haze, S. & Hecker Denschlag, J. Long-range atom-ion Rydberg molecule: a novel molecular binding mechanism. Atoms 9, 34 (2021).

    ADS  Google Scholar 

  84. Duspayev, A. et al. Long-range Rydberg-atom-ion molecules of Rb and Cs. Phys. Rev. Res. 3, 023114 (2021).

    Google Scholar 

  85. Zhelyazkova, V., Martins, F. B. V., Agner, J. A., Schmutz, H. & Merkt, F. Ion-molecule reactions below 1 K: strong enhancement of the reaction rate of the ion-dipole reaction He+ + CH3F. Phys. Rev. Lett. 125, 263401 (2020).

    ADS  Google Scholar 

  86. Margulis, B. et al. Tomography of Feshbach resonance states. Science 380, 77–81 (2023).

    ADS  Google Scholar 

  87. Gordon, S. D. S. et al. Quantum-state-controlled channel branching in cold Ne(3P2) + Ar chemi-ionization. Nat. Chem. 10, 1190–1195 (2018).

    Google Scholar 

  88. Puri, P. et al. Synthesis of mixed hypermetallic oxide BaOCa+ from laser-cooled reagents in an atom-ion hybrid trap. Science 357, 1370–1375 (2017).

    ADS  Google Scholar 

  89. Dörfler, A. D. et al. Long-range versus short-range effects in cold molecular ion-neutral collisions. Nat. Commun. 10, 5429 (2019).

    ADS  Google Scholar 

  90. Grier, A. T., Cetina, M., Oručević, F. & Vuletić, V. Observation of cold collisions between trapped ions and trapped atoms. Phys. Rev. Lett. 102, 223201 (2009).

    ADS  Google Scholar 

  91. Schmid, S., Härter, A. & Hecker Denschlag, J. Dynamics of a cold trapped ion in a Bose-Einstein condensate. Phys. Rev. Lett. 105, 133202 (2010).

    ADS  Google Scholar 

  92. Zipkes, C., Palzer, S., Ratschbacher, L., Sias, C. & Köhl, M. Cold heteronuclear atom-ion collisions. Phys. Rev. Lett. 105, 133201 (2010).

    ADS  Google Scholar 

  93. Ravi, K., Lee, S., Sharma, A., Werth, G. & Rangwala, S. A. Cooling and stabilization by collisions in a mixed ion-atom system. Nat. Commun. 3, 1126 (2012).

    ADS  Google Scholar 

  94. Mahdian, A., Krükow, A. & Hecker Denschlag, J. Direct observation of swap cooling in atom-ion collisions. New. J. Phys. 23, 065008 (2021).

    ADS  Google Scholar 

  95. Puri, P. et al. Reaction blockading in a reaction between an excited atom and a charged molecule at low collision energy. Nat. Chem. 11, 615–621 (2019).

    Google Scholar 

  96. Mills, M. et al. Engineering excited-state interactions at ultracold temperatures. Phys. Rev. Lett. 122, 233401 (2019).

    ADS  Google Scholar 

  97. Hassan, A. Z. et al. Associative detachment in anion-atom reactions involving a dipole-bound electron. Nat. Commun. 13, 818 (2022).

    ADS  Google Scholar 

  98. Hauser, D. et al. Rotational state-changing cold collisions of hydroxyl ions with helium. Nat. Phys. 11, 467–470 (2015).

    ADS  Google Scholar 

  99. Dieterle, T. et al. Inelastic collision dynamics of a single cold ion immersed in a Bose-Einstein condensate. Phys. Rev. A 102, 041301 (2020).

    ADS  Google Scholar 

  100. Willitsch, S., Bell, M. T., Gingell, A. D., Procter, S. R. & Softley, T. P. Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules. Phys. Rev. Lett. 100, 043203 (2008).

    ADS  Google Scholar 

  101. Voute, A. et al. Charge transfer of polyatomic molecules in ion-atom hybrid traps: stereodynamics in the millikelvin regime. Phys. Rev. Res. 5, L032021 (2023).

    Google Scholar 

  102. Kilaj, A. et al. Observation of different reactivities of para and ortho-water towards trapped diazenylium ions. Nat. Commun. 9, 2096 (2018).

    ADS  Google Scholar 

  103. Kilaj, A. et al. Conformer-specific polar cycloaddition of dibromobutadiene with trapped propene ions. Nat. Commun. 12, 6047 (2021).

    ADS  Google Scholar 

  104. Yang, T. et al. Isomer-specific kinetics of the C+ + H2O reaction at the temperature of interstellar clouds. Sci. Adv. 7, eabe4080 (2021).

    ADS  Google Scholar 

  105. Petralia, L. S., Tsikritea, A., Loreau, J., Softley, T. P. & Heazlewood, B. R. Strong inverse kinetic isotope effect observed in ammonia charge exchange reactions. Nat. Commun. 11, 173 (2020).

    ADS  Google Scholar 

  106. Willitsch, S. in Advances in Chemical Physics Vol. 162 (eds. Rice, S. A. & Dinner, A. R.) Ch. 5 (Wiley, 2017).

  107. Krohn, O. A., Catani, K. J. & Lewandowski, H. J. Formation of astrochemically relevant molecular ions: reaction of translationally cold CCl+ with benzene in a linear ion trap. Phys. Rev. A 105, L020801 (2022).

