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Engineering multimode interactions in 
circuit quantum acoustodynamics

Uwe von Lüpke    1,2  , Ines C. Rodrigues    1,2, Yu Yang    1,2, Matteo Fadel    1,2 & 
Yiwen Chu    1,2 

In recent years, important progress has been made towards encoding and 
processing quantum information in the large Hilbert space of bosonic 
modes. Mechanical resonators have several practical advantages for 
this purpose, because they confine many high-quality-factor modes 
into a small volume and can be easily integrated with different quantum 
systems. However, it is challenging to create direct interactions between 
different mechanical modes that can be used to emulate quantum gates. 
Here we demonstrate an in situ tunable beamsplitter-type interaction 
between several mechanical modes of a high-overtone bulk acoustic-wave 
resonator. The engineered interaction is mediated by a parametrically 
driven superconducting transmon qubit, and we show that it can be tailored 
to couple pairs or triplets of phononic modes. Furthermore, we use this 
interaction to demonstrate the Hong–Ou–Mandel effect between phonons. 
Our results lay the foundations for using phononic systems as quantum 
memories and platforms for quantum simulations.

Mechanical degrees of freedom are a particularly interesting quantum 
platform, as they involve the collective motion of massive particles, 
can have long coherence times and can be combined with many other 
quantum systems1. Circuit quantum acoustodynamics (cQAD) systems, 
where a superconducting qubit is coupled to gigahertz-frequency 
acoustic modes, have recently been engineered2–4 and used to demon-
strate the generation and measurement of non-trivial quantum states4–8 
and entanglement between mechanical modes9. Due to the small mode 
volumes, low crosstalk and high coherence times of acoustic modes, 
cQAD devices have become the target platform of recent proposals 
for the realization of a quantum random-access memory10 as well as 
fault-tolerant quantum computing architectures11,12. In particular, cQAD 
devices that incorporate high-overtone bulk acoustic-wave resona-
tors (HBARs) can take advantage of the HBAR’s large effective mass 
and multimode properties, making them excellent platforms for the 
implementation of bosonic quantum simulations13–15, bosonic encod-
ings16,17, quantum metrology applications18 and fundamental studies of 
quantum mechanical interference phenomena between phonons19–21.

An important yet currently missing tool for the realization of 
these applications is the generation of a phononic iSWAP gate, which 

is an operation that allows for a direct exchange of quanta between 
mechanical modes. This can be engineered via a beamsplitter inter-
action, a coupling mechanism that has already been studied between 
photonic modes22,23, in optomechanical systems24, in trapped ions25, 
between mechanical resonators in the classical regime19,26 and between 
travelling mechanical waves21. When brought to the quantum regime, 
this phononic beamsplitter interaction will not only become a building 
block of quantum computing architectures10–12 but will also offer new 
possibilities for the simulation of complex quantum systems and the 
phononic realization of quantum-optics-type experiments that have 
so far been mostly explored with photonic systems.

In this work, we demonstrate a beamsplitter interaction between 
multiple phonon modes of an HBAR coupled to a superconducting 
transmon qubit. We create this interaction by applying two off-resonant 
drives on the qubit27 such that it acts as a nonlinear mixing element. 
We first study the effects of this bichromatic driving through qubit 
spectroscopy, observe the generation of multiple sidebands and show 
how these sidebands mediate the desired beamsplitter coupling. Hav-
ing realized this interaction, we then perform time-domain experi-
ments to demonstrate both iSWAP and √iSWAP gates, subsequently 
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the interplay of the parametric drives with the third energy level of 
the qubit, HStark acquires a correction, which we derive using time-
independent perturbation theory (Supplementary Section III). In the 
following, we use the corrected value for the modulation depth, which 

we label as Λ′. Furthermore, we will use the shorthand Jn = Jn (
Λ′

Δ21
).

We experimentally confirm these effects via two-tone spectros-
copy. Specifically, we sweep a weak probe signal across the qubit 
frequency with the off-resonant drives turned on and subsequently 
measure the resulting qubit population using dispersive readout. As 
expected, we find multiple resonances separated by Δ21 with different 
peak heights, which are the qubit sidebands described above (Fig. 1b). 
The measured steady-state population of the qubit is quantitatively 
described in the same way as in a regular qubit spectroscopy experi-
ment35, with the probe strength adjusted by the sideband amplitude 
(Fig. 1b, continuous black line). After repeating the measurement for a 
range of parametric drive strengths ξ1ξ2 (ξ1 = ξ2), we find the result shown 
in Fig. 1c, where we observe multiple diagonal lines spaced in frequency 
by Δ21 and with varying intensities. These qubit sidebands shift to lower 
frequencies with increasing drive power, as expected from the Stark 
shift described by the first term in equation (2).

The JC interaction between the driven qubit and phonon modes 
results in anti-crossings where the frequency of a sideband matches 
that of a phonon mode (Fig. 1c,d). However, the effective qubit–phonon 
coupling strength is scaled by the amplitude of the sideband closest 
to the phonon mode. Therefore, the gap of the anti-crossing will be 
reduced from 2gm to 2Jngm, as indicated for n = 0 (Fig. 1d).

In the dispersive regime, where all the qubit sidebands and phonon 
modes are far detuned, it is useful to enter the interaction picture of the 

using the latter to demonstrate entanglement between two acoustic 
overtone modes of our HBAR. Furthermore, by choosing another 
parameter regime, we create an interference between three phononic 
modes and explore the multimode dynamics governing the system. 
Finally, we utilize the beamsplitter interaction to exchange multiple 
excitations between the modes and observe the Hong–Ou–Mandel 
interference21,22,25,28–30 between macroscopic mechanical modes.

The device used in this work is a cQAD system where a supercon-
ducting qubit is flip-chip bonded to an HBAR7. The qubit is a three- 
dimensional transmon with a frequency of ωq = 2π × 5.97 GHz, an energy 
relaxation time of T1 = 9.5 µs, a Ramsey decoherence time of T∗

2  = 7.2 µs 
and an anharmonicity α = 2π × 218 MHz. The longitudinal free spectral 
range (FSR) of the HBAR is approximately 2π × 12.63 MHz, and the two 
subsystems are coupled through a piezoelectric transducer that medi-
ates a Jaynes–Cummings ( JC) interaction with a coupling strength of 
gm = 2π × 257 kHz. The device is housed in a three-dimensional alu-
minium cavity, which we use to both shield the qubit from its environ-
ment and read its state via the dispersive interaction between the  
qubit and the cavity. Supplementary Table I provides a full list of  
system parameters.

Although the cQAD device used in this work has been previously 
studied in both dispersive5 and resonant coupling regimes6, here we 
focus on direct multimode interactions that arise when two parametric 
drives are applied to the qubit. The Hamiltonian of our system in the 
presence of these drives is given by

H = ωqq†q −
α
2
q†2q2

+ ∑
m
[ωmm†m + gm(m†q +mq†)] + Hqd,

(1)

where we assume gm to be real. Here the first two terms describe the 
qubit as an anharmonic mode with lowering operator q. The sum over 
phonon modes m = a, b, c… with frequencies ωm and lowering operators 
m includes their energies as well as their JC interaction with the qubit. 
The last term, given by Hqd = (Ω1e−iω1t +Ω2e−iω2t)q† + h.c., describes 
two off-resonant microwave drives applied to the qubit with frequen-
cies ω1 = ωq + 2π × 492.5 MHz and ω2 ≈ ω1 + FSR. The drives, together 
with two modes a and b, can participate in a four-wave mixing  
process mediated by the Josephson nonlinearity of the supercon-
ducting qubit10,27,31. In particular, when the resonance condition 
Δ21 ≡ ω2 − ω1 = ωb − ωa is satisfied, equation (1) leads to a bilinear coupling 
between the phonon modes. Even though this picture is quantitatively 
accurate for large phonon–phonon detunings and small drive strengths, 
we now present a framework that extends this picture to address the 
case of large drive strengths and small phonon–phonon detunings. 
Furthermore, our analysis readily lends itself to systems with many 
bosonic modes by explicitly considering processes involving multiple 
drive photons.

We first consider only the effect of the drives on the qubit itself. 
Due to transmon anharmonicity, going into the displaced frame of 
the drives results in a modulated a.c. Stark shift of the qubit frequency 
given by (Supplementary Section V)

HStark = [−2α(ξ21 + ξ22) − 4αξ1ξ2 cos(Δ21t)]q†q, (2)

with the dimensionless drive strengths ξj = Ωj/Δj, where Δj = ωj − ωq for 
j ∈ {1, 2}. This shift has a time-independent as well as a time-dependent 
contribution, the latter arising from the beating between the two 
drives, which modulates the qubit frequency with Δ21. As usual for a 
frequency-modulated system32–34 (Fig. 1a), this gives rise to the appear-
ance of multiple qubit sidebands separated by Δ21, whose amplitudes 

are given by Jn (
Λ
Δ21
). Here Jn(x) is the Bessel function of the first kind 

for a given sideband number n, and Λ = −4αξ1ξ2. We note that due to 
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Fig. 1 | Effects of bichromatic driving on a transmon qubit coupled to an 
HBAR. a, Schematic of the spectrum of a bichromatically driven qubit. The blue 
vertical lines represent the two drives, the black Lorentzian peak represents the 
qubit resonance and the dashed Lorentzian peaks in blue represent the generated 
sidebands with amplitudes Jn for the nth sideband. b, Qubit population Pe during 
spectroscopy for a drive strength of ξ1ξ2 ≈ 0.0274. The circles are the data and 
the black line is a theoretical curve (Supplementary Section II) for the measured 
qubit population Pe when sweeping a probe tone over the qubit sidebands.  
c, Qubit spectroscopy for different values of modulation depth Λ′/Δ21. The top x 
axis indicates the corresponding drive strength ξ1ξ2. The vertical arrow indicates 
the linescan shown in b and the horizontal arrows indicate the phonon-mode 
frequencies of the HBAR. d, Zoomed-in view of one of the qubit–phonon anti-
crossings in c.
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sideband-mediated qubit–phonon coupling via the Schrieffer–Wolff 
transformation36. After applying the rotating-wave approximation, we 
can identify two effects in the resulting effective Hamiltonian. First, 
there is a frequency shift in the phonon modes, due to their hybridiza-
tion with the qubit37, such that the phonon frequency in the presence 
of the driven qubit is ωm + δm with

δm = g2m∑
n

J2n
̃Δm − nΔ21

, (3)

where ̃Δm = ωm − ω̃q is the detuning between phonon mode m and the 
Stark-shifted qubit. We see that a phonon mode’s frequency shift is 
dominated by the sideband for which the denominator in equation (3) 
is the smallest. Second, although the Schrieffer–Wolff transformation 
typically eliminates the JC coupling term between the qubit and pho-
nons, in our case, it also gives rise to phonon–phonon coupling terms. 
For example, the coupling between two neighbouring phonon modes 
b and c is given by gbc(b†c + bc†), with

gbc = gbgc∑
n

Jn Jn+1
̃Δb − nΔ21

, (4)

when Δ21 = ωc − ωb + δc − δb, such that this term remains after the 
rotating-wave approximation. Here δb,c refer to the frequency shift 
of phonons b and c as described by equation (3). Similarly, the next- 

nearest-neighbouring phonon modes a and c experience a coupling 
of gac(a†c + ac†), with

gac = gagc∑
n

Jn Jn+2
̃Δa − nΔ21

, (5)

when 2Δ21 = ωc − ωa + δc − δa.
The numerator of equation (4), which contains the product of 

two successive Bessel functions, represents the physical process of 
the qubit converting one photon between the parametric drives. The 
frequency conversion of the drive photons compensates for the energy 
difference between the phonon modes, making the beamsplitter inter-
action resonant. Interestingly, the effective coupling strength for this 
process does not become larger monotonically with increasing drive 
strengths ξ1ξ2. Instead, the speed of the single-photon conversion is 
reduced in favour of multiphoton processes, for example, converting 
two drive photons to bridge the energy gap between the phonon modes 
with a frequency difference of 2Δ21 (equation (5)). Supplementary 
Sections II and IV provide a more detailed derivation of the different 
transformations and their effects on the system Hamiltonian.

The dependence of the qubit sidebands on the Bessel functions is 
what allows us to choose different combinations of coupling strengths 
between the phonon modes and frequency shifts throughout this work. 
Naively, it might seem that due to the equal frequency spacing of the 
phonon modes, one cannot choose interactions between only a subset 
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Fig. 2 | Beamsplitter interaction between two acoustic modes. a, Schematic 
of the beamsplitter coupling between two mechanical modes b and c mediated 
by the qubit sidebands. The frequency difference between the drives is given 
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modes of interest is given by Δ. b, Pulse sequence used in the experiment 
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sequences. c, Phonon population versus detuning (Δ21 − Δ) and interaction 
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ω2 is changed and the population is read in either mode c (left plot) or mode b 

(right plot). The horizontal white arrow indicates the curves shown in d.  
d, Rabi oscillations between the two mechanical modes when Δ21 = Δ. The 
vertical dashed line shows the interaction time τBS = 8.0 µs at which the 
tomography experiment in e was performed. The black lines are fits to a 
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experiment shown in f. f, Reconstructed density matrix for a joint phonon 
state after a 50:50 beamsplitter interaction. Both the colours and height 
indicate the magnitude of the matrix elements.
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to be resonant. However, this is not the case. For instance, by choosing 
an appropriate modulation depth Λ′/Δ21, we can choose the amplitude 
of J0 to be larger than those of the neighbouring sidebands, namely, J1 
and J−1. According to equation (3), the phonon mode closest to the 
zeroth sideband will shift by a larger amount (∝ J20) than the adjacent 
phonon modes (∝ J21 , J

2
−1), giving rise to a unique frequency spacing 

between the two phonon modes equal to Δ21 and promoting a beam-
splitter interaction between them (Fig. 2a). If, on the other hand, we 
choose a regime where J0 = J1 = − J−1, the three phonon modes a, b and c 
adjacent in frequency to the n = −1, 0 and 1 sidebands, respectively, will 
be equally shifted, promoting beamsplitter interactions between these 
three modes. Note that in the latter case, the next-nearest-neighbour 
modes a and c are coupled via a two-photon conversion described  
by equation (5).

We now experimentally investigate the first case of coupling 
between only the two modes b and c (Fig. 2a). By choosing appropriate 
drive strengths ξ1,2, we set the modulation depth to Λ′/Δ21 = 0.610 ± 0.001 
such that J0 = 0.91 ± 0.01 and J1 = 0.29 ± 0.01. Here the errors are propa-
gated from uncertainties in the independent measurement of system 
parameters (Supplementary Table I). Our experimental protocol starts 
with swapping an excitation from the qubit into mode c using the reso-
nant JC interaction. Note that we use a third microwave drive, far 
detuned from the parametric drives, to independently adjust the fre-
quency of the qubit for this swap operation and to compensate the 
Stark shift of the qubit from the parametric drives during the beamsplit-
ter interaction to set ∆̃b = 2π × 1.0 MHz ± 17 kHz. We then turn on the 
parametric drives for a variable time τBS (Fig. 2b). Afterwards, the qubit 
has a finite excited-state population due to the off-resonant drives. We 
reset the qubit to its ground state by swapping its residual population 
to an ancillary phonon mode detuned by several FSRs from the modes 
of interest6. Finally, we swap the excitation from mode b or c into the 
qubit and measure its excited-state population.

Repeating this experiment for different values of Δ21, we observe 
the expected chevron pattern produced by a beamsplitter-type inter-
action between the two modes (Fig. 2c). Here we vary Δ21 by only about 
±1%, such that we can treat the modulation depth as constant. When 
Δ21 matches the unique detuning between the two modes Δ, we satisfy 
the resonance condition for the four-wave mixing process, and the 

exchange of quanta between the modes becomes most efficient. This 
occurs for a modulation frequency of (Δ21 − FSR) = −2π × 44 kHz, which 
matches our prediction from equation (3). We plot the phonon-mode 
populations for Δ21 = Δ (Fig. 2d) and fit them each to a decaying oscilla-
tion, yielding a beamsplitter coupling rate of gbc = 2π × 15.6 ± 0.1 kHz. 
Note that the contrast for the oscillation in phonon mode b is slightly 
lower than that for phonon mode c. This is a result of the different decay 
rates between the two phonon modes, as well as a small but finite leak-
age to the next phonon mode, namely, m−1 (Fig. 2a). The microscopic 
origin of the different decay rates for different HBAR modes is a subject 
of ongoing research38.

At the time τBS = π/4gBS = 8.0 μs (Fig. 2d, dashed line), the interac-
tion becomes a 50:50 beamsplitter or √iSWAP  gate, which creates  
an entangled state between the two phonon modes. We experimentally 
confirm this by performing two-qubit state tomography on the result-
ing state (Fig. 2e). Here, in contrast to the data shown in Fig. 2c,d, we 
measure the observables of both phonon modes in the same sequence, 
thereby accessing joint two-mode observables necessary for full-state 
tomography. To quantify the created entanglement, we compute an 
overlap of the reconstructed density matrix with the maximally  
entangled state ||bc⟩ = (|01⟩ + eiϕ |10⟩)/√2 of FBell = 0.69 ± 0.01, with ϕ  
chosen to optimize FBell. This confirms the presence of entanglement 
between the two phonon modes. We attribute the difference between 
the reconstructed density matrix and the maximally entangled state 
to phonon decay during the √iSWAP  gate and an imperfect state  
preparation of the initial Fock state in mode c. Supplementary Section 
VI provides details on the tomography procedure.

Having demonstrated a beamsplitter interaction between the two 
phonon modes, we now move on to create simultaneous interactions 
between three modes. To that end, we tune the modulation depth to 
Λ′/Δ21 = 1.430 ± 0.003 such that J0 = J1 = −J−1 = 0.55 ± 0.01. In this regime, 
phonon modes a, b and c are equally shifted such that Δcb = Δba ≡ Δ. This 
is schematically shown in Fig. 3a. In this case, phonon-mode pairs (b, c) 
and (a, b) are coupled via equation (4), whereas the mode pair (a, c) is 
coupled via equation (5), with ∣gab ∣ ≈  ∣gbc ∣ ≈  ∣gac ∣.

To explore the dynamics of this three-mode coupling scheme, we 
extend the experiment presented in Fig. 2. Specifically, we load an 
excitation into phonon mode b and turn on the parametric drives, 
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thereby activating beamsplitter interactions between all the three 
modes, and finally measure their population. As before, we sweep the 
interaction time τBS and the modulation frequency Δ21, with 
∆̃b = 2π × 1.0 MHz ± 17 kHz. The results are shown in Fig. 3b,c. Although 
they show the expected qualitative aspects of the excitation swapping 
between all the three modes, we observe two interesting features.  
First, when Δ21 = Δ, the initial excitation in mode b flows to modes a and 
c with approximately equal rates (Fig. 3d). However, the excitation does 
not fully swap to modes a and c, which is visible from the reduced oscil-
lation contrast (Fig. 3d, grey-shaded area). Although counterintuitive 
at first, this is the expected behaviour of a three-mode system with 
coupling between all the mode pairs. The coupling between modes a 
and c hybridizes them into new normal modes with frequencies shifted 
by the coupling strength. As a result, the coupling between these nor-
mal modes and mode b is no longer resonant, resulting in the reduced 
oscillation contrast we observe. We note that the frequency of the 
population exchange observed in Fig. 3d, namely, 2π × 64 ± 1.5 kHz, is 
in good agreement with theoretical calculations.

The second observation is that the data in Fig. 3c for mode a are 
approximately the mirror image of mode c with respect to Δ21 − Δ = 0. 
For instance, when Δ21 − Δ > 0 (Δ21 − Δ < 0), the initial excitation in mode 
b predominantly flows to mode a (c). Although the roles of modes a 
and c are symmetric when Δ21 = Δ, this symmetry is broken away from 
the resonance condition due to the coupling between modes a and c 
and the resulting normal-mode splitting. Supplementary Section VIII 
presents a detailed explanation for both these effects.

Although we present experimental details on two interesting val-
ues of modulation depth, we note that we can tune from one regime to 
the other by changing the drive powers, thereby observing a gradual 
change in both coupling strength and relative detuning (Fig. 3e). To 
acquire the effective interaction strengths between the three modes 
as well as their respective phonon frequency shifts, we perform the 
experiment shown in Fig. 3b,c for different values of ξ1ξ2, thereby vary-
ing Λ′/Δ21. We then fit the measured phonon populations to a set of 
coupled equations of motion with beamsplitter couplings gmk and 
relative phonon detunings δmk as free parameters (m, k ∈ {a, b, c}). 
Supplementary Section VII provide details on the fitting procedure. 
The fit results are plotted alongside equations (3)–(5) with no free 
parameters (Fig. 3e) and show good agreement between experi-
ment and theory. The observed difference between  ∣gab ∣ and  ∣gbc ∣ is 
a result of the different relative contributions from the sidebands in  
equation (4) depending on the position of the phonon modes 
involved. In particular, the observed reduction in  ∣gab ∣ and  ∣gbc ∣ for 
larger modulation depths, as well as the accompanying increase in  
∣gac ∣, are well captured by theory. We emphasize that previous works 
have only investigated a much smaller range of modulation depths; 
therefore, these effects were not evident16,27,31,39.

So far, we have studied the two- and three-mode coupling 
regimes for the particular case where a single phononic quantum is 
shared between all of the participating modes. We now investigate 
the interplay of two quanta during a beamsplitter operation. We first 
create a |cb〉 = |11〉 state in modes b and c by repeatedly exciting the 
qubit and swapping its excitation into each mode7. We then turn on 
the two-mode beamsplitter interaction and subsequently measure 
the resulting phonon Fock-state distributions of either mode by 
monitoring the qubit population during a resonant qubit–phonon 
JC interaction, as shown in previous work7 (Fig. 4a). As an example, 
the results for a beamsplitter time of τBS = 6.7 μs are shown in Fig. 4b. 
Here, to optimize the coupling strength and reduce the residual JC 
interaction with the qubit, we use a slightly larger qubit–phonon 
detuning of ̃Δb  = 2π × 1.2 MHz ± 17 kHz and modulation depth of 
Λ′/Δ21 = 0.850 ± 0.002, resulting in gbc = 2π × 18.5 ± 0.8 kHz.

The Hong–Ou–Mandel effect predicts that the outcome of this 
experiment should depend on whether or not the two phonons are 
distinguishable. If they are, no interference between them will occur 
and the excitations will be equally shared between the two phonon 
modes. On the other hand, if they are indistinguishable, both excita-
tions will bunch in one of the two phonon modes after the beamsplitter. 
To experimentally confirm this, we compare the probability of the 
bunched (P20 + P02) with that of the anti-bunched outcome (P11).  
We extract the bunched outcome probability from the individual  
Fock distributions by assigning P02 + P20 to Pc

2 + Pb
2, where Pc(b)

2  is the 
probability of finding two quanta in mode c (b). Doing so relies on the 
assumption that our system contains a maximum of two excitations at 
the start of the beamsplitter interaction and that no additional quanta 
are added during the sequence. This assumption is justified because 
the residual thermal population of the phonon modes is less than 1.6% 
(ref. 40). Under the same assumption, we can put an upper bound  
on the anti-bunched probability, namely, ̄P11 = min(Pb

1 ,P
c
1 ) ≥ P11 .  

Nevertheless, we still take into account the possibility for leakage into 
higher Fock states by fitting the qubit–phonon Rabi oscillations for 
the first five energy levels. The population contribution of these higher 
levels is 0.01 on average and is then included in the error bars (Fig. 4c).
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Fig. 4 | Observation of the Hong–Ou–Mandel effect between two phonon 
modes. a, Pulse sequence used in the experiment where the two modes are 
individually measured in different sequences. The regime addressed here is the 
same as that in Fig. 2, that is, a two-mode coupling between phonons c and b.  
b, Rabi oscillations between phonon modes c (b) and the qubit in the top 
(bottom) plot for 82 values of the resonant interaction duration τ. The circles are 
the data and the black lines are fits. The extracted Fock-state populations for each 
mode is shown in the histograms on the right side. The vertical error bars on the 
histograms (grey) account for one standard deviation of the fit uncertainty and 
are below 1%. c, Normalized joint phonon population for different interaction 
times τBS. The dots are the data and the shaded areas are the result of simulation 
results of the full system Hamiltonian in equation (1) accounting for 3% deviation 
in gm. The error bars on the data points include higher Fock-state populations and 
one standard deviation of the fit uncertainties propagated from the data shown 
in b, and the dashed vertical line indicates the data shown in b.
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In Fig. 4c, we show both ̄P11 and P20 + P02 for various beamsplitter 
interaction times τBS, normalized by the entire two-excitation subspace 
PΣ = P20 + P02 + ̄P11. As expected, the two-excitation manifold of the 
phonon state in the beginning of the interaction is dominated by |11〉. 
After τBS = 6.7 µs, which corresponds to a 50:50 beamsplitter (Fig. 4c, 
vertical dashed line), the joint state is more probably bunched with 
(P20 + P02)/PΣ = 0.622 ± 0.028.

Although we cannot straightforwardly access the joint Fock dis-
tributions of the two phonon modes in our experiment, we can do so 
in a master equation simulation of our system using independently 
measured system parameters. The results are plotted as continuous 
lines in Fig. 4c, showing good agreement between data and theory. The 
fast oscillations that can be seen for lower interaction times in both 
theory and experiment arise due to an off-resonant JC interaction with 
the qubit. This result demonstrates how two apriori distinguishable 
phononic quanta in modes at different frequencies are made indistin-
guishable by a frequency-converting coupling, which compensates for 
the energy difference between the two modes, thereby confirming that 
the lattice vibrations constituting our phonons display behaviour that 
cannot be classically described.

In conclusion, we have engineered a direct beamsplitter coupling 
between two and three distinct mechanical modes of an HBAR. We have 
used the two-mode interaction to create a phononic √iSWAP  gate, 
allowing us to generate entanglement between the modes and observe 
the Hong–Ou–Mandel effect between two phonons. In addition to our 
experimental data, we have also presented a theoretical model that is 
in good agreement with our findings. Parametrically driven beamsplit-
ters are being actively studied for the purpose of bosonic quantum 
computing16,21,39,41. Our work explores a new regime of this interaction, 
where sidebands generated by a large frequency modulation depth 
and the conversion of more than one drive photon plays an important 
role. We find our beamsplitter operation to be limited in speed by the 
qubit–phonon coupling strength and in fidelity by the phonon life-
times. Larger values for both these parameters have been observed42,43, 
though combining both remains a challenge. Nevertheless, on the basis 
of these recent developments, we expect to be able to improve our 
device quality in the near future.

Our results provide a fundamental building block for perform-
ing quantum-optics-type experiments with massive mechanical 
excitations6. They also address a key challenge towards realizing a 
mechanical quantum random-access memory by providing one of two 
required operations10, the other one being a conditional phase opera-
tion31. Furthermore, our technique, in principle, allows for all-to-all 
coupling between a large number of phononic modes, all compactly 
hosted within a single physical resonator. This makes our device a 
hardware-efficient platform for future studies of non-reciprocal inter-
actions19,44 and quantum simulations with bosonic modes13,14,45. Finally, 
our current system and the concepts discussed here can potentially 
be extended to single- and two-mode squeezing interactions, ena-
bling Gaussian quantum information processing using mechanical 
resonators46.

Online content
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