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Cavity-mediated long-range interactions in 
levitated optomechanics

Jayadev Vijayan    1,2,5,7 , Johannes Piotrowski    1,2,7, 
Carlos Gonzalez-Ballestero    3,4,6, Kevin Weber1,2, Oriol Romero-Isart    3,4 & 
Lukas Novotny    1,2

The ability to engineer cavity-mediated interactions has emerged as 
a powerful tool for the generation of non-local correlations and the 
investigation of non-equilibrium phenomena in many-body systems. 
Levitated optomechanical systems have recently entered the multiparticle 
regime, which promises the use of arrays of strongly coupled massive 
oscillators to explore complex interacting systems and sensing. Here 
we demonstrate programmable cavity-mediated interactions between 
nanoparticles in vacuum by combining advances in multiparticle optical 
levitation and cavity-based quantum control. The interaction is mediated 
by photons scattered by spatially separated particles in a cavity, resulting in 
strong coupling that is long-range in nature. We investigate the scaling of the 
interaction strength with cavity detuning and interparticle separation and 
demonstrate the tunability of interactions between different mechanical 
modes. Our work will enable the exploration of many-body effects in 
nanoparticle arrays with programmable cavity-mediated interactions, 
generating entanglement of motion, and the use of interacting particle 
arrays for optomechanical sensing.

Exploring quantum physics at macroscopic scales is an exciting pros-
pect, both for fundamental physics and developing technology1–3. 
However, in addition to the challenge of ground-state cooling massive 
objects, such endeavours require either large-scale delocalization 
of a single object or the entanglement of multiple objects. Levito-
dynamics, which deals with controlling the mechanical motion of 
massive oscillators in vacuum2,4, has made remarkable headway 
towards multiple-particle systems, with demonstrations of cooling5 
and short-range coupling6–11 between nanoparticles levitated in free 
space. Furthermore, recent experiments with single particles in optical 
tweezers have established exquisite control over rotational dynam-
ics12–15 and achieved quantum ground-state cooling of mechanical 
motion16–21. One of the next pivotal milestones towards macroscopic 

quantum physics is to entangle multiple particles via optical forces. 
However, this is not possible in free space as the entangling rate is not 
large enough to overcome the decoherence rates of the particles22,23. 
Therefore, it becomes desirable to use an optical cavity to mediate 
coupling between the particles.

Here we introduce such a capability to engineer programma-
ble cavity-mediated interactions between multiple spatially sepa-
rated particles in vacuum. The programmability arises from the use 
of acousto-optic deflectors (AODs) to generate tweezer arrays for 
trapping the particles5,24, which offer a high degree of control over 
parameters such as optical frequencies of the tweezers and cavity  
detuning, as well as mechanical frequencies and position of the 
particles. Such parameter control is crucial for precisely tuning the 
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In addition, a translation stage for the high-NA lens can displace both 
particles simultaneously. The spatial separation d between the nano-
particles (typically 6 μm) is large enough to suppress short-range Cou-
lomb (∝ 1/d3) (refs. 8,52) and free-space optical binding (∝ 1/d) (ref. 6) 
interactions. The optical power of the tweezers Pi (typically 130 mW) 
and resulting mechanical frequencies Ωi,μ (μ ∈ (x, y, z), labelling the 
mechanical modes) are set by the respective AOD RF amplitudes.

To engineer interactions in our experiments, we bring the mechan-
ical frequencies of the two particles close together by carrying out 
linear ramps of the optical powers. We make use of coherent scattering, 
whereby light scattered off each nanoparticle populates the cavity mode 
and results in optomechanical coupling with strengths gi,μ (ref. 53).  
This gives rise to effective cavity-mediated interactions between the 
nanoparticles. For particles in tweezers polarized along the cavity (y) 
axis, gi,μ is zero and there is no particle–particle coupling (Gμ,μ ∝ g1,μ 
g2,μ = 0). Therefore, a power ramp simply results in crossings of the 
mechanical frequencies at Ωμ, as seen in the spectrogram in Fig. 1d. In 
the following, the tweezers are polarized along the x axis, maximizing 
light scattering along the cavity axis. The couplings along the x axis 
are minimal in this configuration, but the couplings along y and z axes 
can be maximal and result in cavity-mediated long-range interactions.

Cavity-mediated long-range interactions
Two mechanical modes of different nanoparticles coupled to the same 
cavity mode via coherent scattering gives rise to an effective particle–
particle coupling

Gμ,μ =
g1,μ(g2,μ)

∗

(∆ +Ωμ) + iκ/2
+

(g1,μ)
∗g2,μ

(∆ −Ωμ) − iκ/2
, (1)

when the mechanical frequencies Ω1,μ ≈ Ω2,μ are close to degeneracy 
(≈Ωμ). (Details are provided in Methods, ‘Coherent scattering with two 
particles’.) The structure of equation (1) is characteristic of 
cavity-mediated couplings in the fast-cavity regime (κ > Ωμ), and is 
formally analogous to the cavity-induced intraparticle couplings 
explored for single-particle coherent scattering53–55. In this work, we 
focus on configurations where the cavity can be treated as a bath and 
couples to only one mechanical mode per particle or to two far-detuned 
modes per particle, and thus the intraparticle couplings are negligible. 

interaction strength and for choosing which particles and mechanical 
modes couple.

Most experimental systems that study many-body physics rely 
either on localized short-range interactions25,26 or a common cavity 
mode to mediate interactions27,28, and can only afford short-distance 
or all-to-all connectivity respectively. Recent experiments with super-
conducting qubits29 and cold atoms30 have managed to overcome this 
limitation and demonstrated tunability in the connectivity of interac-
tions. In our platform, the decoupling of the trapping mechanism 
from the cavity presents the opportunity to engineer a broad range of 
connectivity, by programming specific tweezers to be resonant with 
the cavity mode. This new prospect in levitodynamics will facilitate 
progress towards generating quantum correlations and entangle-
ment22,31–36, exploring complex phases emerging from interacting 
particles26,37–39 and using multiparticle quantum resources40–43 for 
optomechanical sensing44–50.

Experimental setup
The mechanical oscillators in our experiment comprise of near- 
spherical SiO2 nanoparticles with a nominal diameter of 150 nm, levi-
tated in vacuum (~10−4 mbar) using optical tweezers (numerical aper-
ture (NA) = 0.75) at wavelength λ = 1,550 nm (Fig. 1a). The particles are 
placed in the fundamental mode of an optical cavity with linewidth 
κ/2π = 600 kHz, comprised of mirrors with different transmissions 
separated by 9.6 mm (Fig. 1b). We use two tweezers with identical optical 
frequencies along the diagonal of a two-dimensional array of beams 
generated by two orthogonally placed AODs51. The cavity resonance 
is detuned by a frequency Δ with respect to both tweezers. Light scat-
tered by the particles, carrying information about their centre-of-mass 
motion along the three axes x, y and z, leaks through the higher trans-
mission cavity mirror. This light is combined with a local oscillator and 
split equally onto a balanced photodetector. The Fourier transform of 
the detector voltage gives the spectral amplitudes of our signal. For 
convenience, we offset the frequency axis to have the optical tweezer 
frequency at zero (Fig. 1c). The particle positions yi (i ∈ (1, 2), labelling 
the particles) and their separation d = ∣y1 − y2∣ along the cavity axis are 
controlled by the frequencies sent to the radio-frequency (RF) chan-
nels of the AODs, while preserving the degeneracy of the tweezer 
optical frequencies (Methods, ‘Tweezer positioning and calibration’).  
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Fig. 1 | Cavity optomechanics with multiple nanoparticles. a, A laser beam 
is split using AODs and focused by a high-NA focusing lens inside a vacuum 
chamber to generate optical tweezers. The optical frequency of the tweezers 
ωtw, as well as the positions yi of the particles (i ∈ (1, 2)) and the mechanical 
frequencies Ωi,μ of their centre-of-mass modes (μ ∈ (x, y, z)), are controlled by 
programming the RF inputs of the AODs. b, The particles are positioned with 
a variable spatial separation d = ∣y1 − y2∣ along the standing wave of an optical 
cavity with resonant at ωcav, which is blue-detuned by Δ = ωcav − ωtw. The individual 

optomechanical coupling of each particle with strength gi,μ introduces an 
effective coupling Gμ,μ between the two particles. Tweezer light scattered by 
the particles leaks out of the cavity and is interfered with a local oscillator for 
balanced heterodyne detection. c, Spectrum of the heterodyne signal, where 
we set the Rayleigh peak frequency to ω = 0, showing the three mechanical anti-
Stokes sidebands at ω = Ωi,μ for each particle. d, Spectrogram of the anti-Stokes 
sidebands as a function of the power difference between the tweezers P1 − P2.
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Our coupled system has two normal modes with frequencies λ−μ  and 
λ+μ. The minimal splitting at the avoided crossing between these normal 
modes is min(λ+μ − λ−μ ) = 2|Gμ,μ|. In Fig. 2a,b,c we show spectrograms 
of the x and y modes of two particles positioned at separate cavity nodes 
during power sweeps for Δ/2π = 0.45, 1.2, 2.5 MHz, respectively. As in 
Fig. 1d, the x modes cross at Ωx/2π ≈ 59 kHz, indicating no interactions 
of the x degree of freedom and offering a calibration of optical powers 
through Ωi,x ∝ √Pi. We fit expressions for λ−y  and λ+y  (Methods, ‘Extract-
ing mode splitting’) to the normal modes in the spectrograms using 
the calibrated powers and the bare mechanical frequencies Ωi,y at the 
edges of the ramp, with the only free parameter being the product of 
the individual optomechanical coupling strengths ∣g1,y g2,y∣. We overlay 
the fits in Fig. 2a–c and extract min(λ+y − λ−y ), which follows the char-
acteristic dependence on the detuning Δ, given by equation (1).

We see two other features of cavity optomechanics as the cavity 
is brought closer to resonance with the mechanical frequencies of the 
particles. First, the y modes of both particles are cooled via coherent 
scattering21,56 and become visibly broader in the spectrograms, whereas 
the x modes are not. Second, the optical spring effect57 causes a larger 
shift of the mechanical frequencies of the y modes as the detuning 
decreases. Therefore, the avoided crossings of the y modes appear 
shifted away from the crossings of the x modes at P1 = P2. Figure 2d 
shows the normal mode splitting over a wide range of detunings. The 
shaded area represents the particle-particle coupling strength calcu-
lated from equation (1), with g1,μ and g2,μ estimated from system param-
eters and their uncertainties (Methods, ‘Estimations of coupling 
strengths’). The measured splittings are in excellent agreement with 
the theoretical estimates. We observe a maximum splitting of 
min(λ+y − λ−y )/2π = (6.6 ± 0.2)  kHz at Δ/2π = 0.45 MHz, close to the 
optimal detuning.

Distance-dependence of interactions
In addition to cavity-mediated interactions, the two particles can 
interact via Coulomb forces (provided they are charged) or via direct 
optical dipole-dipole coupling. Although such interactions offer a 
useful resource in levitated optomechanics—for example, for sympa-
thetic cooling7–9, engineered coupling6 and synchronization10—they 
are of short-range nature (∝ 1/d3 and ∝ 1/d respectively). Furthermore, 
charged particles introduce electronic noise and the scattering losses 
of direct optical interactions prevent the generation of entanglement23.

By examining the dependence on interparticle distance d, we show 
that the particle-particle interactions in our system are mediated via 
the cavity mode. We keep one particle stationary at a node and scan 
the position of the second particle along the nodes and antinodes of 

the cavity standing wave (Fig. 3a), while maintaining a fixed detuning 
of Δ/2π = 1.2 MHz. By briefly separating the optical frequencies of both 
tweezers and measuring the magnitude of the Rayleigh peaks in the 
heterodyne spectrum, we can independently determine the positions 
y1 and y2 of the two particles along the cavity standing wave (Methods, 
‘Tweezer positioning and calibration’)21,56. We perform optical power 
sweeps, as in the previous section, for different distances and extract 
normal mode splittings from the resulting spectrograms. Figure 3b 
shows that as the position of the second particle is scanned along the 
cavity axis, the splitting exhibits a periodic behaviour. While the opto-
mechanical coupling strength g1,y is constant throughout this measure-
ment (as y1 is fixed), g2,y follows a periodic dependence on d (as we 
change y2) and imprints it on the particle–particle coupling through 
|Gy,y| ∝ |g2,y| ∝ | cos(2πd/λ)| . The shaded area in Fig. 3b shows Gy,y as 
calculated from system parameters using equation (1), in agreement 
with the measured splittings. Conservative estimates of coupling 
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Fig. 2 | Cavity-mediated long-range interactions. a–c, Measured spectrograms 
show the normal mode splittings arising from cavity-mediated particle-particle 
interactions for different values of cavity detuning Δ. Red lines are fits of the 
normal mode frequencies λ−y  and λ+y  of the coupled system. d, The splitting 
min(λ+y − λ−y ) = 2|Gy,y| of the avoided crossing extracted from the fits, as a 

function of detuning. Error bars correspond to three s.d. of the fit around the 
extracted splitting values. The shaded area shows theoretical estimations of the 
coupling strength Gy,y based on system parameters, exhibiting the characteristic 
dependence on cavity detuning.
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Fig. 3 | Distance-dependence of cavity-mediated interactions. a, Sketch of two 
particles placed in the standing wave of the cavity. The position of the first 
particle (left) is kept fixed at a node whereas the second particle (right) is moved 
along the standing wave, thereby increasing the interparticle distance d. b, Data 
points show the measured mode splitting as a function of d with error bars 
corresponding to three s.d. of the fit around the extracted splitting values. The 
shaded area shows the position dependence of g2,y ∝ | cos(2πd/λ)| imprinted on 
the particle-particle coupling Gy,y. Its width corresponds to uncertainties in 
system parameters.
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strengths due to Coulomb (GC, 50 elementary charges on each nano-
particle) and short-range optical interactions (GO) from our system 
parameters at d/λ = 3.5 give maximal coupling values of GC/2π = 0.17 kHz 
and GO/2π = 0.14 kHz, respectively (Methods, ‘Estimations of coupling 
strengths’). Both are close to the resolution limit of our fitting proce-
dure of Gmin/2π ≈ 0.15 kHz, given by the peak widths of 0.6 kHz.

Tunability of interacting modes
The optomechanical coupling between each mode of the particle and 
the cavity is position dependent. The positioning control in our setup 
allows us to vary the relative interaction strengths of the transverse y 
mode and the longitudinal z mode. Previous studies have shown that 
the transverse coupling strengths scale as gi,x, gi,y ∝ sinφi , and the 
longitudinal coupling strengths as gi,z ∝ cosφi, where the phase fac-
tors φi encode the distance between the particle position yi and the 
closest intensity maximum of the cavity53,56.

In our final experiment, we keep the interparticle separation fixed 
at d = 4λ, such that φ1 = φ2 = φ, and move both particles simultaneously 
along the standing wave from antinodes (φ = 0) to nodes (φ = π/2)  
(Fig. 4a–c). Doing so, we observe the cavity-mediated interactions 
transition from the z modes to the y modes (Fig. 4d–f). Notably, at 
antinodes (Fig. 4d), we observe a large normal mode splitting for the 
z mode, corresponding to particle-particle coupling as high as 
Gzz/Ωz = 0.238 ± 0.005. The mode splittings as a function of phase 
between φ = 0 and φ = π/2 are shown in Fig. 4g. The shaded areas are 
the particle-particle coupling strengths estimated from system param-
eters and their uncertainties, exhibiting the dependencies Gy,y ∝ sin2φ 
and Gz,z ∝ cos2φ. Therefore, the choice of the position of our particles 
allows us to precisely tune the relative interaction strengths of the 
different modes of the mechanical oscillator.

Conclusions
Combining the capabilities of cavity-based coherent scattering with 
multiparticle levitation provides a new platform for optomechanics. 
The high degree of control over parameters such as cavity detuning, 
mechanical frequency, polarization and particle position has allowed 
us to engineer and investigate the nature of cavity-mediated long-range 

interactions between two mechanical oscillators. We investigated the 
scaling of the interactions strength of the transverse y modes of two 
particles with cavity detuning, explored the distance-dependence 
of the interactions and finally showed that we can tune the interac-
tions of different mechanical modes of the two particles. The highest 
interaction strength we report is Gzz/Ωz = 0.238 ± 0.005 for the longitu-
dinal z modes. This value is higher than reported in free-space experi-
ments6, despite the much larger separations in our experiments. Our 
scheme can be readily scaled up to more particles5 and brought into the 
quantum regime by increasing trap frequencies using a higher-power 
laser and by lowering the pressure by baking the chamber. Addition-
ally, switching to a cavity with smaller mode volume or a narrower 
linewidth57,58 can increase the interaction strength further to meet the 
requirements for motional entanglement22.

Ultimately, the ability to engineer programmable cavity-mediated 
interactions between levitated systems offers a powerful new resource 
in optomechanics. Together with advances in achieving quantum 
control of mechanical motion and scaling up to nanoparticle arrays, 
our work firmly establishes levitodynamics as a compelling platform 
to explore the boundaries of quantum physics with massive interacting 
mechanical systems, and to build ultra-precise sensors with optom-
echanical arrays.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41567-024-02405-3.
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Methods
Tweezer array generation
A complete sketch of the setup used in this study is shown in Extended 
Data Fig. 1. The orange box indicates the part of the setup used in the 
generation of tweezer arrays. Laser light at 1,550 nm is sent through two 
AODs (AA optoelectronics DSTX), that are placed orthogonal to one 
another. Each AOD receives the sum of two RF frequencies close to its 
central frequency, generally one at 50 MHz and the other at 53 MHz, 
generated by two different channels of a function generator (MOGLABS 
Agile RF Synthesizer). As a result, four optical beams with frequencies 
100 MHz, 103 MHz, 103 MHz and 106 MHz are generated in the first 
order following both AODs (see inset of Extended Data Fig. 1). A spatial 
filter is then used to remove the 100 MHz and 106 MHz beams, along 
with any other zero order beams, resulting in only the two diagonal 
beams at 103 MHz making it to the high-NA lens inside the chamber. 
We load our particles by dispersing them in solution near the tweezers 
while mechanically shielding the cavity mirrors to avoid contamination. 
The two orthogonal AODs are mounted at an angle of 45° with respect 
to the optical table, ensuring that the two 103 MHz beams are parallel 
to the cavity. The RF amplitudes of all four channels are normally kept 
at 32 dBm. The RF frequencies and amplitudes are fully programma-
ble, a feature that is heavily used in our experiments—the tunability of 
the frequency allows us to position the particles along the cavity, and 
the tunability of the amplitude allows us to perform sweeps of their 
motional frequencies.

Tweezer positioning and calibration
In our investigation of distance-dependence of the interactions, we 
change the interparticle separation while keeping the tweezers at the 
same frequency. The frequencies of one RF channel of both tweezers 
are increased (decreased), leading to both tweezers moving further 
apart (closer together). We then move both particles common-mode 
using a linear translation stage (Attocube ANP(x,y,z)101) to bring par-
ticle 1 back to its initial position, in this case a node of the cavity. To 
confirm the position at the node we momentarily introduce a fre-
quency difference of 1 kHz between the two tweezers to separate their 
signatures in the spectrum and move the Attocube stage, if required, 
to minimize the Rayleigh scattered light from particle 1. Finally, the 
cavity detuning is adjusted to the new optical frequency common 
to both tweezers. Repeating these steps, we change the interparticle 
distance while keeping one particle at a node and the detuning fixed. 
This procedure also shifts both particles perpendicular to the cavity 
axis. We can neglect this effect as the displacements of few micrometres 
are far smaller than the cavity waist Wc = 50 μm. Alternatively, if we use 
both channels of the AODs that go to each tweezer, we can move both 
particles only along the cavity axis, or only perpendicular to it while 
changing the tweezers frequency. Any changes to the tweezers’ posi-
tions by adjusting the RF frequencies or moving the translation stage 
are negligibly small compared to the open aperture of our trapping lens 
of about 1 mm and do not affect the trapping frequencies.

To calibrate the spatial separation, we sweep the input RF and 
observe the height of the Rayleigh peak of a single particle on the hetero-
dyne detector. Extended Data Fig. 2 shows the Rayleigh amplitude 
IRL ∝ | cos(φ)| scales with the position φ in the standing wave, which is 
periodic with λ/2. By extracting the periodicity of the fit (line) to the 
data points we get the conversion factor (1.34 ± 0.02)λ/MHz of RF to 
displacement. Since the tweezers’ position scales linearly with the RF 
applied to the AODs, we can use this conversion factor to obtain the 
usual interparticle distance for RF inputs of 50 MHz and 53 MHz of 
(4.01 ± 0.05)λ ≈ 6 μm.

Coherent scattering with two nanoparticles
The theory for coherent scattering of a single nanoparticle can be found 
in ref. 53. Here we briefly lay out the necessary extensions for two nano-
particles and the emerging effective coupling. We consider two 

particles each trapped by a different optical tweezers and coupled to 
an optical cavity. We assume both lasers have the same frequency ω0 
and waist Wt, and are polarized either parallel or perpendicular to the 
cavity axis y, propagate along z, and that their foci are separated by a 
distance d ≫ Wt. The dynamics of the system formed by the single cavity 
mode and the centre-of-mass motion of the two particles is governed 
by the following master equation for its density matrix, ρ̂:

̇ρ̂ = − i
ℏ
[ ̂H, ρ̂] + κ ( ̂cρ̂ ̂c† − 1

2
{ ̂c† ̂c, ρ̂})

− ∑
i=1,2

∑
μ=x,y,z

Γiμ

2
[ ̂biμ + ̂b

†
iμ, [ ̂biμ + ̂b

†
iμ, ρ̂]]

+ ∑
i=1,2

∑
μ=x,y,z

γiμ
4
[ ̂biμ + ̂b

†
iμ, { ̂b

†
iμ − ̂biμ, ρ̂}]

(2)

where κ is the cavity linewidth, ̂c  is the annihilation operator of a cavity 
photon and the curly brackets denote the anticommutator. The 
motional mode μ of particle i is characterized by an annihilation opera-
tor ̂biμ, a friction rate γiμ and a heating rate Γiμ that includes contributions 
from surrounding gas molecules and from laser shot noise. In a frame 
rotating at the frequency of the two optical tweezers ω0 the coherent 
scattering Hamiltonian is

̂H = ℏ ∑
i=1,2

∑
μ=x,y,z

Ωi,μ ̂b
†
iμ ̂biμ

+ℏ∆ ̂c† ̂c + ℏ (Ωc ̂c† +Ω
∗
c ̂c)

+ℏ∑
i
∑
μ
[ ̂c†giμ ( ̂b

†
iμ + ̂biμ) + H.c. ] ,

(3)

with Δ = ωc − ω0, gα the coherent scattering couplings, H.c. the Hermi-
tian conjugate and a cavity drive at frequency ωc given by

Ωc = − 1
2√

ωc
2ℏε0Vc

∑
j
αjE0j cosθj cosφje−iΦj . (4)

Here, ωc and Vc are the cavity bare frequency and mode volume, αj is 
the polarizability of particle j, E0j and θj the electric field amplitude and 
polarization angle of tweezer j at its focus (θj = 0 for polarization per-
pendicular to cavity axis, θj = π/2 for polarization along cavity axis), and 
Φj the phase of each trapping laser, which we choose for convention as 
Φ1 = 0, Φ2 = Φ. The angle φj encodes the position of the focus of tweezer 
j within the cavity mode profile, specifically φj = 0 at an antinode and 
φj = π/2 at a node. For ∣Ωc/κ∣ ≪ 1 the coherent scattering couplings read

⎡
⎢
⎢
⎢
⎣

gjx
gjy
gjz

⎤
⎥
⎥
⎥
⎦

= √
ωc

2ℏϵ0Vc

αjE0j
2

cos (θj) e−iΦj

×
⎡⎢⎢⎢⎢
⎣

(−1) jkcx0j sinφj sinθj

(−1) jkc y0j sinφj cosθj

−ik0z0j cosφj

⎤⎥⎥⎥⎥
⎦

, (5)

with kc and k0 the wavenumber of cavity and tweezer modes and 
{x0j, y0j, z0j} the zero-point motion along the three axes. This expression 
also assumes that the cavity Rayleigh range is much larger than the 
separation between particles, which is the case for this experiment as 
yR = πW 2

c /λ0 = (5 ± 1) mm ≫ d (with Wc the cavity waist).
To compute the eigenfrequencies of the coupled system, that is  

the peaks of the cavity power spectral density, it is sufficient to com-
pute the dynamics of the classical motional amplitudes, defined by 
the vector

v ≡ [⟨ ̂b1x⟩ , ⟨ ̂b1y⟩ , ⟨ ̂b1z⟩ , ⟨ ̂b2x⟩ , ⟨ ̂b2y⟩ , ⟨ ̂b2z⟩] . (6)
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We compute their dynamics by first adiabatically eliminating the cav-
ity59,60 to obtain a reduced master equation for the motional modes. 
This procedure is valid when κ ≫ ∣giμ, γiμ∣ and amounts to considering 
the cavity a passive bath that couples the motional modes. Then, we use 
the resulting master equation to compute the dynamics of the vector of 
mechanical amplitudes, given in the underdamped regime ∣γiμ∣ ≪ Ωi,μ by

d
dt

v = −iĀv, (7)

with a dynamical matrix

Āαα′ ≡ [Ωα − i γα2 ]δαα′ + Gαα′ , (8)

where we defined the multi-index α = {j = (1, 2), μ = (x, y, z)}. The effective 
cavity-mediated couplings read

Gαα′ =
g ∗
α′gα

(∆ +Ωα′ ) + iκ/2 +
gα′g ∗

α
(∆ −Ωα′ ) + iκ/2 . (9)

Note that aside from couplings between different modes the cavity 
also induces a mechanical frequency shift Gαα in mode α. Note also that 
the couplings are in general non-reciprocal, that is, Gαα′ ≠ Gα′α.

The peaks of the spectrum will be centred at frequencies Re [Λl] 
and have linewidth Im [Λl], where Λl are the six eigenvalues of the matrix 
Ā. All mechanical modes that do not couple to the cavity (gα = 0) remain 
uncoupled in this effective picture and give rise to trivial eigenvalues 
Λl = Ωα − iγα/2. In the experiment we consider purely x-polarized twee-
zers so that both x mechanical modes are uncoupled from the cavity. 
If we particularize to the case where both particles are at the node 
(φ1 = φ2 = π/2) or at the antinode (φ1 = φ2 = π) two more mechanical 
modes are uncoupled from the cavity, namely the y modes at the node 
and the z modes at the antinode. In these cases the remaining two 
mechanical modes α = {1, μ} and α′ = {2,μ} form a 2 × 2 coupled system 
which can be diagonalized analytically to obtain the following two 
eigenvalues,

Λ
±
μ = 1

2
[D1(∆) + D2(∆)

±√(D1(∆) − D2(∆))2 + 4G1μ2μG2μ1μ]
(10)

with

Dj(∆) ≡ Ωj,μ − i
γjμ
2 + Gjμjμ. (11)

The normal mode frequencies λ±μ  correspond to the real part of Λ±μ , and 
their difference corresponds to the mode anticrossing

λ+μ − λ−μ = Re√(D1(∆) − D2(∆))2 + 4G1μ2μG2μ1μ. (12)

At the point of avoided crossing, where Ω1,μ = Ω2,μ, for identical  
particles, and for in-phase tweezers (Φ2 = 0), the cavity-mediated  
couplings become reciprocal and the anticrossing simplifies to 
2√G1μ,2μG2μ,1μ ≈ 2|G1μ,2μ| ≡ 2|Gμ,μ| as used in the main text.

Extracting mode splitting
To extract the mode splittings min(| λ+μ − λ−μ |)  from the shapes in our 
measured spectrograms, we use equation (12). The normal mode fre-
quencies are dependent on cavity parameters κ and Δ, which we inde-
pendently measure, the power Pi in each of the tweezers, and the bare 
mechanical frequencies Ωi,μ. First, we run a peak finding algorithm for 
each slice of the spectrograms and sort the peaks into their respective 

modes. We then extract Ωi,μ from the edges of the spectrograms. The 
uncoupled x peaks give a calibration for the relative powers by fitting 
a square-root function (Pi ∝ √Ωi,x ) to them. Finally, we subtract the 
peaks corresponding to the modes we want to fit from each other and 
fit equation (12), inserting the cavity parameters, powers and bare 
frequencies. The only fit parameter left is the product of optomechani-
cal couplings g1,μg2,μ. The mode splittings are then presented as the 
minimal separation between the fitted lines min(|λ+μ − λ−μ |). For strongly 
coupled modes (for example in Fig. 4d where Gzz/Ωz = 0.24) the fidelity 
of the fit is reduced. The strong coupling case and the cooling of such 
strongly hybridized modes will be the topic of a future study.

Estimations of coupling strengths
For all estimations of coupling strengths, we use the system parameters 
in Extended Data Table 1. Δ and κ are taken from the main text and we 
set φ via from the position in the cavity. From our parameters and with 
equation (5) we estimate maximal optomechanical coupling strengths 
of gi,y/2π = (32 ± 4) kHz and gi,z/2π = (50 ± 7) kHz for φ = π/2 and φ = 0, 
respectively. We then get the effective cavity-mediated couplings cal-
culated from equation (9) and present them including uncertainties 
in the system parameters as shaded areas in all plots.

Using the same system parameters, we estimate the coupling 
strengths of direct optical and Coulomb interactions from

|GOB| =
α2k50Pt

4cW 2
t π2ϵ20mΩ

cos(k0d)
k0d

,

|GC| =
Q1Q2

8πϵ0d 3

1
m√Ω1Ω2

.
(13)

We make the conservative assumption of Q1 = Q2 = 50e as nanoparticles 
of our size, loaded by spraying a fine solution into the trapping volume, 
typically hold few tens of elementary charges. For the minimum inter-
particle distance of d/λ = 3.5 in Fig. 3 we obtain GC/2π = (0.17 ± 0.03) kHz 
and GO/2π = (0.14 ± 0.04) kHz, respectively. Typical peak widths broad-
ened by cavity cooling in our experiments are (0.6 ± 0.1) kHz. Assuming 
we can resolve peaks separated by half their widths, we estimate a 
minimum measurable coupling strength of Gmin/2π ≈ 0.15 kHz close to 
both GC and GO.

Data availability
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the ETH Zurich Research Collection (https://doi.org/10.3929/
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Extended Data Fig. 1 | Sketch of full experimental setup. Tweezer arrays are 
generated using two AODs fed by two RF input channels each (orange box). Two 
beams with the same optical frequency are sent into the vacuum chamber to trap 

particles. A Pound–Drever–Hall scheme is used to lock the cavity (red box), and 
a balanced heterodyne detection scheme is used to obtain spectral information 
about mechanical motion (blue box).
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Extended Data Fig. 2 | Calibration of RF to displacement. The periodicity of measured carrier amplitude extracted by a fit (line) gives the conversion factor between 
RF and particle displacement.
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Extended Data Table 1 | Experimental parameters and their uncertainties used for estimating coupling rates

Pt: optical powers of both tweezers at the avoided crossing, Wt: waist of the tweezers, R: nominal radius of the nanoparticles, ρ: density of the nanoparticles, ωc: frequency of the cavity field, 
Wc: cavity waist, Lc: cavity length, ϵ: electrical susceptibility of the nanoparticles, α: polarizability of the nanoparticles.
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