    ADS  Google Scholar 

  108. DeMille, D., Hutzler, N., Rey, A. M. & Zelevinsky, T. Quantum sensing and metrology with cold and ultracold molecules. Nat. Phys. (in the press).

  109. Alighanbari, S., Hansen, M. G., Korobov, V. I. & Schiller, S. Rotational spectroscopy of cold and trapped molecular ions in the Lamb–Dicke regime. Nat. Phys. 14, 555–559 (2018).

    Google Scholar 

  110. Patra, S. et al. Proton-electron mass ratio from laser spectroscopy of HD+ at the part-per-trillion level. Science 369, 1238–1241 (2020).

    ADS  Google Scholar 

  111. Alighanbari, S., Giri, G. S., Constantin, F. L., Korobov, V. I. & Schiller, S. Precise test of quantum electrodynamics and determination of fundamental constants with HD+ ions. Nature 581, 152–158 (2020).

    ADS  Google Scholar 

  112. Kortunov, I. V. et al. Proton–electron mass ratio by high-resolution optical spectroscopy of ion ensembles in the resolved-carrier regime. Nat. Phys. 17, 569–573 (2021).

    Google Scholar 

  113. Chupp, T. E., Fierlinger, P., Ramsey-Musolf, M. J. & Singh, J. T. Electric dipole moments of atoms, molecules, nuclei and particles. Rev. Mod. Phys. 91, 015001 (2019).

    ADS  MathSciNet  Google Scholar 

  114. Cairncross, W. B. et al. Precision measurement of the electron’s electric dipole moment using trapped molecular ions. Phys. Rev. Lett. 119, 153001 (2017).

    ADS  Google Scholar 

  115. Roussy, T. S. et al. Experimental constraint on axion like particles over seven orders of magnitude in mass. Phys. Rev. Lett. 126, 171301 (2021).

    ADS  Google Scholar 

  116. Loh, H. et al. Precision spectroscopy of polarized molecules in an ion trap. Science 342, 1220–1222 (2013).

    ADS  Google Scholar 

  117. Zhou, Y. et al. Second-scale coherence measured at the quantum projection noise limit with hundreds of molecular ions. Phys. Rev. Lett. 124, 053201 (2020).

    ADS  Google Scholar 

  118. Germann, M., Tong, X. & Willitsch, S. Observation of electric-dipole-forbidden infrared transitions in cold molecular ions. Nat. Phys. 10, 820–824 (2014).

    Google Scholar 

  119. Schiller, S., Bakalov, D. & Korobov, V. I. Simplest molecules as candidates for precise optical clocks. Phys. Rev. Lett. 113, 023004 (2014).

    ADS  Google Scholar 

  120. Najafian, K., Meir, Z. & Willitsch, S. From megahertz to terahertz qubits encoded in molecular ions: theoretical analysis of dipole-forbidden spectroscopic transitions in N2+. Phys. Chem. Chem. Phys. 22, 23083 (2020).

    Google Scholar 

  121. Schwegler, N. et al. Trapping and ground-state cooling of a single H2+. Phys. Rev. Lett. 131, 133003 (2023).

    ADS  Google Scholar 

  122. Chou, C. W. et al. Frequency-comb spectroscopy on pure quantum states of a single molecular ion. Science 367, 1458–1461 (2020).

    ADS  Google Scholar 

  123. Collopy, A. L., Schmidt, J., Leibfried, D., Leibrandt, D. R. & Chou, C.-W. Effects of an oscillating electric field on and dipole moment measurement of a single molecular ion. Phys. Rev. Lett. 130, 223201 (2023).

    ADS  Google Scholar 

  124. Katz, O., Pinkas, M., Akerman, N. & Ozeri, R. Quantum logic detection of collisions between single atom–ion pairs. Nat. Phys. 18, 533–537 (2022).

    Google Scholar 

  125. Wolf, J. et al. State-to-state chemistry for three-body recombination in an ultracold rubidium gas. Science 358, 921–924 (2017).

    ADS  Google Scholar 

  126. Liu, Y. et al. Precision test of statistical dynamics with state-to-state ultracold chemistry. Nature 593, 379–384 (2021).

    ADS  Google Scholar 

  127. Lin, Y., Leibrandt, D. R., Leibfried, D. & Chou, C.-w. Quantum entanglement between an atom and a molecule. Nature 581, 273–277 (2020).

    ADS  Google Scholar 

  128. Patterson, D. Method for preparation and readout of polyatomic molecules in single quantum states. Phys. Rev. A 97, 033403 (2018).

    ADS  Google Scholar 

  129. Schindler, P. Ultrafast infrared spectroscopy with single molecular ions. New J. Phys. 21, 083025 (2019).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Markus Deiß, Stefan Willitsch or Johannes Hecker Denschlag.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deiß, M., Willitsch, S. & Hecker Denschlag, J. Cold trapped molecular ions and hybrid platforms for ions and neutral particles. Nat. Phys. 20, 713–721 (2024). https://doi.org/10.1038/s41567-024-02440-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-024-02440-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing