Abstract
Physical ageing is the generic term for irreversible processes in glassy materials resulting from molecular rearrangements. One formalism for describing such ageing processes involves the concept of material time, which may be thought of as time measured on a clock whose rate changes as the glass ages. Experimental determination of material time has so far not been realized, however. Here we show how dynamic light-scattering measurements provide a way forward. We determined the material time for an ageing sample of the glass-former 1-phenyl-1-propanol after temperature jumps close to the glass transition from the time-autocorrelation function of the intensity fluctuations probed by multispeckle dynamic light scattering. These fluctuations are shown to be stationary and reversible when regarded as a function of the material time. The glass-forming colloidal synthetic clay Laponite and a chemically ageing curing epoxy are also shown to display material-time-reversible scattered-light intensity fluctuations, and simulations of an ageing binary system monitoring the potential energy confirm material-time reversibility. In addition to demonstrating direct measurements of the material time, our findings identify a fundamental property of ageing in quite different contexts that presents a challenge to the current theories of ageing.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The study generated ∼10 TB of data, which are available from the corresponding authors upon request.
Code availability
The code for the analysis of all data sets is available from the corresponding authors upon request.
References
Rovelli, C. The Order of Time (Penguin Books, 2018).
Landau, L. D. and Lifshitz, E. M. Statistical Physics (Pergamon, 1958).
Reichl, L. E. A Modern Course in Statistical Physics 4th edn (Wiley-VCH, 2016).
Onsager, L. Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265–2279 (1931).
Tool, A. Q. Relation between inelastic deformability and thermal expansion of glass in its annealing range. J. Am. Ceram. Soc. 29, 240–253 (1946).
Narayanaswamy, O. S. A model of structural relaxation in glass. J. Am. Ceram. Soc. 54, 491–498 (1971).
Mandal, R., Tapias, D. & Sollich, P. Memory in non-monotonic stress response of an athermal disordered solid. Phys. Rev. Res. 3, 043153 (2021).
Struik, L. C. E. Physical Aging in Amorphous Polymers and Other Materials (Elsevier, 1978).
Scherer, G. W. Relaxation in Glass and Composites (Wiley, 1986).
Hodge, I. M. Physical aging in polymer glasses. Science 267, 1945–1947 (1995).
Chen, K. & Schweizer, K. S. Molecular theory of physical aging in polymer glasses. Phys. Rev. Lett. 98, 167802 (2007).
Micoulaut, M. Relaxation and physical aging in network glasses: a review. Rep. Prog. Phys. 79, 066504 (2016).
McKenna, G. B. & Simon, S. L. 50th anniversary perspective: Challenges in the dynamics and kinetics of glass-forming polymers. Macromolecules 50, 6333–6361 (2017).
Ruta, B., Pineda, E. & Evenson, Z. Relaxation processes and physical aging in metallic glasses. J. Phys. Condens. Matter 29, 503002 (2017).
Cangialosi, D. Physical Aging of Polymers (Wiley, 2018).
Arceri, F., Landes, F.P., Berthier, & L., Biroli, G. in Statistical and Nonlinear Physics. Encyclopedia of Complexity and Systems Science Series (ed. Chakraborty, B.) 229–296 (Springer, 2022).
McKenna, G. B. On the physics required for prediction of long term performance of polymers and their composites. J. Res. Natl Inst. Stand. Technol. 99, 169–189 (1994).
Monnier, X., Cangialosi, D., Ruta, B., Busch, R. & Gallino, I. Vitrification decoupling from α-relaxation in a metallic glass. Sci. Adv. 6, eaay1454 (2020).
Zhao, Y. et al. Ultrastable metallic glass by room temperature aging. Sci. Adv. 8, eabn3623 (2022).
Simon, F. Über den Zustand der unterkühlten Flüssigkeiten und Gläser. Z. Anorg. Allg. Chem. 203, 219–227 (1931).
Roth, C. B. (ed.) Polymer Glasses (CRC Press, 2017).
Lulli, M., Lee, C.-S., Deng, H.-Y., Yip, C.-T. & Lam, C.-H. Spatial heterogeneities in structural temperature cause Kovacs’ expansion gap paradox in aging of glasses. Phys. Rev. Lett. 124, 095501 (2020).
Mandal, R. & Sollich, P. Multiple types of aging in active glasses. Phys. Rev. Lett. 125, 218001 (2020).
Pastore, R., Siviello, C. & Larobina, D. Elastic and dynamic heterogeneity in aging alginate gels. Polymers 13, 3618 (2021).
Janzen, G. & Janssen, L. M. C. Aging in thermal active glasses. Phys. Rev. Res. 4, L012038 (2022).
Schober, H. R. Diffusion, relaxation, and aging of liquid and amorphous selenium. Phys. Rev. B 103, 094202 (2021).
Elizondo-Aguilera, L. F., Rizzo, T. & Voigtmann, T. From subaging to hyperaging in structural glasses. Phys. Rev. Lett. 129, 238003 (2022).
Kob, W. & Barrat, J.-L. Fluctuations, response and aging dynamics in a simple glass-forming liquid out of equilibrium. Eur. Phys. J. B 13, 319–333 (2000).
Kovacs, A. J., Aklonis, J. J., Hutchinson, J. M. & Ramos, A. R. Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory. J. Polym. Sci. Polym. Phys. 17, 1097–1162 (1979).
Riechers, B. et al. Predicting nonlinear physical aging of glasses from equilibrium relaxation via the material time. Sci. Adv. 8, eabl9809 (2022).
Berne, B. J. and Pecora, R. Dynamic Light Scattering: with Applications to Chemistry, Biology, and Physics (Wiley, 1976).
Riechers, B. & Richert, R. Rate exchange rather than relaxation controls structural recovery. Phys. Chem. Chem. Phys. 21, 32–37 (2019).
Cugliandolo, L. F. & Kurchan, J. On the out-of-equilibrium relaxation of the Sherrington–Kirkpatrick model. J. Phys. A 27, 5749–5772 (1994).
Viasnoff, V. & Lequeux, F. Rejuvenation and overaging in a colloidal glass under shear. Phys. Rev. Lett. 89, 065701 (2002).
Cipelletti, L., Bissig, H., Trappe, V., Ballesta, P. & Mazoyer, S. Time-resolved correlation: a new tool for studying temporally heterogeneous dynamics. J. Phys. Condens. Matter 15, S257 (2002).
Kaloun, S., Skouri, M., Knaebel, A., Münch, J.-P. & Hébraud, P. Aging of a colloidal glass under a periodic shear. Phys. Rev. E 72, 011401 (2005).
Li, Q., Peng, X. & McKenna, G. B. Long-term aging behaviors in a model soft colloidal system. Soft Matter 13, 1396–1404 (2017).
Aime, S., Ramos, L. & Cipelletti, L. Microscopic dynamics and failure precursors of a gel under mechanical load. Proc. Natl Acad. Sci. USA 115, 3587–3592 (2018).
Ruta, B. et al. Atomic-scale relaxation dynamics and aging in a metallic glass probed by X-ray photon correlation spectroscopy. Phys. Rev. Lett. 109, 165701 (2012).
Evenson, Z. et al. X-ray photon correlation spectroscopy reveals intermittent aging dynamics in a metallic glass. Phys. Rev. Lett. 115, 175701 (2015).
Cornet, A. et al. Denser glasses relax faster: Enhanced atomic mobility and anomalous particle displacement under in-situ high pressure compression of metallic glasses. Acta Mater. 255, 119065 (2023).
Avila, K. E., Castillo, H. E. & Parsaeian, A. Fluctuations in the time variable and dynamical heterogeneity in glass-forming systems. Phys. Rev. E 88, 042311 (2013).
Douglass, I. M. & Dyre, J. C. Distance-as-time in physical aging. Phys. Rev. E 106, 054615 (2022).
Lawrance, A. J. Directionality and reversibility in time series. Int. Stat. Rev. 59, 67–79 (1991).
Lacasa, L., Luque, B., Ballesteros, F., Luque, J. & Nuno, J. C. From time series to complex networks: the visibility graph. Proc. Natl Acad. Sci. USA 105, 4972–4975 (2008).
Lacasa, L., Nunez, A., Roldán, E., Juan, J. M. R. & Luque, B. Time series irreversibility: a visibility graph approach. Eur. Phys. J. B 85, 217 (2012).
Menéndez, M. L., Pardo, J. A., Pardo, L. & Pardo, M. C. The Jensen–Shannon divergence. J. Franklin Inst. 334, 307–318 (1997).
Ruzicka, B. & Zaccarelli, E. A fresh look at the Laponite phase diagram. Soft Matter 7, 1268–1286 (2011).
Augusto de Melo Marques, F. et al. Structural and microscopic relaxations in a colloidal glass. Soft Matter 11, 466–471 (2015).
Jabbari-Farouji, S., Zargar, R., Wegdam, G. H. & Bonn, D. Dynamical heterogeneity in aging colloidal glasses of Laponite. Soft Matter 8, 5507–5512 (2012).
Kob, W. & Andersen, H. C. Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture I: the Van Hove correlation function. Phys. Rev. E 51, 4626–4641 (1995).
Toxvaerd, S., Pedersen, U. R., Schrøder, T. B. & Dyre, J. C. Stability of supercooled binary liquid mixtures. J. Chem. Phys. 130, 224501 (2009).
O’Byrne, J., Kafri, Y., Tailleur, J. & van Wijland, F. Time-(ir)reversibility in active matter, from micro to macro. Nat. Rev. Phys. 4, 167–183 (2022).
Seif, A., Hafezi, M. & Jarzynski, C. Machine learning the thermodynamic arrow of time. Nat. Phys. 17, 105–113 (2021).
Peredo-Ortiz, R., Medina-Noyola, M., Voigtmann, T. & Elizondo-Aguilera, L. F. Inner clocks of glass-forming liquids. J. Chem. Phys. 156, 244506 (2022).
Roed, L. A., Dyre, J. C., Niss, K., Hecksher, T. & Riechers, B. Time-scale ordering in hydrogen- and van der Waals-bonded liquids. J. Chem. Phys. 154, 184508 (2021).
Kringelbach, M. L., Perl, Y. S., Tagliazucchi, E. & Deco, G. Toward naturalistic neuroscience: mechanisms underlying the flattening of brain hierarchy in movie-watching compared to rest and task. Sci. Adv. 9, eade6049 (2023).
Chamon, C. & Cugliandolo, L. F. Fluctuations in glassy systems. J. Stat. Mech. 7, P07022 (2007).
Agoritsas, E., Maimbourg, T. & Zamponi, F. Out-of-equilibrium dynamical equations of infinite-dimensional particle systems I. The isotropic case. J. Phys. A 52, 144002 (2019).
Castillo, H. E. & Parsaeian, A. Local fluctuations in the ageing of a simple structural glass. Nat. Phys. 3, 26–28 (2007).
Facoetti, D., Biroli, G., Kurchan, J. & Reichman, D. R. Classical glasses, black holes, and strange quantum liquids. Phys. Rev. B 100, 205108 (2019).
Kurchan, J. Time-reparametrization invariances, multithermalization and the Parisi scheme. SciPost Phys. Core 6, 001 (2023).
Cugliandolo, L. F. The effective temperature. J. Phys. A 44, 483001 (2011).
Bochkov, G. N. & Kuzovlev, Yu. E. Nonlinear fluctuation–dissipation relations and stochastic models in nonequilibrium thermodynamics. I. Generalized fluctuation–dissipation theorem. Physica A 106, 443–479 (1981).
Evans, D. J. & Searles, D. J. The fluctuation theorem. Adv. Phys. 51, 1529–1585 (2002).
Cangialosi, D., Boucher, V. M., Alegría, A. & Colmenero, J. Direct evidence of two equilibration mechanisms in glassy polymers. Phys. Rev. Lett. 111, 095701 (2013).
Herrero, C., Scalliet, C., Ediger, M. D. & Berthier, L. Two-step devitrification of ultrastable glasses. Proc. Natl Acad. Sci. USA 120, e2220824120 (2023).
Schreiber, T. & Schmitz, A. Surrogate time series. Physica D 142, 346–382 (2000).
Igarashi, B. et al. A cryostat and temperature control system optimized for measuring relaxations of glass-forming liquids. Rev. Sci. Instrum. 79, 045105 (2008).
Igarashi, B. et al. An impedance-measurement setup optimized for measuring relaxations of glass-forming liquids. Rev. Sci. Instrum. 79, 045106 (2008).
Hecksher, T., Olsen, N. B., Niss, K. & Dyre, J. C. Physical aging of molecular glasses studied by a device allowing for rapid thermal equilibration. J. Chem. Phys. 133, 174514 (2010).
Böhmer, T., Gabriel, J. P., Richter, T., Pabst, F. & Blochowicz, T. Influence of molecular architecture on the dynamics of H-bonded supramolecular structures in phenyl-propanols. J. Phys. Chem. B 123, 10959–10966 (2019).
Tanaka, H., Meunier, J. & Bonn, D. Nonergodic states of charged colloidal suspensions: repulsive and attractive glasses and gels. Phys. Rev. E 69, 031404 (2004).
Bailey, N. P. et al. RUMD: a general purpose molecular dynamics package optimized to utilize GPU hardware down to a few thousand particles. SciPost Phys. 3, 038 (2017).
Schrøder, T. B. & Dyre, J. C. Solid-like mean-square displacement in glass-forming liquids. J. Chem. Phys. 152, 141101 (2020).
Lan, X., Mo, H., Chen, S., Liu, Q. & Deng, Y. Fast transformation from time series to visibility graphs. Chaos 25, 083105 (2015).
Schreiber, T. & Schmitz, A. Improved surrogate data for nonlinearity tests. Phys. Rev. Lett. 77, 635–638 (1996).
Acknowledgements
We thank M. Zanin and S. Ditlevsen for advice regarding the data analysis. This work was supported by the VILLUM Foundation’s Matter grant (VIL16515) and by the Deutsche Forschungsgemeinschaft (grants BL 923/1 and BL 1192/3).
Author information
Authors and Affiliations
Contributions
J.C.D. and T. Blochowicz devised the project; T. Böhmer and J.P.G. planned the experiments; T. Böhmer, J.P.G. and J.-N.K. performed the experiments; T. Böhmer and J.P.G. analysed the experimental data; L.C. and T. Böhmer performed and analysed the computer simulations; T.H., J.C.D. and T. Blochowicz supervised the experiments and data analysis, T. Böhmer and J.C.D. wrote the paper with input from all authors; J.C.D. and T. Blochowicz provided resources and acquired funding.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Physics thanks Isabella Gallino, Yoav Lahini, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–10 and Discussion.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Böhmer, T., Gabriel, J.P., Costigliola, L. et al. Time reversibility during the ageing of materials. Nat. Phys. 20, 637–645 (2024). https://doi.org/10.1038/s41567-023-02366-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-023-02366-z
This article is cited by
-
Time in a glass
Nature Physics (2024)