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Graph states are abroad family of entangled quantum states, each defined
by agraph composed of edges representing the correlations between
subsystems. Such states constitute versatile resources for quantum
computation and quantum-enhanced measurement. Their generation

and engineering require a high level of control over entanglement. Here
wereport on the generation of continuous-variable graph states of atomic
spin ensembles, which form the nodes of the graph. We program the
entanglement structure encoded in the graph edges by combining global
photon-mediated interactionsin an optical cavity with local spin rotations.

By tuning the entanglement between two subsystems, we either localize
correlations within each subsystem or enable Einstein-Podolsky—Rosen
steering—a strong form of entanglement that enables the extraction of
precise information from one subsystem through measurements on the
other. We further engineer afour-mode square graph state, highlighting
the flexibility of our approach. Our method is scalable to larger and more
complex graphs, laying groundwork for measurement-based quantum
computation and advanced protocols in quantum metrology.

Entanglementis akey resource for enabling quantum computation and
advancing precision measurements towards fundamental limits. Crucial
totheseapplications s the ability to controllably and scalably generate
quantum correlations among many particles. A leading platform for
achievingthese ends are systems of cold atoms. Here, entangled states
of over 20 atoms, such as cluster states with applications in quantum
computation, have been generated by bottom-up approaches using local
interactions'. Conversely, global interactions among 10? to 10° atoms
have been applied to prepare collective entangled states, including
squeezed states””’ that enable enhanced precisionin clocks***” and inter-
ferometers”'. Such states, featuring symmetric correlations between
allatom pairs, have been generated by collisions in Bose-Einstein con-
densates®* and by photon-mediated interactions in optical cavities* .

Atomsin cavities offer a particularly versatile platform for scalable
generation of entanglement®*"2, with a single mode of light serv-
ing as an interface for correlating the atoms across millimetre-scale
distances. In this setting, entanglement between spatial modes of an
atomic gas has been achieved by splitting aglobal squeezed stateinto

distinct subensembles”, building on past work with optically dense
ensemblesin free space'* and with spinor condensates” . Combining
such top-down generation of entanglement with advances in local
control and detection?** provides the opportunity to engineer and
probe richer spatial structures of entanglement, with applications
in multimode quantum sensing®*, multiparameter estimation” and
quantum computation®,

A paradigmatic class of multimode entangled states are graph
states?, universal resources for quantum computation® with
broader applications in quantum metrology®* and in simulations of
condensed-matter physics®. These states, also known as cluster states,
derive their name from a graph that defines the entanglement struc-
ture, with edges representing correlations between nodes that may
represent either individual qubits or continuous-variable degrees
of freedom. Discrete-variable graph states have been generated with
superconducting qubits®, trapped ions*® and Rydberg atoms’, while
continuous-variable graph states have been prepared in photonic
systems®**, Hitherto unexplored are opportunities for combining the

'Department of Physics, Stanford University, Stanford, CA, USA. 2SLAC National Accelerator Laboratory, Menlo Park, CA, USA. *These authors contributed
equally: Eric S. Cooper, Philipp Kunkel, Avikar Periwal. <le-mail: schleier@stanford.edu

Nature Physics


http://www.nature.com/naturephysics
https://doi.org/10.1038/s41567-024-02407-1
http://orcid.org/0000-0002-8145-9184
http://orcid.org/0000-0002-4686-3528
http://crossmark.crossref.org/dialog/?doi=10.1038/s41567-024-02407-1&domain=pdf
mailto:schleier@stanford.edu

Article

https://doi.org/10.1038/s41567-024-02407-1

a
Global interactions
¥ KX
’ﬂ-.hl
[

Global entanglement

Local entanglement

Graph states

EE "B EDHE D Ea® | |

Fig.1|Programmable entanglementin an array of four atomic ensembles
within an optical cavity. a, Initializing allatoms in the m = O state and driving
the cavity with lightinduces creation of correlated atom pairs in states m = +1.
b, Theresulting spin-nematic squeezing is visualized on a spherical phase space
spanned by the collective spin-1observables {F, @%, Q°}. For short interaction

times, the dynamics canbe described on an effective two-dimensional phase
space spanned by the conjugate observables {x, p}. ¢, Combining the global
interactions with local spin rotations allows for engineering a variety of
entanglement structures, such as entanglement localized to selected subsystems
and graph states with up to four nodes.

benefits of light and matter to engineer graph states with flexible con-
nectivity and long-lived information storage in atomic states.

Here we report on the generation of programmable multimode
entanglement in an array of four atomic ensembles coupled to an
optical cavity. To control the structure of entanglement, we intersperse
globalinteractions with local spinrotations. These two ingredients pro-
vide control over the strength of entanglement between subsystems
and thereby enable a general protocol for preparing graph states. As
aminimal instance, we prepare and characterize a two-mode graph
state that exhibits Einstein-Podosky-Rosen (EPR) steering, a strong
form of entanglement thatisaresource for quantum teleportation and
that has previously been demonstrated in Bose-Einstein condensates
using collisional interactions " and in photonic systems™®. Toiillus-
trate the versatility of our protocol, we further construct afour-mode
square graphstate. Our work offers ablueprint for scalable generation
of resource states for continuous-variable quantum computation and
multimode quantum metrology.

Asthe mechanism for generating global entanglement, weimple-
ment cavity-mediated spin-nematic squeezing of spin-1atoms®*. When
adrive field is applied to the cavity (Fig. 1a), photons mediate spin-
exchangeinteractions® and the systemis governed by the Hamiltonian

_ X (pxpx yen + 900
H/h—ZN(FF +FF)+2Q. 1)

Here, F denotes the collective spin of all Natoms in the cavity, with
spinlength F < N, and y quantifies the collective interaction strength.
In the second term, g parameterizes the quadratic Zeeman energy,
proportionaltothedifference Q° = N, + N_, - N,between the populations
N, of atomsinthe m=+1and m =0 Zeeman states.

We visualize the collective spin dynamics in a spherical phase
space, analogous to the Bloch sphere, for spin-1observables (Fig. 1b).
Wefocus onasysteminitialized with allatoms in m = 0: thatis, polarized
along the Q° axis. The effect of the cavity-mediated interactions is to
twist the quasiprobability distribution of this initial state about the
F*axis, inducing squeezing™. Simultaneously, the quadratic Zeeman
effect generates so-called spinor rotations about the Q° axis, mapping
states along F* to polarized states of the quadrupole operator Q**
afterarotation of 90°. The early-time dynamics explored in our experi-
ments are well described by approximating a patch of the sphere asa
two-dimensional phase space spanned by the conjugate observables
x = F*/\/CN and p = Q¥?/7/CN, which are normalized such that the
Heisenberg uncertainty relation for x and p is Var (x) Var (p) > 1. The

contrast C, set by the commutator [([F*, Q¥*])| = 2CN, accounts for
imperfect polarization along the Q° axis.

We engineer entanglement in an array of four atomic ensembles
(Fig. 1a), each containing up to 5 x 10° Rubidium-87 atoms in the f=1
hyperfine manifold. The ensembles are placed near the centre of a
near-concentric optical cavity with a Rayleigh range of 0.9 mm and
are spaced by 250 pm. Applying a drive field to the cavity for 50 ps
generates spin-nematic squeezing in the symmetric mode that directly
couples to the cavity. To read out each ensemble i in a specified
quadrature x; cos ¢ — p; sin ¢, we map this quadrature onto the spin
component F* via a spinor rotation by an angle ¢. A subsequent spin
rotation converts this signal into a population difference between
Zeeman states, which we detect by fluorescence imaging.

To verify the generation of spin-nematic squeezing, we measure
the variance {2 = Var (xcos ¢ — psing) for the symmetric mode
x, =Y x;/2 of all four ensembles. As shown in Fig. 2a, we measure a
minimum value *= 0.52 + 0.07, limited primarily by technical noise
(see Supplementary Information). We confirm the presence of
entanglement by evaluating the Wineland squeezing parameter
&=0/C=0.63+0.08. Values below the standard quantum limit &=1,
shown by the dashed line at {* = C, indicate enhanced metrological
sensitivity compared to any unentangled state of N atoms'** (see
Supplementary Information). We calibrate N from measurements of
the atomic projection noise (Extended Data Fig. 1) and determine C
from measured populations in the three Zeeman states (Methods,
‘Measurement of contrast C').

To demonstrate that only the symmetric mode couples to the
cavity, we also evaluate the variance *for themode x_ = (x, — xR)/\/E,
whichis antisymmetric under the exchange of the left two ensembles
X, and the right two ensembles x;. As expected, the variance for the
antisymmetric mode shows no statistically significant dependence
on ¢ and has an average value #=1.14 + 0.04 near the quantum
projection noise level.

We confirm the long-range character of the entanglement by
evaluating a witness for entanglement®® between the left and right
subsystems

W = Var(x/)Var(pL). ()
Here, x/, denotesthe squeezed quadraturein the symmetric mode and

p_is the corresponding conjugate observable in the antisymmetric
mode. Generically, Wcan take on any value since x, and p_ commute.
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Fig. 2| Global squeezing and entanglement between subsystems. a, Cavity-
mediated interactions lead to squeezing of the symmetric mode (red circles) below
the standard quantum limit (SQL, dashed line). The antisymmetric mode (blue
squares) does not couple to the cavity and remains approximately in a coherent
state. Multiplying values of the variance {* for the squeezed quadrature x/, of the
symmetric mode and the orthogonal quadrature p’ of the antisymmetric mode
yields the entanglement witness W. Inset, greenellipse shows area VW, smaller
than dashed circular region representing minimum-uncertainty unentangled state.
b, Analysing the left and right subsystems separately (yellow squares and purple
circles) yields a degradationin squeezing, consistent with neglecting information
contained in correlations between the subsystems. Error bars show1s.d.
confidence intervals extracted viajackknife resampling. Shaded curves show the
1s.d. confidence intervals of sinusoidal fits to the data.

However, in the absence of correlations between the left and right
subsystems, their independent Heisenberg uncertainty relations
impose the constraint W>1, such thatvalues W <1imply entanglement.
The uncertainty product from the data in Fig. 2ais W=0.55+0.10,
witnessing entanglement between the left and right subsystems.

Consistent with the entanglement between subsystems, we
observe adegradationinsqueezing when measuring each subsystem
individually, as shown in Fig. 2b. To further highlight that the left and
right subsystems are in locally mixed states, we quantify the increase
in phase space area due to the mutual information between them.
For Gaussian states, the phase space area A,, = {;,in{max fOr a mode m
is the product of the standard deviations of the squeezed and
antisqueezed quadratures. Local measurements that discard cor-
relations between the left and right subsystems yield a total phase
space volume A, Ay =3.7 + 0.4, larger than the total phase space
volume A,A_=2.2 + 0.3 for global measurements of the symmetric
and antisymmetric modes. This emphasizes the loss of information
whenignoring correlations between the local subsystems.

To optimize squeezing within each subsystem—for example, for
certain applications in spatially resolved sensing”—the correlations
between subsystems should be removed while maintaining the entangle-
ment internal to each subsystem. Combining the global spin-nematic
squeezing with local rotations provides the requisite control of the
entanglementstructure. Todisentangle the left and right subsystems, we
performasequence akinto spinecho, asshowninFig. 3a. Between two
pulses ofinteractions, we rotate the spins of the right subsystem by 180°
by optically imprinting alocal vector a.c. Stark shift (Methods, ‘Global
and local control over spin orientation’). The effect is to cancel out
interactions betweenthe two subsystems, leaving only local squeezing
(Fig.3c). Thescheme can equivalently be viewed as squeezing both the
symmetric and antisymmetric modesin the same quadrature (Fig. 3b).

Morebroadly, applying asequence of squeezing operationsinthe
basis of collective modes enables control over the spatial structure
of entanglement via the relative orientations of the squeezed

quadratures. Whereas a relative phase @ = 0 between the squeezed
quadratures of the symmetric and antisymmetric modes disentangles
theleft and right subsystems, the entanglement between subsystems
can alternatively be maximized by introducing a relative phase
@ =90° via a spinor rotation in the sequence shown in Fig. 3a. The
90° phase improves the entanglement witness W in equation (2) by
producing simultaneous squeezing of both x/, and p_. The resulting
variances, shown in Fig. 3d, yield an entanglement witness
W=0.23 £ 0.05. The presence of squeezing in both orthogonal quad-
raturesis indicative of entanglement of the paradigmatic EPR type.

A notable feature of the EPR entangled state is its capacity for
steering, in which measurements of one subsystem can predict meas-
urements of both quadratures of the other subsystem to better
than the local Heisenberg uncertainty product. Steering is a stricter
condition than entanglement and enables teleportation of quantum
information®. To witness the left subsystem steering the right, we
use measurements of the left subsystem to estimate x; and p and
calculate the error of the inference after subtracting a small detection
noise contribution (Methods, ‘Steering criterion’). The product of
conditional variances Var (xp|x; ) Var (pg|p;) = 0.68 + 0.18 is less
than one, the local Heisenberg uncertainty bound. The comparable
witness for the right subsystem steering the leftis 0.66 + 0.18. We thus
establish bidirectional steering at the 92% confidence level, which
justifies identifying the state as a continuous-variable EPR state.

Our preparation of the EPR state constitutes a minimal instance
of ascalable protocol for preparing graph states, in which the edges
of the graph denote quantum correlations between conjugate obser-
vables on connected sites. Mathematically, this defining property of
anideal graph state can be expressed as

Var (pi - ZAyxj) -0, (€)
J

where the adjacency matrix A encodes the connectivity of the
graph. As a general recipe for preparing a specified graph state, we
diagonalize the adjacency matrix A to obtain a set of eigenvectors
representing collective modes that should be squeezed. For each eigen-
mode m, the corresponding eigenvalue A,, specifies the orientation
¢ = arccot A, of the squeezed quadrature.

The graph representing the two-mode EPR state is shown in
Fig.3e and corresponds to an adjacency matrix

01
A=[ } @
10

Diagonalizing A yields a state-preparation protocol that matches the
scheme of Fig. 3a: the eigenmodes of A are the symmetric and antisym-
metric modes, while the eigenvalues A, = t1indicate that the squeezed
quadratures should be oriented at ¢, = +45°, consistent up to a global
rotation with the squeezing curves in Fig. 3d. Henceforth we work in
aglobally rotated basis chosen to orient the squeezed quadratures at
the angles ¢,,. To visualize the equivalence of squeezing the collec-
tive modes with engineering the graph of entanglement, we use the
data from Fig. 3d to reconstruct the correlations between conjugate
variables in the two subsystems

Cov (x;,p;)

4/ Var (x;) Var (pj)’

where Cov (x;, p;) denotes the covariance (Methods, ‘Correlation
matrix reconstruction’). These correlations, shown in Fig. 3e, agree
with the adjacency matrix A.

We additionally directly probe the graph of the EPR state by
measuring the variances of the nullifiers n,= p, - ¥ ,;A;x;in equation (3).
Astheideal limit of zero variance requiresinfinitely strong squeezing,

Corr (x;, p;) = 5
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Fig.3| Tunable entanglement: from local squeezing to EPR correlations.

a, Scheme for controlling the strength of entanglement between left (L) and right
(R) subsystems of the four-site array. After squeezing the symmetric mode (red),
we transfer the squeezing into the antisymmetric mode (blue) by applying a local
180° spin rotation (green) to the right subsystem. Next, a global spinor rotation
(purple) adjusts the angle of the squeezed quadrature. Finally, asecond
interaction pulse produces squeezing in the symmetric mode. The relative angle
@between the squeezed axes of the collective modes determines the form of
entanglement. b, To disentangle the left and right subsystems, we choose a
relative phase @ = 0 between the squeezed axes of the symmetric (red circles)

0° 45°
Spinor phase ¢
and antisymmetric (blue squares) modes. ¢, Entanglementinternal to each
subsystem manifests in variances {*= 0.41+ 0.06 and {* = 0.38 + 0.07 for the left
and right subsystems (yellow squares and purple circles), respectively. d, To
generate EPR entanglement between the left and right subsystems, we choose a
relative angle @ = 90° between squeezed quadratures of the collective modes.
The variances #=0.50 + 0.07 and {*= 0.46 = 0.08 for orthogonal quadratures
of the symmetric and antisymmetric modes yield an entanglement witness
W=0.23+0.05<1.e, Representation of the resulting EPR entangled stateas a
graph state, corroborated by the reconstructed correlation matrix Corr (x;, p;).

a practical definition of a graph state is that the variances of the
nullifiers should approach zero in the limit of perfect squeezing.
Defining normalized variances

Var (n;)

Vi= ——5 (6)
Cleya
7

such that v;=1for a coherent state, our state-preparation protocol
theoretically produces variances v; = * assuming equal squeezing of
all eigenmodes. Experimentally, we access each nullifier n; by per-
forming alocal 90° spinor rotation on subsystem . For the two-mode
EPR state, with n, = p, — xz and ni = p; — X, we measure variances
v, =0.53+0.11and vy =0.36 £ 0.09 (Extended Data Fig. 3), directly
confirming the entanglement structure specified by the graph.

Toillustrate the scaling to more complex graphs, we produce the
square graph state shownin Fig. 4a, with adjacency matrix

0101
1010
0101
1010

@

Theeigenbasis of AisshowninFig.4b. The eigenvalues 1, = (2,0,0,-2)
specify squeezing angles ¢,, = (27°,90°,90°,153°) for the four

eigenmodes. We sequentially couple each eigenmode to the cavity
with the aid of local spin rotations, analogously to the scheme in
Fig. 3a, squeezing the desired quadrature of each mode via global
cavity-mediated interactions followed by a global spinor rotation
(Extended Data Fig. 2). The resultis shown in Fig. 4b, where the orien-
tation of the squeezed quadrature for each eigenmode is within 5° of
the target squeezing angle ¢,,. Reconstructing the correlations
Corr (x;, p;) between sites from these measurements of the collective
modes yields the matrix shown in Fig. 4c, which is consistent with the
target adjacency matrix.

We additionally directly measure the nullifiers n; for the square
graph state. Their normalized variances v, listed in Fig. 4c, have an
average value 0.63 + 0.07 consistent with the squeezing ® of the collec-
tive modes. Each nullifier further satisfies acondition v; < 0.94, ruling
out separability into the independent nodes of the graph (Methods,
‘Entanglement detection in graph states’), highlighting the presence
of spatial entanglement between the four ensembles.

Our scheme for preparing graph states generalizes to any method
of generating global entanglement that can be combined with local
rotations. The approach is scalable to larger arrays, requiring only M
squeezing operations to prepare arbitrary M-node graph states. For
atoms in a cavity, the rate of each squeezing operation is collectively
enhanced by the number of modes, such that the total interaction time
requiredisindependent of array size (see Supplementary Information).
Similarly, the degree of squeezing per mode is fundamentally limited
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Fig.4 | Generation of asquare graph state. a, Diagram of four-mode square
graphstate and theoretical correlation matrix Corr (x;, p;) « A;. b, Left,
schematicillustration of eigenmodes of the adjacency matrix A and the
corresponding squeezing ellipses, with orientations specified by eigenvalues
A = cot @, Right, measured variances {?in the four eigenmodes, showing

squeezing at the specified spinor phases ¢, (black dashed lines). Error bars show
1s.d. confidence interval. ¢, Top, directly measured variances v; of the nullifiers,
withschematics showing central node i (dark grey circle) and neighbours (black
circles) contributing to each nullifier. Bottom, correlation matrix reconstructed
from the measurement resultsinb.

only by the collective cooperativity per ensemble. In practice, scaling
tolarger arrays will require addressing technical noise sources to which
we become increasingly sensitive with increasing total atom number
(see Supplementary Information).

Combining our approach with cavity-mediated generation of
non-Gaussian states™'>*° or atom counting*** opens prospects in
continuous-variable quantum computation. Proposals for fault-
tolerant measurement-based quantum computation with continuous-
variable graph states assume initial squeezing of 15-20.5 dB (ref. 45),
which has already been demonstrated with cavity-based spin squeez-
ing®*®. The programmable multimode squeezing demonstrated here
is additionally a resource for quantum-enhanced measurements®*?.
Applications include optimal sensing of spatially correlated fields*’
and simultaneous sensing of displacements in conjugate variables*®
for use in vector magnetometry.

Our protocol canbe extended to avariety of platforms where either
bosonic modes or qubits form the nodes of the graph and a central
ancillamediates collective interactions. Opportunitiesinclude gener-
ating continuous-variable graph states in multimode optomechanical
systems*’ orinsuperconducting circuits featuring multiple microwave
oracoustic modes coupled to asingle qubit*>*'; and discrete-variable
graph states of individual atoms, superconducting qubits®? or ions>
with photon- or phonon-mediated interactions. Our approach offers
the benefit of programmable connectivity and prospects for leveraging
the central ancilla to perform quantum non-demolition measurements
with applications in computation, error correction and continuous
quantum sensing.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
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Methods

Definition of spin and quadrupole operators

While for spin-1/2 particles all single-particle spin operators can
be written as a linear combination of the dipole moments f*, £ and f*,
the space of spin-1 operators additionally includes quadrupole
operators defined as ¢g*# = fofF + fAfa — g .5 Wherea, B € {x, y, z} and
6,4 is the Kronecker delta function®. For plotting the state on the
generalized Bloch sphere, we use the operator ¢° = ¢% + % which

quantifies the population difference between the m = 0 state and the
m = +1 states. We additionally construct collective observables

_ N N e . i .
F =%, f*and Q¥ = 3 ¢ corresponding to each spin-1 operator in
asystem of Natoms.

State preparation

To prepare the array of four atomic ensembles in an optical cavity, we
initially load ¥Rb atoms from a magneto-optical trap into an array
of optical dipole traps, each withawaist of 6 um. After optically pump-
ing the atoms into the | f= 2, m = -2) state, the ensembles are trans-
ferred into a 1,560 nm intracavity optical lattice. Further details of
the trapping procedure are described in ref. 20. The atoms are then
evaporatively cooled by decreasing the lattice depth from U, = h x
14 MHz to U, = h x175 kHzin 200 ms. A series of composite microwave
pulses** isused to transfer the atoms from |2, —2)to |1, 0). Any remaining
population in the [1, £1) states is removed by first transferring this
population into the | f=2) manifold using microwave pulses and
then applying resonant light to push and heat the | f = 2) population
out of the lattice. The lattice is then ramped up to a depth of
U, =hx25MHztominimize atomloss andincrease confinement during
the interaction phase of the sequence, yielding a final temperature
T=80 pKinthelattice. During the interaction phase of the experiment,
theratio of thelattice depth to atomic temperatureis U,/ (ks T) =15 for
an ensemble at the centre of the cavity, where k; is the Boltzmann
constant.

Interactions and cavity parameters

The spin-exchange interactions between atoms are mediated by a
near-concentric Fabry-Perot cavity with length2R — d, whereR=2.5cm
is the radius of curvature of the mirrors and d =70 pum. The drive
field is detuned from the |5S,,f = 1) — |5P5,) transition by A = -2 x
9.5 GHz, after accounting for the a.c. Stark shift of the excited state
due to the 1,560 nm lattice. At the drive wavelength of 780 nm, the
cavity mode has a Rayleigh range z; = 0.93 mm and waist w, =15 pum,
resulting in a vacuum Rabi frequency 2g = 2m x 3.0 MHz. Comparing
with the cavity linewidth x =2m x 250 kHz and atomic excited-
state linewidth I'=2m x 6.1 MHz yields a single-atom cooperativity
no = 4g2/(kI") = 6.1for amaximally coupled atom at cavity centre.

We parameterize the dispersive atom-light coupling by the vector
a.c. Stark shift per intracavity photon, which for a maximally coupled
atom s Qg = —g2/(6A) = 2im x 41 Hz. As the array of atomic ensembles
spans alength of 750 pm along the cavity axis, centred at the focus of
the cavity mode, the maximally coupled ensembles experience a 30%
larger Stark shift than the two minimally coupled ensembles. In addi-
tion, thermal motion of the atoms in the lattice means that the average
atom experiences a reduced single-photon Stark shift compared
with anon-axisatom at an antinode, resulting in athermally averaged
single-photon Stark shift Q =2m x 27 Hz.

Our method of generating cavity-mediated interactions is
described in refs. 35,55. The interactions are controlled by a drive
field detuned from cavity resonance by an amount é.. This corresponds
to detunings 6, = 6. ¥ w, from two virtual Raman processes in which a
collective spinflip isaccompanied by emission of aphotonintoacavity,
where w, is the Zeeman splitting. Rescattering of this photoninto the
drive modeisaccompanied by asecond collective spin flip, producing
resonant spin-exchange processes of collective interaction strength

Xt = Nr_zQ—2 %

, (8)
2a ()

where Nis the total number of atoms and r is the intracavity photon
number®. We operate in amagnetic field of 4.1 G perpendicular to the
cavity axis, corresponding to a Larmor frequency w, =2m x 2.9 MHz.
The drive light is typically detuned by 2m x 4.2 MHz from the
shifted cavity resonance so that 6_=-2m x1.3 MHz and 6, = —2m x
7.1 MHz. We define a total interaction strength y=x" + x*. The drive
light produces a typical intracavity photon number n = 800. A repre-
sentative atom number N=1.5 x 10* yields a collective interaction
strength y = -2m x 4 kHz. Exact parameters for each data set are
detailed in Extended Data Table 1. The parameters were selected to
optimize squeezing, as discussed in Supplementary Information.

Global and local control over spin orientation

To access different quadratures of the squeezed states generated
in our experiments and to adjust the relative squeezing angles of
the collective modes, we apply global rotations about the Q° axis
by two different methods. In the first method we let the system
evolve under the quadraticZeeman shift g = 2 x 1.2 kHz. Alternatively,
we apply a detuned 2 microwave pulse on the hyperfine clock tran-
stion|f=1,m = 0) - | f=2,m = 0). For a suitable choice of detuning

6. and microwave Rabi frequency Q,,,, the imparted phase is

¢ = (1 — 6 /) Q2 + 62, - This latter technique reduces the time

required torotate the orientation of the squeezed state before the final
readout, since the Rabi frequency Q,,, = 2m x 7.5 kHz is much larger
than the quadratic Zeeman shift. However, inhomogeneities in the
microwave Rabifrequency on different ensembles canlead to unwanted
population transfer from|1, 0)to|2, 0), which shifts the cavity resonance
forsubsequentinteraction periods. Therefore, in sequences employing
multiple drive field pulses to squeeze different collective modes, we
use only the rotation under quadratic Zeeman shift to adjust the
squeezing angle.

We apply local spinrotations around P toread out the observables
x and p and rotations about F* to transform between collective
modes. For these rotations, we use circularly polarized light that is
blue-detuned from the |5S,),,f = 1) — |5P5,) transition by 120 GHz.
The laser beam is perpendicular to the cavity axes and is focused to
individually address a single atomic ensemble, which we select
by controlling the position of the beam via an acousto-optical
deflector. The angle between the magnetic field, which defines our
quantization axis, and the propagation direction of the laser is chosen
tobe70°. The circular component parallel to the magnetic field induces
avectora.c.Stark shift thatacts asan artificial magnetic field, generat-
ing local rotations about F?. Rotations by 180° about F* flip the sign
ofboth F*and Q*onselected ensembles. We thus utilize these rotations
to transfer squeezing between orthogonal collective modes, as shown
inFig.3a. For this transfer, we simultaneously address two ensembles
andinduce therequired spinrotationin approximately 18 ps.

The same laser allows for driving Raman transitions within the
f=1hyperfine manifold, as the circular polarization component
orthogonal to the magnetic field acts as an effective transverse field.
Specifically, we use an arbitrary waveform generator to modulate
the drive amplitude of an acousto-optical modulator, and thus the
power of the laser, at the Larmor frequency. This radio frequency
modulation induces spin rotations about an axis in the F* - P plane.
Since there is no prior phase reference, we define the rotation to be
around P’ so that a /2 pulse maps F* onto a population difference
between Zeeman states.

To avoid differential evolution of the spinor phase ¢, we typically
perform global Raman rotations by simultaneously addressing all
four ensembles (except for the direct measurement of the nullifiers
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describedin ‘Direct nullifier measurements’). In this setting, we achieve
aglobal Rabi frequency of Q,man = 2 x 12.5 kHz.

Readout and fluorescence imaging

We characterize the multimode entangled states in our experiment
by state-sensitive fluorescence imaging. To read out aspecified quad-
rature in the x-p plane (where x < F*and p « Q%%), we first perform a
global spinor rotation by a variable angle ¢ and subsequently perform
a90° spin rotation about P’ to convert F*to F>. The implementations
of these rotations are described in ‘Global and local control over spin
orientation’. To ensure that the rotation angle stays close to 90° during
the whole duration of our experiments, we calibrate the frequency of
the Rabi oscillation every hour.

For the data shown in Figs. 2 and 3, where each subsystem (left
and right) consists of two atomic ensembles, we modify the read-
out to minimize the impact of global technical fluctuations. Specifi-
cally, we apply a local 180° rotation about one of the ensembles in
each subsystem before the final spin rotation, thereby mapping the
symmetric mode onto one that involves a differential measure-
ment of FF between ensembles. Similarly, the antisymmetric mode is
mapped onto a mode that remains robust against technical noise.

To measure the atomic state populations, we collect a sequence
of fourimages, with one detecting any populationinthef=2hyperfine
manifold and the remaining three images detecting the populations
inthe three magnetic substates m = 0, +1 within the f=1manifold. For
this portion of the experimental sequence, we lower the power of
the1,560 nmtrappinglasertoreducethea.c. Stark shift of the electroni-
cally excited 5P, state and reconfine the atoms in the microtraps.
We apply two counterpropagating laser beams resonant with
the f=2 — f’ =3 transition of the D, line and collect the resulting
fluorescence signal on an electron-multiplying charge-coupled device
(EMCCD) camera. To avoid interference of the two imaging beams, we
switch them on one at a time for 3 ps each and alternate between the
two beams for 126 ps per image. After this time, most of the atoms in
f=2haveescapedthe trapping potential due to heating, and we switch
onone of theimaging beams for 150 ps to remove any residual atoms
inf=2.To measure the atoms in the remaining states, we transfer the
population in the desired state to the f=2 manifold via microwave
pulses and repeat the imaging sequence above. To reduce the sensi-
tivity of this transfer to magnetic field noise and microwave power
fluctuations, we use acomposite pulse that involves asequence of four
microwave pulses with different relative phases™.

To calibrate the conversion from fluorescence signal to atom
number, we employ a measurement of the atomic projection noise. We
prepare Natomsinasuperposition of m = +1by initializing allatomsin
m=0andthenrotatingby 90° about P. Toisolate the projection noise,
we vary the atom number N=N,; + N_; and measure the variance of
the population difference N,; — N_;. Extended Data Fig. 1 shows these
data in units of camera counts for each of the four collective modes.
For each mode, we perform a polynomial fit

Var (Cyy — €_q) = o + @y (Cy1 + C_1) + @a(Cyp + 1), ©

where c,, denotes the signal from atoms in state m. The linear coeffi-
cient a,=r+gincludes the count-to-atom conversion factor rand an
additional contribution g < r from photon shot noise, augmented by
the excess noise of the electron-multiplying charge-coupled device
(EMCCD).Fromthefitvalue a, =415 + 6 and anindependent calibration
of g=20, we obtain the conversion factor r =395 + 6 counts per atom.
This calibrationis consistent with anindependent measurement of the
dispersive cavity shift 6y =4NQ due to Natoms.

The fit offset a, and quadratic component a, provide informa-
tion, respectively, about the imaging noise floor and technical noise
in the fluorescence readout. The quadratic component of the fits in
Extended Data Fig. 1 determines the atom number N = 1/a, at which

technical fluctuations become comparable to the projection noise.
For the mode with the highest technical fluctuations, we find a quad-
ratic component a, =5 x 107%. We therefore limit the maximal atom
number inthe experimenttoN <2 x 10* to ensure that projection noise
dominates over technical fluctuations. For our typical atom numbers,
the background noise a, is small compared with the photon shot noise,
thelatter being equivalent toafractiong/r = 0.05 of the atomic projec-
tionnoise. For the direct measurement of the nullifiersin Fig. 4 and the
EPR steering, we subtract the photon shot noise contribution fromthe
measured variances.

Measurement of contrast C
To compute the normalized variance {2 = Var (F¥) /(CN), we extract the
contrast Cfrom the same data set as the variance of F*. Specifically, in
terms of the Zeeman state populations N,, after the readout spin
rotation, we measure both the spin component F* =N, - N’ and
the quadrupole moment Q** = 2(N,, + N, — 2N,)/3. The quadrupole
moment Q™ is directly proportional to the contrast C in our
Larmor-invariant system.

Inthe most general case, the contrast Cmay be expressed exactly
interms of the collective quadrupole moments as

_ WFLQ@pl e - @)

¢ 2N 2N

(10)

The quantum states produced in our experiment are invariant under
global Larmor rotations (see Supplementary Information), allowing
us to equate the expectation values (Q*) = (Q”?). Further, the three
quadrupole moments sumto zero, Q™+ Q” + Q% =0, ascanbe seenin
‘Definition of spin and quadrupole operators’.

We can thus re-express the contrast as

_ 3 Q™) _ Ny + N, =2N,

¢ 2N N

(11

We use this expression to normalize all variances reported in the
main text.

Steeringcriterion

To confirm EPR steering, we show that a measurement on the right
subsystem can be used to infer the measurement results in the
left subsystem with a higher precision than permitted by the local
Heisenberg uncertainty relation. To calculate the error of the inference
ofanobservable O of the left subsystem conditioned on measurements
oftheright subsystem, we find weights g;that minimize the conditional
variance

Var (0,|0g) = Var (0L - g,O,»), (12)

ieR

whereiindexes ensembles within the right subsystem and the weights
g;capture inhomogeneities in coupling for different ensembles. For
the EPR-steered state, these variances are minimized for the x’ and p’
observables. We measure EPR steering in both directions, requiring
inferences in two directions and two quadratures. The values of all of
the conditional variances, after subtracting asmall photon shot noise
contribution as calibrated in ‘Readout and fluorescence imaging’, are
summarized in Extended Data Table 2. We also report the optimal
values of g;for eachinference. For most of the inferences, higher weight
is given to the ensemble closest to the centre of the cavity, which
we attribute to the difference in atom-light coupling for different
ensembles.

Graph state generation

Our prescription for preparing graph states rests on diagonalizing
the adjacency matrix A, with the resulting eigenvectors specifying
collective modes to squeeze and the eigenvalues specifying the
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squeezed quadratures. Formally, the diagonal matrix A of eigenvalues
Ay isrelated to the adjacency matrix A by

A=V1Av, 13)

where the columns of V represent the eigenmodes. In terms of
the quadrature operatorsx = (x, ..., X)) and p = (p,, ..., p,) onthe indi-
vidualsites, each eigenmode is parameterized by collective quadrature
operators X = x and p = Vp. Re-expressing equation (3) in terms
of these collective modes

Var (p — AX) -» 0 (14)

shows that the antisqueezed axis for each mode lies along the line
Py = AmXn Thus, the squeezed quadratureis oriented at aspinor phase
¢ = arccot A,

The experimental sequence for preparing the square graph state
is presented in Extended Data Fig. 2. For this graph,

1111

11-1-1
1
“2|1-1-11}

1-11 -1

v (15)

where the columns have eigenvalues A,,= (2, 0, 0, -2) corresponding
to the angles ¢, = (27°,90°, 90°,153°). We choose angles @, , ; for the
global spinor rotations so that each mode is squeezed along the
appropriate axis at the end of the sequence. Schematically, we incor-
porate the global spinor rotations that occur during the pair creation
dynamics and Larmor rotations into these angles.

Our approach of squeezing the eigenmodes of the adjacency
matrix allows for generating arbitrary graph states. In the most general
case, the eigenmodes may have weighted couplings to the cavity, which
could be controlled via the positions or populations of the array sites,
or by driving the cavity from the side with a spatially patterned field.
However, even with equally weighted couplings to the cavity, a wide
variety of graphs are accessible by squeezing eigenmodes of the
formVy,, = exp(i(oj,,,)/\/ll_/l . The phases ¢;,, can be imprinted by local
spin rotations, generalizing the 180° rotations applied in this work.
For translation-invariant graphs, the eigenmodes are spin waves with
@;n=j(2rm/M), and a magnetic field gradient suffices to transform
between them.

Correlation matrix reconstruction

The definition of agraph state in equation (3) considers an ideal limit
of infinite squeezing. In the following, we elaborate on the definition
of the adjacency matrix for realistic states with finite squeezing and
show that the square graph state generated in our experiment is con-
sistent with this definition. The adjacency matrix that best describes
agiven state is the one that minimizes var (p — Ax), whichis given by

Aj; = Cov (p;,x;) /Var (x;). (16)
Since A is necessarily symmetric, we also have A; « Cov (x;,p;). Thus,
the correlations between sites in the x and p bases directly reveal the
adjacency matrix.

To reconstruct the correlation matrices in Figs. 3e and 4c from
measurements of the collective modes, we use a transformation of
basis to express the covariance matrix in equation (5) as

Cov (x;,p;) = Vl‘n: COV (X Py ) Virjs 17)

where we sum over the repeated indices m and m'. The variances of
xand p transform analogously.

In the case of equal couplings to the cavity and equal atom
number in each ensemble, the eigenmodes are independent and
Cov (X,X), Cov (p, p) and Cov (X, p) are all diagonal. We use this assump-
tion to extract all relevant information about the state by measuring
the covariance matrix

Var (X,,) Cov(X,.p
m=( o ('"_ '")> (18)
Cov (P, Xm) Var(p,)
for each individual eigenmode. From the variances &, and &,

in each collective mode and the orientation ¢,, of the squeezed
quadrature, we calculate the covariance matrix as

2
min,m

Cm = RT(¢m) ( )R(¢m)a 19)

max,m

where Risa?2 x 2 rotation matrix.

Direct nullifier measurements

To confirm the efficacy of our graph state generation method, we
directly measure the nullifiers n = p — Ax and their variances. This
measurement requires simultaneously measuring some sites in the
p basis and others in the x basis. To perform this readout for the
two-mode graph state, we first apply a variable spinor rotation ¢ to set
the measurement basis globally and then apply a90° readout rotation
about P only toensembles 1and 2. This sequence maps the observable
Q =-x cosp+p sing onto a population difference between
Zeeman states. Subsequent evolution under the quadratic Zeeman
shift thus affects only the measurement basis in ensembles 3 and 4.
After a90° rotation about the Q° axis, we apply a second Raman rota-
tion to the remaining ensembles to enable readout of the observable
R = xg sin@ + pg cos . The results are shown in Extended DataFig. 3a,
where the red/blue data points represent normalized variances
of the sum/difference N, = 9, + 7. The nullifiers are given by
ng = pr —x, = N, (0°)and n. = p; —xg = N(90°).

To extract the nullifiers for the square graph state, the procedure
isthe same except that we measure sites1and 3 in the xbasis (at ¢ = 0)
and apply the additional 90° rotation about Q° to sites 2 and 4. Thus
onsites 1and 3 we read out Q, 3 = —x; ;3 cos ¢ + p; 3 sin ¢, and on sites 2
and 4 we read out B4 = x, 4 sing + p, 4 cos ¢. To extract the nullifiers,
we construct the following four observables

M=x-B-%
N =B+ +Q;
M=xB-B-%

(20)

Ny =% +Q+Q3,

such that n; 3 = 33(90°) and n, 4, = N5 4,(0°). The measured normalized
variances as a function of the initial spinor rotation are shown in
Extended DataFig. 3b. The nullifier variances reported in the main text
are obtained from the data in Extended Data Fig. 3 by subtracting a
small detection noise contribution, as described in ‘Readout and fluo-
rescenceimaging’.

Entanglement detectionin graph states

We here derive the criterion for spatial entanglement in the square
graph state, which uses the nullifier variances to prove that the state
is not fully separable into the four individual nodes. Specifically,
we show that all separable states are subject to alower bound on the
average value

4 (21)
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of the normalized variances

Var (n;) Var (n;)
= = 22
1+ %A 3 @

i

of the four nullifiers n;= p,— ¥ ;A; x;, where A; is the adjacency matrix
ofthe square graph state.

The density matrix for any separable state has the general
formp=3 h,p, where p,= ®‘:=lp,»,a are product states of the four
ensembles and h, are probabilities satisfying Y i, = 1. The nullifier
variances thus satisfy

1< 1 u
V=1 ;Var(ni)p 25 Za:ha;Var(ni)pa, (23)

where the inequality is saturated in the absence of classical correla-
tions between the nullifiers. For any product state p,, there are no
correlations between measurements on different sites. Thus, for the
square graph state,

4 4
= 2
i;lVal’(ni)pa = i=21Val’(IJi)p‘x + %AijVar(xj)pa

4 4 (24)
= X Var(py, +2 3 Var(x),
i=1 i=1

> 8V2.

In the final line, we use the local Heisenberg uncertainty relation
Var (x;) Var ( p;) > 1to obtain a bound on the sum of variances. Substi-
tuting this bound into equation (23) yields v > 2y/2/3 ~ 0.94 for
all separable states.

Data availability
Alldataare deposited in Zenodo*®. Source data are provided with this
paper.
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Extended Data Fig. 1| Imaging calibration. To calibrate the count-to-atom
conversion factor r, we measure the fluctuations of the difference in counts c,,
from atoms in states m = + 1as afunction of the average total counts (c,; + c_;)
from atomsin these two states. The blue dashed line is the polynomial fit of

Var(c+1 — C_1)
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Eq. (9), where the linear coefficient a, = r + gaccounts for the atomic projection
noise and asmall contribution g « rfrom photon shot noise. The black dashed
line represents the atomic projection noise for r =395 counts/atom.
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®,,,=(0,117°, - 54°) are chosen such that, at the end of the sequence, each
eigenmode is squeezed along the axis specified by the corresponding eigenvalue

Extended Data Fig. 2| Sample sequence for generating the 4-mode square
graph state by squeezing collective modes. Bottom four rows show the state
of each eigenmode throughout the entire pulse sequence. The spinor angles of the adjacency matrix.
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Extended Data Fig. 3 | Direct measurements of the nullifiers. a, Nullifiers for
the two-mode EPR state. The spinor phase ¢ gives the basis in which the left
ensemble pair is measured, while the right ensemble pair experiences an
additional 90° of spinor evolution. The nullifier for the left subsystemn, = p, - x;

1 . -A/.l
O N
® N
© N
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Spinor phase ()

isextracted from jv_ (blue) at ¢ = 90°. The nullifier for the right subsystem
ng=pr—Xx,isextracted from NV, (red) at ¢ = 0°. b, Nullifiers for square graph
state. We extract the nullifier variances shown in Fig. 4c of the main text from
N3 (blue, purple) at ¢ =90°and NV, 4 (red, yellow) at ¢ = 0°.
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Extended Data Table 1| Summary of experimental parameters for cavity mediated interactions

Figs. 2 and 3 Fig. 4
0_ | =27 x 1.3 MHz | —27 x 1.6 MHz
N 1.5 x 10* 8 x 10°
X —27 x 4.3 kHz | —27 x 1.5 kHz
T o0 us 100 ps

Detuning &_ of cavity drive field from two-photon resonance, total atom number N, collective interaction strength x and interaction time t.
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Extended Data Table 2 | Summary of EPR steering values

Steering Direction | Error of Inference Value Optimal Weights Steering Witness
. Var (p'; |p’r) 0.81+£0.14 | g3 =0.98,94 = 0.78
Right — Left Var (2, |2,) 0.81+0.12 | g5 = 1.11, gy — 0.94 | 00 E0-18
: Var (p's|p7) 0.91+0.13 | g1 =0.76,92 = 1.17
Left = Right Var (2] ) 0.75+0.13 | g1 = 0.87,go = 0.81 | V08 E018

To measure EPR steering between different subsystems, we need to infer the value of the left subsystem in the x’ and p’ quadratures from measurements of the right subsystem and vice
versa. Variances representing the error of each inference, and the resulting steering witnesses, are presented.
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