Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Time reversibility during the ageing of materials

Abstract

Physical ageing is the generic term for irreversible processes in glassy materials resulting from molecular rearrangements. One formalism for describing such ageing processes involves the concept of material time, which may be thought of as time measured on a clock whose rate changes as the glass ages. Experimental determination of material time has so far not been realized, however. Here we show how dynamic light-scattering measurements provide a way forward. We determined the material time for an ageing sample of the glass-former 1-phenyl-1-propanol after temperature jumps close to the glass transition from the time-autocorrelation function of the intensity fluctuations probed by multispeckle dynamic light scattering. These fluctuations are shown to be stationary and reversible when regarded as a function of the material time. The glass-forming colloidal synthetic clay Laponite and a chemically ageing curing epoxy are also shown to display material-time-reversible scattered-light intensity fluctuations, and simulations of an ageing binary system monitoring the potential energy confirm material-time reversibility. In addition to demonstrating direct measurements of the material time, our findings identify a fundamental property of ageing in quite different contexts that presents a challenge to the current theories of ageing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multispeckle DLS.
Fig. 2: Verifying the triangular relation.
Fig. 3: Determining and validating the material time for down jumps to 193 K.
Fig. 4: Stationarity and reversibility of the intensity fluctuations regarded as functions of the material time.
Fig. 5: Physical ageing data for the colloidal glass-former Laponite, chemical ageing data for a linear polymerizing epoxy and computer simulation data for a binary LJ system.

Similar content being viewed by others

Data availability

The study generated 10 TB of data, which are available from the corresponding authors upon request.

Code availability

The code for the analysis of all data sets is available from the corresponding authors upon request.

References

  1. Rovelli, C. The Order of Time (Penguin Books, 2018).

  2. Landau, L. D. and Lifshitz, E. M. Statistical Physics (Pergamon, 1958).

  3. Reichl, L. E. A Modern Course in Statistical Physics 4th edn (Wiley-VCH, 2016).

  4. Onsager, L. Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265–2279 (1931).

    Article  ADS  Google Scholar 

  5. Tool, A. Q. Relation between inelastic deformability and thermal expansion of glass in its annealing range. J. Am. Ceram. Soc. 29, 240–253 (1946).

    Article  Google Scholar 

  6. Narayanaswamy, O. S. A model of structural relaxation in glass. J. Am. Ceram. Soc. 54, 491–498 (1971).

    Article  Google Scholar 

  7. Mandal, R., Tapias, D. & Sollich, P. Memory in non-monotonic stress response of an athermal disordered solid. Phys. Rev. Res. 3, 043153 (2021).

    Article  Google Scholar 

  8. Struik, L. C. E. Physical Aging in Amorphous Polymers and Other Materials (Elsevier, 1978).

  9. Scherer, G. W. Relaxation in Glass and Composites (Wiley, 1986).

  10. Hodge, I. M. Physical aging in polymer glasses. Science 267, 1945–1947 (1995).

    Article  ADS  Google Scholar 

  11. Chen, K. & Schweizer, K. S. Molecular theory of physical aging in polymer glasses. Phys. Rev. Lett. 98, 167802 (2007).

    Article  ADS  Google Scholar 

  12. Micoulaut, M. Relaxation and physical aging in network glasses: a review. Rep. Prog. Phys. 79, 066504 (2016).

    Article  ADS  Google Scholar 

  13. McKenna, G. B. & Simon, S. L. 50th anniversary perspective: Challenges in the dynamics and kinetics of glass-forming polymers. Macromolecules 50, 6333–6361 (2017).

    Article  ADS  Google Scholar 

  14. Ruta, B., Pineda, E. & Evenson, Z. Relaxation processes and physical aging in metallic glasses. J. Phys. Condens. Matter 29, 503002 (2017).

    Article  Google Scholar 

  15. Cangialosi, D. Physical Aging of Polymers (Wiley, 2018).

  16. Arceri, F., Landes, F.P., Berthier, & L., Biroli, G. in Statistical and Nonlinear Physics. Encyclopedia of Complexity and Systems Science Series (ed. Chakraborty, B.) 229–296 (Springer, 2022).

  17. McKenna, G. B. On the physics required for prediction of long term performance of polymers and their composites. J. Res. Natl Inst. Stand. Technol. 99, 169–189 (1994).

    Article  Google Scholar 

  18. Monnier, X., Cangialosi, D., Ruta, B., Busch, R. & Gallino, I. Vitrification decoupling from α-relaxation in a metallic glass. Sci. Adv. 6, eaay1454 (2020).

    Article  ADS  Google Scholar 

  19. Zhao, Y. et al. Ultrastable metallic glass by room temperature aging. Sci. Adv. 8, eabn3623 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  20. Simon, F. Über den Zustand der unterkühlten Flüssigkeiten und Gläser. Z. Anorg. Allg. Chem. 203, 219–227 (1931).

    Article  Google Scholar 

  21. Roth, C. B. (ed.) Polymer Glasses (CRC Press, 2017).

  22. Lulli, M., Lee, C.-S., Deng, H.-Y., Yip, C.-T. & Lam, C.-H. Spatial heterogeneities in structural temperature cause Kovacs’ expansion gap paradox in aging of glasses. Phys. Rev. Lett. 124, 095501 (2020).

    Article  ADS  Google Scholar 

  23. Mandal, R. & Sollich, P. Multiple types of aging in active glasses. Phys. Rev. Lett. 125, 218001 (2020).

    Article  ADS  Google Scholar 

  24. Pastore, R., Siviello, C. & Larobina, D. Elastic and dynamic heterogeneity in aging alginate gels. Polymers 13, 3618 (2021).

    Article  Google Scholar 

  25. Janzen, G. & Janssen, L. M. C. Aging in thermal active glasses. Phys. Rev. Res. 4, L012038 (2022).

    Article  Google Scholar 

  26. Schober, H. R. Diffusion, relaxation, and aging of liquid and amorphous selenium. Phys. Rev. B 103, 094202 (2021).

    Article  ADS  Google Scholar 

  27. Elizondo-Aguilera, L. F., Rizzo, T. & Voigtmann, T. From subaging to hyperaging in structural glasses. Phys. Rev. Lett. 129, 238003 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  28. Kob, W. & Barrat, J.-L. Fluctuations, response and aging dynamics in a simple glass-forming liquid out of equilibrium. Eur. Phys. J. B 13, 319–333 (2000).

    Article  ADS  Google Scholar 

  29. Kovacs, A. J., Aklonis, J. J., Hutchinson, J. M. & Ramos, A. R. Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory. J. Polym. Sci. Polym. Phys. 17, 1097–1162 (1979).

    Article  ADS  Google Scholar 

  30. Riechers, B. et al. Predicting nonlinear physical aging of glasses from equilibrium relaxation via the material time. Sci. Adv. 8, eabl9809 (2022).

    Article  Google Scholar 

  31. Berne, B. J. and Pecora, R. Dynamic Light Scattering: with Applications to Chemistry, Biology, and Physics (Wiley, 1976).

  32. Riechers, B. & Richert, R. Rate exchange rather than relaxation controls structural recovery. Phys. Chem. Chem. Phys. 21, 32–37 (2019).

    Article  Google Scholar 

  33. Cugliandolo, L. F. & Kurchan, J. On the out-of-equilibrium relaxation of the Sherrington–Kirkpatrick model. J. Phys. A 27, 5749–5772 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  34. Viasnoff, V. & Lequeux, F. Rejuvenation and overaging in a colloidal glass under shear. Phys. Rev. Lett. 89, 065701 (2002).

    Article  ADS  Google Scholar 

  35. Cipelletti, L., Bissig, H., Trappe, V., Ballesta, P. & Mazoyer, S. Time-resolved correlation: a new tool for studying temporally heterogeneous dynamics. J. Phys. Condens. Matter 15, S257 (2002).

    Article  Google Scholar 

  36. Kaloun, S., Skouri, M., Knaebel, A., Münch, J.-P. & Hébraud, P. Aging of a colloidal glass under a periodic shear. Phys. Rev. E 72, 011401 (2005).

    Article  ADS  Google Scholar 

  37. Li, Q., Peng, X. & McKenna, G. B. Long-term aging behaviors in a model soft colloidal system. Soft Matter 13, 1396–1404 (2017).

    Article  ADS  Google Scholar 

  38. Aime, S., Ramos, L. & Cipelletti, L. Microscopic dynamics and failure precursors of a gel under mechanical load. Proc. Natl Acad. Sci. USA 115, 3587–3592 (2018).

    Article  ADS  Google Scholar 

  39. Ruta, B. et al. Atomic-scale relaxation dynamics and aging in a metallic glass probed by X-ray photon correlation spectroscopy. Phys. Rev. Lett. 109, 165701 (2012).

    Article  ADS  Google Scholar 

  40. Evenson, Z. et al. X-ray photon correlation spectroscopy reveals intermittent aging dynamics in a metallic glass. Phys. Rev. Lett. 115, 175701 (2015).

    Article  ADS  Google Scholar 

  41. Cornet, A. et al. Denser glasses relax faster: Enhanced atomic mobility and anomalous particle displacement under in-situ high pressure compression of metallic glasses. Acta Mater. 255, 119065 (2023).

  42. Avila, K. E., Castillo, H. E. & Parsaeian, A. Fluctuations in the time variable and dynamical heterogeneity in glass-forming systems. Phys. Rev. E 88, 042311 (2013).

    Article  ADS  Google Scholar 

  43. Douglass, I. M. & Dyre, J. C. Distance-as-time in physical aging. Phys. Rev. E 106, 054615 (2022).

    Article  ADS  Google Scholar 

  44. Lawrance, A. J. Directionality and reversibility in time series. Int. Stat. Rev. 59, 67–79 (1991).

    Article  Google Scholar 

  45. Lacasa, L., Luque, B., Ballesteros, F., Luque, J. & Nuno, J. C. From time series to complex networks: the visibility graph. Proc. Natl Acad. Sci. USA 105, 4972–4975 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  46. Lacasa, L., Nunez, A., Roldán, E., Juan, J. M. R. & Luque, B. Time series irreversibility: a visibility graph approach. Eur. Phys. J. B 85, 217 (2012).

    Article  ADS  Google Scholar 

  47. Menéndez, M. L., Pardo, J. A., Pardo, L. & Pardo, M. C. The Jensen–Shannon divergence. J. Franklin Inst. 334, 307–318 (1997).

    Article  MathSciNet  Google Scholar 

  48. Ruzicka, B. & Zaccarelli, E. A fresh look at the Laponite phase diagram. Soft Matter 7, 1268–1286 (2011).

    Article  ADS  Google Scholar 

  49. Augusto de Melo Marques, F. et al. Structural and microscopic relaxations in a colloidal glass. Soft Matter 11, 466–471 (2015).

    Article  ADS  Google Scholar 

  50. Jabbari-Farouji, S., Zargar, R., Wegdam, G. H. & Bonn, D. Dynamical heterogeneity in aging colloidal glasses of Laponite. Soft Matter 8, 5507–5512 (2012).

    Article  ADS  Google Scholar 

  51. Kob, W. & Andersen, H. C. Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture I: the Van Hove correlation function. Phys. Rev. E 51, 4626–4641 (1995).

    Article  ADS  Google Scholar 

  52. Toxvaerd, S., Pedersen, U. R., Schrøder, T. B. & Dyre, J. C. Stability of supercooled binary liquid mixtures. J. Chem. Phys. 130, 224501 (2009).

    Article  ADS  Google Scholar 

  53. O’Byrne, J., Kafri, Y., Tailleur, J. & van Wijland, F. Time-(ir)reversibility in active matter, from micro to macro. Nat. Rev. Phys. 4, 167–183 (2022).

    Article  Google Scholar 

  54. Seif, A., Hafezi, M. & Jarzynski, C. Machine learning the thermodynamic arrow of time. Nat. Phys. 17, 105–113 (2021).

    Article  Google Scholar 

  55. Peredo-Ortiz, R., Medina-Noyola, M., Voigtmann, T. & Elizondo-Aguilera, L. F. Inner clocks of glass-forming liquids. J. Chem. Phys. 156, 244506 (2022).

    Article  ADS  Google Scholar 

  56. Roed, L. A., Dyre, J. C., Niss, K., Hecksher, T. & Riechers, B. Time-scale ordering in hydrogen- and van der Waals-bonded liquids. J. Chem. Phys. 154, 184508 (2021).

    Article  ADS  Google Scholar 

  57. Kringelbach, M. L., Perl, Y. S., Tagliazucchi, E. & Deco, G. Toward naturalistic neuroscience: mechanisms underlying the flattening of brain hierarchy in movie-watching compared to rest and task. Sci. Adv. 9, eade6049 (2023).

    Article  ADS  Google Scholar 

  58. Chamon, C. & Cugliandolo, L. F. Fluctuations in glassy systems. J. Stat. Mech. 7, P07022 (2007).

    Google Scholar 

  59. Agoritsas, E., Maimbourg, T. & Zamponi, F. Out-of-equilibrium dynamical equations of infinite-dimensional particle systems I. The isotropic case. J. Phys. A 52, 144002 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  60. Castillo, H. E. & Parsaeian, A. Local fluctuations in the ageing of a simple structural glass. Nat. Phys. 3, 26–28 (2007).

    Article  Google Scholar 

  61. Facoetti, D., Biroli, G., Kurchan, J. & Reichman, D. R. Classical glasses, black holes, and strange quantum liquids. Phys. Rev. B 100, 205108 (2019).

    Article  ADS  Google Scholar 

  62. Kurchan, J. Time-reparametrization invariances, multithermalization and the Parisi scheme. SciPost Phys. Core 6, 001 (2023).

    Article  Google Scholar 

  63. Cugliandolo, L. F. The effective temperature. J. Phys. A 44, 483001 (2011).

    Article  MathSciNet  Google Scholar 

  64. Bochkov, G. N. & Kuzovlev, Yu. E. Nonlinear fluctuation–dissipation relations and stochastic models in nonequilibrium thermodynamics. I. Generalized fluctuation–dissipation theorem. Physica A 106, 443–479 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  65. Evans, D. J. & Searles, D. J. The fluctuation theorem. Adv. Phys. 51, 1529–1585 (2002).

    Article  ADS  Google Scholar 

  66. Cangialosi, D., Boucher, V. M., Alegría, A. & Colmenero, J. Direct evidence of two equilibration mechanisms in glassy polymers. Phys. Rev. Lett. 111, 095701 (2013).

    Article  ADS  Google Scholar 

  67. Herrero, C., Scalliet, C., Ediger, M. D. & Berthier, L. Two-step devitrification of ultrastable glasses. Proc. Natl Acad. Sci. USA 120, e2220824120 (2023).

    Article  Google Scholar 

  68. Schreiber, T. & Schmitz, A. Surrogate time series. Physica D 142, 346–382 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  69. Igarashi, B. et al. A cryostat and temperature control system optimized for measuring relaxations of glass-forming liquids. Rev. Sci. Instrum. 79, 045105 (2008).

    Article  ADS  Google Scholar 

  70. Igarashi, B. et al. An impedance-measurement setup optimized for measuring relaxations of glass-forming liquids. Rev. Sci. Instrum. 79, 045106 (2008).

    Article  ADS  Google Scholar 

  71. Hecksher, T., Olsen, N. B., Niss, K. & Dyre, J. C. Physical aging of molecular glasses studied by a device allowing for rapid thermal equilibration. J. Chem. Phys. 133, 174514 (2010).

    Article  ADS  Google Scholar 

  72. Böhmer, T., Gabriel, J. P., Richter, T., Pabst, F. & Blochowicz, T. Influence of molecular architecture on the dynamics of H-bonded supramolecular structures in phenyl-propanols. J. Phys. Chem. B 123, 10959–10966 (2019).

    Article  Google Scholar 

  73. Tanaka, H., Meunier, J. & Bonn, D. Nonergodic states of charged colloidal suspensions: repulsive and attractive glasses and gels. Phys. Rev. E 69, 031404 (2004).

    Article  ADS  Google Scholar 

  74. Bailey, N. P. et al. RUMD: a general purpose molecular dynamics package optimized to utilize GPU hardware down to a few thousand particles. SciPost Phys. 3, 038 (2017).

    Article  ADS  Google Scholar 

  75. Schrøder, T. B. & Dyre, J. C. Solid-like mean-square displacement in glass-forming liquids. J. Chem. Phys. 152, 141101 (2020).

    Article  ADS  Google Scholar 

  76. Lan, X., Mo, H., Chen, S., Liu, Q. & Deng, Y. Fast transformation from time series to visibility graphs. Chaos 25, 083105 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  77. Schreiber, T. & Schmitz, A. Improved surrogate data for nonlinearity tests. Phys. Rev. Lett. 77, 635–638 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Zanin and S. Ditlevsen for advice regarding the data analysis. This work was supported by the VILLUM Foundation’s Matter grant (VIL16515) and by the Deutsche Forschungsgemeinschaft (grants BL 923/1 and BL 1192/3).

Author information

Authors and Affiliations

Authors

Contributions

J.C.D. and T. Blochowicz devised the project; T. Böhmer and J.P.G. planned the experiments; T. Böhmer, J.P.G. and J.-N.K. performed the experiments; T. Böhmer and J.P.G. analysed the experimental data; L.C. and T. Böhmer performed and analysed the computer simulations; T.H., J.C.D. and T. Blochowicz supervised the experiments and data analysis, T. Böhmer and J.C.D. wrote the paper with input from all authors; J.C.D. and T. Blochowicz provided resources and acquired funding.

Corresponding authors

Correspondence to Till Böhmer, Jeppe C. Dyre or Thomas Blochowicz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Isabella Gallino, Yoav Lahini, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Böhmer, T., Gabriel, J.P., Costigliola, L. et al. Time reversibility during the ageing of materials. Nat. Phys. 20, 637–645 (2024). https://doi.org/10.1038/s41567-023-02366-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02366-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing