Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nonclassical near-field dynamics of surface plasmons


The coupling of photons to collective charge oscillations at the surface of a metal to form surface-plasmon polaritons enables strong confinement of electromagnetic near fields in the vicinity of photonic nanostructures. Even though surface plasmons are formed from bosons and fermions, this kind of near-field wave exhibits bosonic properties in the limit of many electrons. Here we show that the classical near-field dynamics of surface plasmons are defined by nonclassical processes of scattering among their constituent multiparticle subsystems. We isolate multiparticle plasmonic subsystems to demonstrate that their quantum dynamics are governed by either bosonic or fermionic processes of coherence. We also discuss the quantum-coherence properties of plasmonic fields excited by the vacuum fluctuations of the electromagnetic field. Our findings uncover multiparticle properties of electromagnetic near fields with important implications for quantum technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quantum near-field dynamics of plasmonic fields.
Fig. 2: Collective and multiparticle-subsystem dynamics of surface plasmons.
Fig. 3: Observation of bosonic- and fermionic-like processes of coherence in a plasmonic system.

Similar content being viewed by others

Data availability

Source data are available for this paper at All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The code used to analyse the data and the related simulation files are available from the corresponding author upon reasonable request.


  1. Tame, M. S. et al. Quantum plasmonics. Nat. Phys. 9, 329–340 (2013).

  2. You, C., Nellikka, A. C., De Leon, I. & Magaña-Loaiza, O. S. Multiparticle quantum plasmonics. Nanophotonics 9, 1243–1269 (2020).

  3. Altewischer, E., van Exter, M. P. & Woerdman, J. P. Plasmon-assisted transmission of entangled photons. Nature 418, 304–306 (2002).

  4. Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).

  5. Martino, G. D. et al. Quantum statistics of surface plasmon polaritons in metallic stripe waveguides. Nano Lett. 12, 2504–2508 (2012).

  6. Fasel, S. et al. Energy-time entanglement preservation in plasmon-assisted light transmission. Phys. Rev. Lett. 94, 110501 (2005).

    Article  ADS  Google Scholar 

  7. Huck, A. et al. Demonstration of quadrature-squeezed surface plasmons in a gold waveguide. Phys. Rev. Lett. 102, 246802 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  8. Daniel, S. et al. Surface plasmons carry the pancharatnam-berry geometric phase. Phys. Rev. Lett. 119, 253901 (2017).

    Article  ADS  Google Scholar 

  9. Lawrie, B. J., Evans, P. G. & Pooser, R. C. Extraordinary optical transmission of multimode quantum correlations via localized surface plasmons. Phys. Rev. Lett. 110, 156802 (2013).

    Article  ADS  Google Scholar 

  10. Chang, D. E., Sørensen, A. S., Hemmer, P. R. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006).

    Article  ADS  Google Scholar 

  11. Safari, A. et al. Measurement of the photon-plasmon coupling phase shift. Phys. Rev. Lett. 122, 133601 (2019).

    Article  ADS  Google Scholar 

  12. Pres, S. et al. Detection of a plasmon-polariton quantum wave packet. Nat. Phys. 19, 656–662 (2023).

  13. Dai, Y. et al. Poincaré engineering of surface plasmon polaritons. Nat. Rev. Phys. 4, 562–564 (2022).

  14. Vest, B. et al. Plasmonic interferences of two-particle N00N states. New J. Phys. 20, 053050 (2018).

    Article  ADS  Google Scholar 

  15. Büse, A. et al. Symmetry protection of photonic entanglement in the interaction with a single nanoaperture. Phys. Rev. Lett. 121, 173901 (2018).

    Article  ADS  Google Scholar 

  16. Vest, B. et al. Anti-coalescence of bosons on a lossy beam splitter. Science 356, 1373–1376 (2017).

  17. Di Martino, G. et al. Observation of quantum interference in the plasmonic hong-ou-mandel effect. Phys. Rev. Appl. 1, 034004 (2014).

    Article  ADS  Google Scholar 

  18. Heeres, R. W., Kouwenhoven, L. P. & Zwiller, V. Quantum interference in plasmonic circuits. Nat. Nanotechnol. 8, 719–722 (2013).

  19. You, C. et al. Observation of the modification of quantum statistics of plasmonic systems. Nat. Commun. 12, 5161 (2021).

    Article  ADS  Google Scholar 

  20. Malý, P. et al. Separating single- from multi-particle dynamics in nonlinear spectroscopy. Nature 616, 280–287 (2023).

  21. Kardar, M. & Golestanian, R. The ‘friction’ of vacuum, and other fluctuation-induced forces. Rev. Mod. Phys. 71, 1233–1245 (1999).

  22. Volokitin, A. I. & Persson, B. N. J. Near-field radiative heat transfer and noncontact friction. Rev. Mod. Phys. 79, 1291–1329 (2007).

  23. Lambrecht, A. The casimir effect: a force from nothing. Phys. World 15, 29–32 (2002).

  24. Ford, L. H. Electromagnetic vacuum fluctuations and electron coherence. Phys. Rev. D 47, 5571–5580(1993).

  25. Laliotis, A., de Silans, T. P., Maurin, I., Ducloy, M. & Bloch, D. Casimir-polder interactions in the presence of thermally excited surface modes. Nat. Commun. 5, 4364 (2014).

    Article  ADS  Google Scholar 

  26. Intravaia, F. & Lambrecht, A. Surface plasmon modes and the casimir energy. Phys. Rev. Lett. 94, 110404 (2005).

    Article  ADS  Google Scholar 

  27. Dodonov, V. Fifty years of the dynamical casimir effect. Physics 2, 67–104 (2020).

  28. Rodriguez, A. W., Capasso, F. & Johnson, S. G. The casimir effect in microstructured geometries. Nat. Photonics 5, 211–221 (2011).

  29. Dell’Anno, F., Siena, S. D. & Illuminati, F. Multiphoton quantum optics and quantum state engineering. Phys. Rep. 428, 53–168 (2006).

  30. You, C. et al. Scalable multiphoton quantum metrology with neither pre- nor post-selected measurements. Appl. Phys. Rev. 8, 041406 (2021).

    Article  ADS  Google Scholar 

  31. You, C. et al. Identification of light sources using machine learning. Appl. Phys. Rev. 7, 021404 (2020).

    Article  ADS  Google Scholar 

  32. Kolesov, R. et al. Wave–particle duality of single surface plasmon polaritons. Nat. Phys. 5, 470–474 (2009).

  33. Dheur, M.-C. et al. Single-plasmon interferences. Sci. Adv. 2, e1501574 (2016).

    Article  ADS  Google Scholar 

  34. Li, D. & Pacifici, D. Strong amplitude and phase modulation of optical spatial coherence with surface plasmon polaritons. Sci. Adv. 3, e1700133 (2017).

    Article  ADS  Google Scholar 

  35. Lee, C. et al. Quantum plasmonic sensing: Beyond the shot-noise and diffraction limit. ACS Photonics 3, 992–999 (2016).

  36. Holtfrerich, M. W. et al. Toward quantum plasmonic networks. Optica 3, 985–988 (2016).

  37. Tame, M. Mix and match. Nat. Phys. 17, 1198–1199 (2021).

  38. Dowran, M., Kumar, A., Lawrie, B. J., Pooser, R. C. & Marino, A. M. Quantum-enhanced plasmonic sensing. Optica 5, 628–633 (2018).

  39. O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photonics 3, 687–695 (2009).

  40. Magaña-Loaiza, O. S. et al. Multiphoton quantum-state engineering using conditional measurements. npj Quantum Inf. 5, 80 (2019).

    Article  ADS  Google Scholar 

  41. Thouless, D. J. The Quantum Mechanics of Many-Body Systems (Courier Corporation, 2014).

  42. Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).

  43. Arecchi, F. T., Degiorgio, V. & Querzola, B. Time-dependent statistical properties of the laser radiation. Phys. Rev. Lett. 19, 1168–1171 (1967).

  44. Smith, T. A. & Shih, Y. Turbulence-free double-slit interferometer. Phys. Rev. Lett. 120, 063606 (2018).

    Article  ADS  Google Scholar 

  45. Rafsanjani, S. M. H. et al. Quantum-enhanced interferometry with weak thermal light. Optica 4, 487–491 (2017).

  46. Bhusal, N. et al. Smart quantum statistical imaging beyond the abbe-rayleigh criterion. npj Quantum Inf. 8, 83 (2022).

    Article  ADS  Google Scholar 

  47. Glauber, R. J. Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766–2788 (1963).

  48. Gerry, C. & Knight, P. Introductory Quantum Optics (Cambridge Univ. Press, 2004).

  49. Nunn, C. M., Franson, J. D. & Pittman, T. B. Modifying quantum optical states by zero-photon subtraction. Phys. Rev. A 105, 033702 (2022).

    Article  ADS  Google Scholar 

  50. Nunn, C. M., Shringarpure, S. U. & Pittman, T. B. Transforming photon statistics through zero-photon subtraction. Phys. Rev. A 107, 043711 (2023).

    Article  ADS  Google Scholar 

  51. Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995).

  52. Jeltes, T. et al. Comparison of the hanbury brown-twiss effect for bosons and fermions. Nature 445, 402–405 (2007).

  53. Crespi, A. et al. Anderson localization of entangled photons in an integrated quantum walk. Nat. Photonics 7, 322–328 (2013).

  54. Li, Q. et al. A non-unitary metasurface enables continuous control of quantum photon-photon interactions from bosonic to fermionic. Nat. Photonics 15, 267–271 (2021).

Download references


M.H., R.B.D., B.B. and O.S.M.L. acknowledge funding from the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0021069. C.Y. and O.S.M.L. acknowledge support from the Army Research Office (ARO), through the Early Career Program (ECP) under the grant no. W911NF-22-1-0088. We thank K. M. McPeak for providing gold thin films.

Author information

Authors and Affiliations



M.H. and R.B.D. contributed equally. The experiment was designed by M.H., C.Y. and O.S.M.L. The theoretical description was developed by R.B.D., C.Y. and O.S.M.L. The experiment was performed by M.H., B.B. and C.Y. The data was analysed by M.H., R.B.D., C.Y. and O.S.M.L. The project was supervised by C.Y. and O.S.M.L. The idea was conceived by O.S.M.L. All authors contributed to the writing of the paper and approved the final version of the paper.

Corresponding author

Correspondence to Chenglong You.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Tobias Brixner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5.

Source data

Source Data Fig. 1

Processed experimental data for the source shown in Fig. 1b.

Source Data Fig. 2

Processed experimental data for Fig. 2.

Source Data Fig. 3

Processed experimental data for Fig. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, M., Dawkins, R.B., Bertoni, B. et al. Nonclassical near-field dynamics of surface plasmons. Nat. Phys. (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing