Abstract
Ultracold molecules have been proposed as a candidate platform for quantum science and precision measurement because of their rich internal structures and interactions. Direct laser-cooling promises to be a rapid and efficient way to bring molecules to ultracold temperatures. However, for trapped molecules, laser-cooling to the quantum motional ground state remains an outstanding challenge. A technique capable of reaching the motional ground state is Raman sideband cooling, first demonstrated in trapped ions and atoms. Here we demonstrate Raman sideband cooling of CaF molecules trapped in an optical tweezer array. Our protocol does not rely on high magnetic fields and preserves the purity of molecular internal states. We measure a high ground-state fraction and achieve low motional entropy per particle. The low temperatures we obtain could enable longer coherence times and higher-fidelity molecular qubit gates, desirable for quantum information processing and quantum simulation. With further improvements, Raman sideband cooling will also provide a route to quantum degeneracy of large molecular samples, which could be extendable to polyatomic molecular species.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
Data for figures in the Supplementary Information are available from Dryad54. Additional experimental data are available from the corresponding authors upon reasonable request. Source data are provided with this paper.
Code availability
The code used in this manuscript is available from the corresponding author upon reasonable request.
References
DeMille, D. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002).
Carr, L. D., DeMille, D., Krems, R. V. & Ye, J. Cold and ultracold molecules: science, technology and applications. New J. Phys. 11, 055049 (2009).
Bohn, J. L., Rey, A. M. & Ye, J. Cold molecules: progress in quantum engineering of chemistry and quantum matter. Science 357, 1002–1010 (2017).
Blackmore, J. A. et al. Ultracold molecules for quantum simulation: rotational coherences in CaF and RbCs. Quantum Sci. Technol. 4, 014010 (2018).
De Miranda, M. H. G. et al. Controlling the quantum stereodynamics of ultracold bimolecular reactions. Nat. Phys. 7, 502–507 (2011).
Liu, Y. et al. Precision test of statistical dynamics with state-to-state ultracold chemistry. Nature 593, 379–384 (2021).
De Marco, L. et al. A degenerate fermi gas of polar molecules. Science 363, 853–856 (2019).
Schindewolf, A. et al. Evaporation of microwave-shielded polar molecules to quantum degeneracy. Nature 607, 677–681 (2022).
Barry, J. F., McCarron, D. J., Norrgard, E. B., Steinecker, M. H. & DeMille, D. Magneto-optical trapping of a diatomic molecule. Nature 512, 286–289 (2014).
Truppe, S. et al. Molecules cooled below the Doppler limit. Nat. Phys. 13, 1173–1176 (2017).
Anderegg, L. et al. Radio Frequency Magneto-Optical Trapping of CaF with High Density. Phys. Rev. Lett. 119, 103201 (2017).
Collopy, A. L. et al. 3D magneto-optical trap of yttrium monoxide. Phys. Rev. Lett. 121, 213201 (2018).
Vilas, N. B. et al. Magneto-optical trapping and sub-Doppler cooling of a polyatomic molecule. Nature 606, 70–74 (2022).
Cheuk, L. W. et al. Λ-enhanced imaging of molecules in an optical trap. Phys. Rev. Lett. 121, 083201 (2018).
Caldwell, L. et al. Deep laser cooling and efficient magnetic compression of molecules. Phys. Rev. Lett. 123, 033202 (2019).
Ding, S., Wu, Y., Finneran, I. A., Burau, J. J. & Ye, J. Sub-Doppler cooling and compressed trapping of yo molecules at μk temperatures. Phys. Rev. X 10, 021049 (2020).
Langin, T. K., Jorapur, V., Zhu, Y., Wang, Q. & DeMille, D. Polarization enhanced deep optical dipole trapping of λ-cooled polar molecules. Phys. Rev. Lett. 127, 163201 (2021).
Wu, Y., Burau, J. J., Mehling, K., Ye, J. & Ding, S. High phase-space density of laser-cooled molecules in an optical lattice. Phys. Rev. Lett. 127, 263201 (2021).
Hallas, C. et al. Optical trapping of a polyatomic molecule in an ℓ-type parity doublet state. Phys. Rev. Lett. 130, 153202 (2023).
Anderegg, L. et al. Laser cooling of optically trapped molecules. Nat. Phys. 14, 890–893 (2018).
Anderegg, L. et al. An optical tweezer array of ultracold molecules. Science 365, 1156–1158 (2019).
Holland, C. M., Lu, Y. & Cheuk, L. W. On-demand entanglement of molecules in a reconfigurable optical tweezer array. Science 382, 1143–1147 (2023).
Bao, Y. et al. Dipolar spin-exchange and entanglement between molecules in an optical tweezer array. Science 382, 1138–1143 (2023).
Burchesky, S. et al. Rotational coherence times of polar molecules in optical tweezers. Phys. Rev. Lett. 127, 123202 (2021).
Heinzen, D. J. & Wineland, D. J. Quantum-limited cooling and detection of radio-frequency oscillations by laser-cooled ions. Phys. Rev. A 42, 2977–2994 (1990).
Monroe, C. et al. Resolved-sideband raman cooling of a bound atom to the 3D zero-point energy. Phys. Rev. Lett. 75, 4011–4014 (1995).
Hamann, S. E. et al. Resolved-sideband raman cooling to the ground state of an optical lattice. Phys. Rev. Lett. 80, 4149–4152 (1998).
Kerman, A. J., Vuletić, V., Chin, C. & Chu, S. Beyond optical molasses: 3D Raman sideband cooling of atomic cesium to high phase-space density. Phys. Rev. Lett. 84, 439–442 (2000).
Kaufman, A. M., Lester, B. J. & Regal, C. A. Cooling a single atom in an optical tweezer to its quantum ground state. Phys. Rev. X 2, 041014 (2012).
Thompson, J. D., Tiecke, T. G., Zibrov, A. S., Vuletić, V. & Lukin, M. D. Coherence and raman sideband cooling of a single atom in an optical tweezer. Phys. Rev. Lett. 110, 133001 (2013).
Cheuk, L. W. et al. Quantum-gas microscope for fermionic atoms. Phys. Rev. Lett. 114, 193001 (2015).
Parsons, M. F. et al. Site-resolved imaging of fermionic 6Li in an optical lattice. Phys. Rev. Lett. 114, 213002 (2015).
He, X. et al. Coherently forming a single molecule in an optical trap. Science 370, 331–335 (2020).
Zhang, J. T. et al. An optical tweezer array of ground-state polar molecules. Quantum Sci. Technol. 7, 035006 (2022).
Ruttley, D. K. et al. Formation of ultracold molecules by merging optical tweezers. Phys. Rev. Lett. 130, 223401 (2023).
Hu, J. et al. Creation of a bose-condensed gas of 87Rb by laser cooling. Science 358, 1078–1080 (2017).
Urvoy, A., Vendeiro, Z., Ramette, J., Adiyatullin, A. & Vuletić, V. Direct laser cooling to Bose–Einstein condensation in a dipole trap. Phys. Rev. Lett. 122, 203202 (2019).
Caldwell, L. & Tarbutt, M. R. Sideband cooling of molecules in optical traps. Phys. Rev. Res. 2, 013251 (2020).
Holland, C. M., Lu, Y. & Cheuk, L. W. Bichromatic imaging of single molecules in an optical tweezer array. Phys. Rev. Lett. 131, 053202 (2023).
Cooper, A. et al. Alkaline-earth atoms in optical tweezers. Phys. Rev. X 8, 041055 (2018).
Tuchendler, C., Lance, A. M., Browaeys, A., Sortais, Y. R. P. & Grangier, P. Energy distribution and cooling of a single atom in an optical tweezer. Phys. Rev. A 78, 033425 (2008).
Zhang, X. et al. Subrecoil clock-transition laser cooling enabling shallow optical lattice clocks. Phys. Rev. Lett. 129, 113202 (2022).
Yu, Y. et al. Motional-ground-state cooling outside the Lamb–Dicke regime. Phys. Rev. A 97, 063423 (2018).
Spence, S., Brooks, R. V., Ruttley, D. K., Guttridge, A. & Cornish, S. L. Preparation of 87Rb and 133Cs in the motional ground state of a single optical tweezer. New J. Phys. 24, 103022 (2022).
Ketterle, W. & Van Druten, N. J. in Advances in Atomic, Molecular, and Optical Physics, Vol. 37 (eds Bederson, B. & Walther, H.) 181–236. (Elsevier, 1996).
Li, J. R. et al. Tuning of dipolar interactions and evaporative cooling in a three-dimensional molecular quantum gas. Nat. Phys. 17, 1144–1148 (2021).
Bigagli, N. et al. Collisionally stable gas of bosonic dipolar ground-state molecules. Nat. Phys. 19, 1579–1584 (2023).
Lin, J. et al. Microwave shielding of bosonic narb molecules. Phys. Rev. X 13, 031032 (2023).
Kozyryev, I. et al. Sisyphus laser cooling of a polyatomic molecule. Phys. Rev. Lett. 118, 173201 (2017).
Mitra, D. et al. Direct laser cooling of a symmetric top molecule. Science 369, 1366–1369 (2020).
Bao, Y. et al. Raman sideband cooling of molecules in an optical tweezer array to the 3-D motional ground state. Preprint at https://doi.org/10.48550/arXiv.2309.08706 (2023).
Hutzler, N. R., Lu, H. I. & Doyle, J. M. The buffer gas beam: an intense, cold, and slow source for atoms and molecules. Chem. Rev. 112, 4803–4827 (2012).
Lu, Y., Holland, C. M. & Cheuk, L. W. Molecular laser cooling in a dynamically tunable repulsive optical trap. Phys. Rev. Lett. 128, 213201 (2022).
Lu, Y., Li, S. J., Holland, C. M. & Cheuk, L. W. Data for: Raman sideband cooling of molecules in an optical tweezer array (dryad). Dryad https://doi.org/10.5061/dryad.tht76hf4g (2023).
Acknowledgements
We thank J. Thompson, W. Bakr and the Bakr group for fruitful discussions. This work is supported by the National Science Foundation (grant no. 2207518) and by the Sloan Research Foundation (grant no. FG-2022-19104). C.M.H. acknowledges support from a Joseph Taylor Graduate Student Fellowship. S.J.L. acknowledges support from a Princeton Quantum Initiative Graduate Student Fellowship.
Author information
Authors and Affiliations
Contributions
L.W.C. conceived the study and supervised the experiment. Y.L., C.M.H. and S.J.L. performed the experiments and the data analysis. All authors contributed to the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Physics thanks Andreas Schindewolf, Hannah Williams and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–7, discussion and Table 1.
Source data
Source Data Fig. 2
Source data for Fig. 2.
Source Data Fig. 3
Source data for Fig. 3.
Source Data Fig. 4
Source data for Fig. 4.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Lu, Y., Li, S.J., Holland, C.M. et al. Raman sideband cooling of molecules in an optical tweezer array. Nat. Phys. 20, 389–394 (2024). https://doi.org/10.1038/s41567-023-02346-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-023-02346-3