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Non-Hermitian topology in a multi-terminal 
quantum Hall device
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Romain Giraud    1,3, Dominique Mailly4, Antonella Cavanna    4, Ulf Gennser    4, 
Ewelina M. Hankiewicz2,5, Bernd Büchner    1,2,6, Jeroen van den Brink    1,2,6, 
Joseph Dufouleur    1,2   & Ion Cosma Fulga    1,2 

Quantum devices characterized by non-Hermitian topology are predicted 
to show highly robust and potentially useful properties for precision 
sensing and signal amplification. However, realizing them has remained 
a daunting experimental task, as non-Hermiticity is often associated 
with gain and loss, which would require precise tailoring to produce 
the signatures of non-trivial topology. Here, instead of gain and loss, we 
use the non-reciprocity of quantum Hall edge states to directly observe 
non-Hermitian topology in a multi-terminal quantum Hall ring. Our 
transport measurements evidence a robust, non-Hermitian skin effect, 
characterized by currents and voltages showing an exponential profile that 
persists across Hall plateau transitions away from the regime of maximum 
non-reciprocity. Our observation of non-Hermitian topology in a quantum 
device introduces a scalable experimental approach to construct and 
investigate generic non-Hermitian systems.

Hermitian quantum mechanics describes isolated quantum systems. 
These include conventional topological phases occurring in the ground 
states of certain materials1, such as the well-known quantum Hall phase, 
whose precisely quantized electrical resistance is used today in metrol-
ogy2. When coupling a quantum device to the outside world, however, 
the resulting gain and loss lead to an effectively non-Hermitian descrip-
tion3. Non-Hermitian systems can also be topologically non-trivial4 
and thus have robust properties, some of which hold the promise for 
remarkable applications. These include exponentially precise sensors5, 
amplifiers6 and light funnels7.

Introducing gain and loss in a quantum device is easily achieved, 
for instance, by not shielding it sufficiently well from its local environ-
ment. However, customizing these two processes such as to reach a 
topological phase has so far remained challenging, and no quantum, 
condensed-matter devices showing non-Hermitian topology have been 
reported to date. Instead, the existing experimental observations have 

been achieved using ultracold atoms8 and optical systems9,10, as well 
as by using metamaterials governed by the laws of classical physics. 
The latter include electronic circuits11,12 and photonic crystals7, as well 
as mechanical13,14 and acoustic15,16 systems. Their operating principle 
is based on the fact that Kirchoff’s laws, Newton’s laws and Maxwell’s 
equations can be used to mimic the Schrödinger equation describing 
the dynamics of quantum particles.

Here we directly observe one of the characteristic signatures 
associated with non-Hermitian topology in the quantum regime of 
a condensed-matter system. Rather than relying on gain and loss, we 
build on the quantum transport properties of a well-known, Hermitian 
topological phase: the quantum Hall phase. Its unidirectional edge 
modes provide a link to non-Hermitian topology that can be accessed 
in conventional multi-terminal conductance measurements. Our work 
introduces non-Hermitian topology and its potential applications to 
the field of experimental mesoscopic physics. It opens the possibility 
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contacts, the only non-zero elements of G will be on its diagonal, as 
well as between adjacent contacts in the direction of propagation of 
the edge modes. For the jth active arm (with j > 1),

Ij + νe
2

h
(Vj−1 − αVj) = 0, (2)

where α = 1 if the outer contact of the arm is floating (Fig. 1c) and α = 2 if 
the outer contact is grounded (Fig. 1d) and all the inactive arms between 
j − 1 and j are floating. For the contact configurations shown in Fig. 1c,d, 
the G matrix is, therefore, related to the HN Hamiltonian matrix with 
Jleft = 0 and Jright = − 1:

G = νe
2

h
(HHN + α ) , (3)

where  is the identity matrix.
The above equation lends itself to two different physical inter-

pretations. The first is that the quantum Hall ring is a metamaterial. It 
is a way of generating a matrix G that is equivalent to the Hamiltonian 
matrix HHN of a non-Hermitian quantum system, which would otherwise 
be out of experimental reach. In this interpretation, the inner contact 
of each active arm of the quantum Hall ring plays the role of a site in 
the HN model, and the conductance matrix takes the role of the Ham-
iltonian. In the second interpretation, equation (3) means that due to 
the chiral nature of their edge modes, Chern insulators should show 
quantum transport properties whose presence and robustness are a 
consequence of non-Hermitian topology21. In the following, we shall 
explore the experimental consequences of both approaches.

Seen as a metamaterial, the quantum Hall ring allows us to test 
two different configurations, equivalent to different realizations of 
the HN model. The first corresponds to OBC (Fig. 1c), where the chain 
is cut between the last and first site. This is achieved by grounding the 
inner contact of an intermediate inactive arm (between j = N and j = 1), 
thereby setting I1 = ανe2/hV1. For periodic-boundary conditions (PBCs; 
Fig. 1d), on the other hand, all the inactive arms between j = N and j = 1 
are floating, and the last site N of the chain is connected to the first 
one: I1 + νe2/h(VN − αV1) = 0. In the OBC configuration, the outer active 
contacts can be either grounded or floating without affecting the 
topological properties of the chain, whereas in the PBC configuration, 
Kirchhoff’s laws require them to be grounded.

Experimentally, measuring the elements of G will be achieved by 
first determining the elements of its inverse, namely, the resistance 
matrix R = G−1. Injecting the current in each of the active arms, one by 
one, and measuring the voltages of all the active arms using lock-in 
amplifiers yields each column of R (Supplementary Section 2). The 
measurements of the second column of R for any magnetic field and 
for the OBC and PBC configurations are shown in Fig. 1e,f, respectively.

Permuting the position of the current source allows us to deter-
mine the full R matrices. The corresponding conductance matrices 
G are shown in Fig. 1g,h, respectively. Owing to the robustness of 
the quantum Hall edge modes, the resulting, experimentally meas-
ured conductance matrix at ν = 1 is remarkably close to that of a per-
fect, five-site HN chain (equation (3)) with Jleft = 0, Jright = −1 and α = 2.  

to create devices that take advantage of this type of topology, not just 
by using the quantum Hall effect but also more generally by relying 
on the quantum transport properties of condensed-matter systems.

We start from one of the simplest examples of non-Hermitian 
topology—the Hatano–Nelson (HN) model17. The Hamiltonian,

ℋHN = ∑
j
Jleftc

†
j−1cj + Jrightc

†
j+1cj = c†HHNc, (1)

describes a chain on which quantum particles hop between neighbour-
ing sites (site index j and creation operator c†j ), where the hopping to 
the left and to the right are real numbers with different magnitudes, 
namely, Jleft ≠ Jright. Here c is a column vector formed from all the anni-
hilation operators and HHN is the Hamiltonian matrix, whose size is 
given by the number of sites in the chain.

This model is non-Hermitian, that is, ℋHN ≠ ℋ†
HN , due to the 

non-reciprocal hoppings, and it is characterized by a net bulk current 
flowing in the direction of the larger hopping18. Heuristically, all the 
states in the bulk of the system will flow in the current direction, until 
eventually reaching the end of the chain. This is the boundary signature 
associated with its non-trivial topology, the non-Hermitian skin effect: 
in a finite chain with open-boundary conditions (OBCs), all the eigen-
states are exponentially localized at one end of the system (Methods 
and Extended Data Fig. 1).

Our work is based on the insight that in the limit of maximum 
non-reciprocity, when the hopping in one direction vanishes identi-
cally, the HN model effectively describes a one-dimensional, unidi-
rectionally propagating mode. Thus, the Hamiltonian in equation (1), 
even though it is non-Hermitian, provides an accurate description of 
the long-time dynamics of the quantum Hall edge19,20.

Starting from this insight, we have designed a multi-terminal quan-
tum Hall device (Fig. 1a,b). It consists of a two-dimensional electron gas 
(2DEG) ring etched in an AlGaAs/GaAs semiconducting heterostructure 
(Supplementary Section 1), with the arms distributed along its outer 
perimeter. Each arm consists of an ‘inner’ ohmic contact, directly con-
nected to the ring, and an ‘outer’ contact, which is singly connected 
to the inner contact via a separate section of the 2DEG (Fig. 1b). We 
label an arm as ‘active’ when its inner contact is connected to a voltage 
probe and/or a current source. The outer contacts of the active arms 
can be either grounded or floating. In contrast, for an ‘inactive’ arm, no 
current sources or voltage probes are attached to either contact. The 
contacts of an inactive arm can be either grounded or floating. There 
are a total of ten arms, but since the total number of measurements 
required scales quadratically with the number of active arms, not all of 
them are used. Two examples of possible measurement configurations 
are shown in Fig. 1c,d.

To highlight the connection between this device and 
non-Hermitian topology, we begin by considering the case of a single 
current source, which injects a current Ij into the jth active arm of the 
ring. In the linear regime, the current Ij is related to the voltages Vi of 
the active arms as Ij = ∑iGjiVi, where G is the conductance matrix. In the 
presence of time-reversal symmetry, Gij = Gji, such that the conductance 
matrix is Hermitian. A magnetic field breaks this condition and induces 
non-Hermitian terms in G. Considering, for instance, the device in the 
quantum Hall regime at filling factor ν and in the presence of perfect 

Fig. 1 | Device schematic and characterization. a, Scanning electron 
microscopy (SEM) image of the AlGaAs 2DEG device. b, Zoomed-in false-colour 
SEM image. The white lines indicate the edge quantum Hall states occurring in 
the presence of a perpendicular magnetic field at filling factor ν = 1, whereas 
the white arrows indicate the direction of propagation of electrons. The 2DEG 
and ohmic contacts are highlighted in red and yellow, respectively. The white 
dashed lines show the boundaries of the 2DEG. c, Five-site OBC configuration 
where the grounded inactive arm (grey) is used to disconnect the first and last 
site of the chain. The schematic of the effective corresponding HN chain is shown 
below. The active arms are labelled using currents and voltages, namely, Ij and Vj, 

respectively. For the inactive arms (dashed lines), both contacts are floating.  
d, Five-site PBC configuration, with the schematic of the effective HN chain shown 
below. e, Measured magnetoresistance of all the five sites of the OBC setup at 
T = 2.7 K for current I2 = 10 nA injected into the second site (the resistance matrix 
is explicitly shown in Supplementary Section 2). f, Measured magnetoresistance 
of the PBC setup for current I2 = 10 nA injected into the second site. g, Real part 
of the five-site G matrix measured at B = 11.5 T (ν = 1) for the OBC configuration 
under the same conditions as those in e. h, Real part of the five-site G matrix 
measured under the same experimental conditions for the PBC configuration 
under the same conditions as those in f.
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We find that deviations in the individual matrix elements from the 
perfect values are of the order of a few per cent or less.

Beyond the two configurations discussed above, the quantum Hall 
ring also allows us to continuously tune the effective HN chain from 
OBC to PBC. As shown in Fig. 2a, for a six-site chain, this is achieved by 
connecting the inner contact of one of the inactive arms between j = N 
and j = 1 to the ground via a variable resistance RG, whereas its outer 
contact is floating. Changing the value of RG serves to continuously tune 
the system between the grounded and floating configurations shown 
in Fig. 1c,d and hence to tune it from OBC to PBC (Fig. 2b,c).

As expected, numerically diagonalizing the G matrix yields all 
the signatures associated with the non-Hermitian topology in the 
HN model22. With PBC, its discrete eigenvalues are positioned along a 
circle in the complex plane, and gradually tuning towards OBC causes 
the eigenvalues to move to the inside of this circle (Fig. 2d). This is 
consistent with the theoretical prediction that all OBC eigenvalues are 
contained within the contour formed by the PBC spectrum (Methods). 
At the same time, the probability density summed over all the eigen-
vectors of the G matrix (sum of probability densities (SPDs), defined in 
Methods) shows the non-Hermitian skin effect. With PBC, this density 
is uniformly spread across the sites of the chain (meaning the arms of 
the ring), whereas moving towards OBC causes the probability density 

to become exponentially localized on the last site (Fig. 2e, Methods and 
Supplementary Section 3), demonstrating the topologically non-trivial 
character of our device.

In the HN model, the presence and robustness of the non-Hermitian 
skin effect is predicted by a non-zero bulk invariant, similar to how the 
Chern number predicts the appearance of chiral edge modes. For an 
infinite, translationally invariant chain, the non-Hermitian invariant 
is the winding number of the bulk bands as a function of momentum 
(Methods). In our system, we have a finite number of sites, meaning 
that the bands are replaced by discrete eigenvalues. To capture the 
non-Hermitian topology of the conductance matrix and therefore the 
robustness of the skin effect, we determine the topological invariants 
based on the methods recently developed for finite systems23,24. We use 
two distinct methods to determine the invariant and to consequently 
confirm that the non-Hermitian skin effect has a topological origin. The 
two methods lead to invariants labelled as wPD and wL. The wPD invari-
ant is based on the polar decomposition (PD) of the HN model, and 
was recently shown to correctly capture the topology of a finite-sized 
chain with OBC23. It can take any real value, but approaches a quantized 
integer deep in the topological phase. The wL invariant, on the other 
hand, is an integer by construction. It is based on the so-called spec-
tral localizer, a mathematical object that has so far been used for the 
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Fig. 2 | Non-Hermitian skin effect. a, Schematic of the link between contacts 1 
and 6, including a variable resistance RG at the end of the chain for continuous 
tuning between OBCs and PBCs. b, Real part of the conductance matrix for the 
six-site configuration at B = 11.5 T (ν = 1). Changing the variable resistance RG 
affects the top-right element of the matrix (in white). This dependency is shown 
in c. c, Coupling term G16 versus resistance RG in the logarithmic scale. The data 
points corresponding to those shown in the next panels are highlighted using 
squares. d, Eigenvalues of the experimental G matrix (labelled λ) for the four 
selected points in units of e2/h. The average diagonal element of the matrix is 

subtracted to centre the plot around zero for better readability. We note that the 
eigenvalues do not completely collapse on a single point on the real axis. This 
is attributed to the finite resistance of the measurement line of the grounded 
contact (Supplementary Section 3). e, SPDs in the logarithmic scale obtained by 
diagonalizing the measured G matrix for the highlighted data points, plotted as 
a function of the lead index. The evolution from a constant to an exponentially 
decaying profile indicates the appearance of a non-Hermitian skin effect on 
gradually changing from PBC to OBC. The markers indicate the experimental 
data points, and the lines are the best exponential fit to the data.
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description of both Hermitian24 and non-Hermitian systems25,26, and 
which we now apply to the HN model, again with OBC. Both invariants 
are directly computed from the measured OBC conductance matrices, 
by using the formulas described in Methods.

As shown in Fig. 3, the invariants reflect the non-trivial topology of 
the G matrix at large magnetic fields. Depending on the direction of the 
magnetic field and therefore of the chiral edge modes, both wPD (Fig. 3a) 
and wL (Fig. 3b) remain quantized to either +1 or −1, respectively. Con-
sistent with this, we find that the non-Hermitian skin effect is present 
either at the left or the right end of the chain (Supplementary Section 4), 
with all the eigenvectors positioned there. Remarkably, the deviations 
of wPD from the expected quantized value for a five-site chain remain 
on the order of 10−3 to 10−4 for a wide range of magnetic fields, includ-
ing those across plateau transitions (Fig. 3c). Consistent with this, the 
non-Hermitian skin effect is even present for magnetic fields at which 
the Hall conductance is not quantized (Supplementary Section 4).  
Thus, we find that the non-Hermitian invariant is more robust than 
the Chern number. This is the case, for instance, when the magnetic 
field sets the position of the Fermi energy on a Landau level, or when 
the formation of Landau levels is prevented by disorder—at very low 
mobility and high temperature or at low magnetic fields—and therefore 
when the Chern number is not defined (Supplementary Section 5).  
The best quantization of wPD improves to an accuracy of 10−5 for an 
eight-site chain and for Fermi energy set between two Landau levels. It 
should be improved further for a larger number of sites until it will be 
limited by the coupling between the last (j = N) and the first (j = 1) sites, 
the coupling to previous sites (backscattering) or the noise level of the 
measurements (Supplementary Sections 3 and 6). Finally, we note that 
the field asymmetry observed in Fig. 3c is a result of the onsite disorder 
in the HN chain (Supplementary Section 7).

We now discuss the transition between the classical diffusive 
regime and the quantum Hall regime with maximum non-reciprocity. 
In the classical regime, as well as between the quantum Hall plateaus, 
equations (2) and (3) are not valid anymore and finite long-range cou-
plings (between distant sites) appear in the conductance matrix, similar 
to the conductance matrix at zero magnetic field. The emergence 
of finite off-diagonal elements in the upper triangle of the conduct-
ance matrix leads to a less robust quantization of wPD and a broader 
skin effect (Supplementary Section 3). We tune the amplitude of the 
off-diagonal elements by varying the magnetic field on one hand and 
the mobility on the other hand by changing the temperature. At small 
magnetic fields, namely, ∣B∣ ≲ 0.4 T, both invariants and skin effect lose 
their robustness (Supplementary Section 4). wPD becomes poorly quan-
tized (Fig. 3c), whereas wL, which is an integer by definition, becomes 
equal to 0 or begins to rapidly oscillate between the values −1, 0 and +1. 
This behaviour is a typical signature of topological phase transitions 
occurring in finite-sized systems (here a five-site chain).

A similar loss of robustness is observed as a function of increasing 
temperature. To tune the onset of the quantum regime, the conduct-
ance matrix was measured at different temperatures between 470 mK 
and 80 K, thus changing the mobility of the device over a broad range. 
The topological invariants are calculated at all fields and temperatures 
(Supplementary Section 5). To highlight the importance of quantum 
effects, we show (Fig. 3c, inset) the temperature dependence of the 
invariant quantization at a fixed magnetic field. When the temperature 
is lowered and the system enters a quantum Hall plateau regime, the 
invariant quantization shows a sharp improvement, by a factor between 
3 and 4. We have confirmed that the best quantization is systematically 
obtained for magnetic fields and temperatures that set the system well 
on a quantum Hall effect plateau.

Surprisingly, for small fields, the field dependence of the invari-
ant quantization is roughly temperature independent and therefore 
mobility independent. It scales quadratically with the field, even far 
into the classical regime (Supplementary Section 5). In contrast, two 
measurements done with two different electronic densities indicate 

that the electron density strongly influences the field dependence of 
the invariant quantization: the lower the density, the sharper the decay 
(Supplementary Section 5). We note that unexpected features are 
brought to light by the results at the highest temperatures (T = 50 and 
80 K), where the evolution of the topological invariants shows jumps 
that are discussed in more detail in Supplementary Sections 5 and 7.

In analogy to the methods commonly used in metamaterials such 
as topoelectric circuits, we have so far measured the R = G−1 matrix 
element by element using a single current source, and then examined 
the topological features by numerically diagonalizing the G matrix. In 
contrast, the conventional quantum Hall effect, meaning the robust 
quantization of the Hall conductance, is a directly observable physical 
phenomenon, independent of any effective model.
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Turning to the second interpretation of equation (3), we now 
show that—similar to the quantized Hall conductance of the quantum 
Hall effect—the topological, non-Hermitian skin effect is a directly 
observable transport property of our device, which does not require 
the determination of the G matrix or its numerical diagonalization. To 
achieve this, we make use of the fact that the skin effect implies that all 
the eigenvectors of the conductance matrix are exponentially local-
ized at one boundary of the system. One general numerical method 
to determine an eigenvector is the so-called iterative power method. 
By iteratively applying a matrix A to a random non-zero vector x, one 
converges towards the largest eigenvalue λ of A:

lim
n→∞

Anx = λnv, (4)

where v is the eigenvector of A associated with λ. This can be experi-
mentally realized in our device by simultaneously applying different 
random currents to all the active contacts using multiple current 
sources (and therefore having a random current vector I0 = (I1,…, IN); 
Fig. 4a), followed by measuring the resulting voltages Vj of each site 
j, and then iteratively reapplying currents to each contact such that 
the new current vector is proportional to the previous voltage vector 
In+1 ∝ Vn. This is effectively applying Gn to the current vector I0 (Fig. 4b). 
Repeating this iteration should drive voltages to converge towards one 
of the eigenvectors of G, all of which show the non-Hermitian skin effect.

We applied this scheme to our quantum Hall device with six active 
contacts, labelled 1 to 6. After 15 to 20 such iterations, we observe 
that both current and voltage vectors become independent of the 

iteration step (Fig. 4c). After having converged, both vectors show 
an exponentially decaying profile over the contacts from 6 to 1  
(Fig. 4d,e). This constitutes a direct measurement of the non-Hermitian 
skin effect: the current vector converges to one of the eigenvectors 
of the conductance matrix (Methods and Extended Data Fig. 2), all 
of which are exponentially localized to one end of the HN chain (con-
tact 6 in our case). The exponential nature of the current and voltage 
profiles is a robust transport signature of our quantum device. It does 
not change for a wide range of magnetic fields, it is independent of 
the initially chosen currents and it is only present in the OBC con-
figuration (Methods and Extended Data Fig. 3). The robustness of this 
multiple-source transport signature is a direct consequence of the 
non-Hermitian topology in our quantum Hall ring.
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butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41567-023-02337-4.
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Methods
HN model
The HN model is the simplest example of a non-Hermitian system with 
non-reciprocal hoppings. Defined on a one-dimensional lattice with no 
symmetry requirements, this model can be described by a single-orbital 
tight-binding Hamiltonian17:

ℋHN = ∑
j
Jrightc

†
j+1cj + Jleftc

†
j−1cj = c†HHNc, (5)

where Jleft and Jright ∈ R are unequal hopping amplitudes. For a finite-sized 
chain in real space, the Hamiltonian matrix takes the form

HHN =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 Jleft
Jright 0 Jleft

Jright 0 ⋱

⋱ ⋱ ⋱

⋱ 0 Jleft
Jright 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (6)

If the chain is infinitely long, Fourier transforming yields the following 
one-band Bloch Hamiltonian:

H(k) = Jrighte
−ik + Jlefte

+ik. (7)

Its eigenvalues form an ellipse in the complex plane and wind around 
the origin. The corresponding non-Hermitian winding number w takes 
the general form27

w(EB) =
1
2πi ∫

2π

0
∂k logdet (H(k) − EB)dk, (8)

where EB is the so-called base point, that is, the point in the complex 
plane at which the winding number is evaluated. This invariant char-
acterizes the non-Hermitian topology of the system, manifesting itself 
in the non-Hermitian skin effect.

Calculating equation (8) for H(k) at EB = 0 gives

w = {
−1 | Jright| > | Jleft|;

+1 | Jright| < | Jleft|.
(9)

The eigenvalues and eigenvectors of ℋHN are sensitive to the 
boundary conditions imposed on the system. Under OBCs, the eigen-
values are real (Extended Data Fig. 1a). Defining the SPDs at the jth 
lattice site as ∑i||⟨rj|Ψi⟩||

2
, where |Ψi〉 are the right eigenvectors of ℋHN 

and |rj〉 denote the lattice site positions, we observe that an extensive 
number of eigenstates are localized at the ends of the system (Extended 
Data Fig. 1b shows the OBC configuration), a phenomenon unique to 
non-Hermitian systems and commonly referred to as the non-Hermitian 
skin effect28. Moreover, this localization occurs at the right (left) end 
of the system for |Jright|/|Jleft| > 1 (|Jright|/|Jleft| < 1) and is related to the 
non-trivial winding of the energy bands22. However, with PBCs, the 
spectrum consists of discrete points positioned on an ellipse (Extended 
Data Fig. 1a), thus reproducing the behaviour of the Bloch Hamiltonian 
characterizing the infinite system (equation (7)). The system’s trans-
lational invariance leads to a constant SPD (equal to 1) on all the sites 
(Extended Data Fig. 1b).

When approaching the limit of maximum non-reciprocity, that 
is, Jleft = 0 and Jright = 1, the PBC spectrum evolves towards a circle in the 
complex plane, whereas the OBC spectrum moves towards the origin, 
that is, E = 0. A gradual transition between PBC and OBC then involves a 
shrinking of the initially circular spectrum: eigenvalues progressively 
move inside of the contour defined by the PBC spectrum, as evident 

from the experimentally determined G matrix (Fig. 2). Further, slight 
deviations in the matrix elements away from the perfect limit of equa-
tion (6), which in experiment are of the order of a few per cent or less, 
lead to slight changes in the positions of individual eigenvalues.

Experimental determination of the SPD
In our experimental setup, determining the SPD involves the compo-
nents of the G matrix eigenvectors. Labelling Vj

i  as the ith component 
(related to the site i of the chain) of the jth normalized eigenvector Vj 
of the experimentally determined G matrix, the SPD reads

SPD(i) = ∑
j
|Vj

i |
2, (10)

where SPD(i) is the SPD at site i.

Real-space topological invariants
A recent work has proposed a real-space formula to calculate the topo-
logical invariant of finite-sized HN chains23. This invariant, which we 
label wPD, uses the PD of the Hamiltonian matrix at base point EB:

HHN − EB = QP, (11)

where Q is unitary and P is a positive-definite matrix. wPD takes the form

wPD = 𝒯𝒯(Q†[Q,X ]), (12)

where X = diag(1, 2,…, L) encodes the positions of the sites of the HN 
chain and 𝒯𝒯  is the trace per unit volume evaluated over a middle interval 
of the chain, namely, [l + 1, L − l].

Since the conductance matrix G shown in the main text describes 
an effective one-dimensional HN model, we replace HHN in equation 
(11) by G to determine the associated invariant. For the six-site setup 
(L = 6), we have chosen l = 2, and EB is the arithmetic mean of the diago-
nal entries of the conductance matrix G. In general, for a long enough 
chain, the choice of l is not expected to qualitatively change the value 
of wPD, provided that the trace of equation (12) is performed over sites 
sufficiently far from the boundaries of the chain23.

The second invariant, wL, is based on the so-called spectral local-
izer, a mathematical object recently used to derive topological invari-
ants for finite-sized Hermitian systems24,29,30. We adapt this invariant to 
the HN model by using the fact that non-Hermitian topology is related 
to Hermitian topology by doubling the Hamiltonian22. In our case, 
the HN Hamiltonian matrix is related to the well-known Su–Schrief-
fer–Heeger31 model as

HSSH = (
0 HHN − EB

H†
HN − E∗B 0 ) . (13)

It has been shown that the topological invariant of HSSH is equal to 
that of HHN evaluated at base point EB (ref. 22). Thus, we use equation 
(13) together with the localizer index of the Su–Schrieffer–Heeger 
chain24, resulting in

wL =
1
2 sig(

X −iHHN + iEB
iH†
HN − iE

∗
B −X

) . (14)

Here sig denotes the matrix signature, that is, the number of positive 
eigenvalues minus the number of negative eigenvalues, and X labels the 
sites in the chain, now with the condition that the origin is positioned 
close to the middle of the system: X = diag(0, 1, 2,… , L − 2, L − 1) − ⌊L/2⌋ ,  
where ⌊x⌋ is the integer part of x. As before, we replace the HN Hamil-
tonian matrix with the measured conductance matrix G and set EB to 
be the mean of its diagonal elements.
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Details of the iterative measurement
The iteration process at the jth iteration consists of injecting a 
sine-wave current vector I(j, n) where n stands for an effective time of 
the sine-wave functions. Each component i of the current vector is the 
addition of a constant C independent of i (see below) and n and a sine 
function characterized by its phase ϕi(j), and of its amplitude Ai(j) > 0. 
The component i of the current vector corresponds to the current 
injected into the lead i. Ai(j) and ϕi(j) are randomly generated for j = 0. 
To generate the sine functions, we discretize the signal in N regularly 
spaced points. Each point indexed by n with n ∈ {0,…, N − 1} coincides 
with a 2πn/N phase in the sine functions.

For the six-site configuration we used, the current vector reads

I( j,n) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I1( j,n)

I2( j,n)

I3( j,n)

I4( j,n)

I5( j,n)

I6( j,n)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1( j) sin [2πn/N + ϕ1( j)] + C

A2( j) sin [2πn/N + ϕ2( j)] + C

A3( j) sin [2πn/N + ϕ3( j)] + C

A4( j) sin [2πn/N + ϕ4( j)] + C

A5( j) sin [2πn/N + ϕ5( j)] + C

A6( j) sin [2πn/N + ϕ6( j)] + C

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

× sin(ωt). (15)

The amplitudes are normalized in our experiment such that 
maxi(Ai) + C = 150 nA, and we choose C = 75 nA such that all the compo-
nents of the current vector are positive for any value of n. We used the 
lock-in amplifier’s voltage source and a polarization resistance of 1 MΩ 
to generate a.c. current sources, whose amplitudes correspond to the 
related component of the current vector. We used a total number of 
N = 30 points, which allow for a reliable determination of the ampli-
tudes and phases of the current vector’s sine-wave components.

For a six-site setup and for the jth iteration, a current vector as 
defined in equation (15) is applied 30 times with n = 0,…, 29, and the 
corresponding voltage vector is measured for each n. This allows us to 
determine the relative amplitude and phase of the different compo-
nents of the voltage vector for the jth iteration. The amplitude and 
phase of the current vector j + 1 is given by the renormalization of the 
voltage vector j such that maxi(Ai) = C  = 75 nA.

The evolution of the measured voltage vector components versus 
iteration index is shown as an animation for the six-site setup in the 
data associated to this work32, with the snapshots shown in Extended 
Data Fig. 2.

We have measured eight different iteration processes in the OBC, 
all of them ending in a final current configuration corresponding to 
the eigenvector associated with the same eigenvalue of the G matrix, 
regardless of the starting configuration. This eigenvector has all the 
components in phase. Its related eigenvalue is real, meaning that the 
current and voltage of each contact are in phase. The final current 
and voltage configuration, thus, presents a skin effect (Extended Data 
Fig. 3a). We have also performed six iteration processes in the PBC 
configuration (Extended Data Fig. 3c) to confirm that the skin effect 
is not present in this case.

To quantify how fast the iteration process converges on its final 
current configuration, we introduce the quantity Δ as a function of 
iteration step j, which is defined as

Δ( j) = ∑
n,i
(Ii( j,n) − Ii(∞,n))2, (16)

where I(j, n) is the current vector defined above, and where j → ∞ cor-
responds to the final iteration step. Extended Data Fig. 3b,d represents 
the value of Δ(j)/Δ(0) for OBC and PBC, respectively. We observe a 
convergence to the final configuration in about ten iterations for OBC, 
which is substantially reduced for the PBC, where only about five itera-
tions are needed to reach the final configuration.

To understand the convergence of the system gradually to an 
eigenvector of the G matrix, one needs to consider the eigenvalues λi 

and eigenvectors ui of the G matrix. Such a convergence can be simply 
understood considering the projection of the initial current vector I(0) 
onto the eigenvector umin associated with the eigenvalue λmin with 
|λmin| = mini(|λi|) in absolute value. We then have

I( j) ∝ RjI(0) = G−jI(0)
j→+∞
⟶ (λmin)

−j (I(0).umin)umin. (17)

Since all the eigenvectors of the G matrix show a skin effect, the 
system always converges to a current and voltage configuration that 
shows this skin effect. This convergence is a direct signature of the 
topologically non-trivial non-Hermiticity of the system.
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Extended Data Fig. 1 | Eigenspectra and skin effect. a, Eigenspectra for OBC and PBC. The eigenvalues are real for OBC, and complex for PBC. The arrow indicates the 
spectral winding expected in the Bloch Hamiltonian, with winding number w = + 1. b, SPD plotted against the sites of the system on a log-linear scale under OBC and 
PBC; We use (Jleft, Jright) = (2, 1) and a chain consisting of 100 sites.
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Extended Data Fig. 2 | Generated sine waves. a, Randomly generated initial 
currents displayed on a unitary circle in polar coordinates for a 6-site OBC set-up. 
The radius and the angle correspond respectively to the amplitude Ai(0) and the 

phase ϕi(0) in Eq. (15). The lower panel shows the injected signal representing 
the different components of the vector for n = 0. b-f, Evolution of the signal 
throughout the steps of the iteration process.
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Extended Data Fig. 3 | All experimental power iteration runs. a, Different 
final current vectors of the system, corresponding to different initial random 
vectors, displayed on a unitary circle in polar coordinates for a 6-site OBC set-up. 
The radius and the angle correspond respectively to the amplitude Ai(0) and the 
phase ϕi(0) in Eq. (15). Different colors represent different initial current vectors. 
The final current configurations are always in phase (regarding the different 

components of the vector) and always show a non-Hermitian skin effect. b, Plot 
of the standard deviation of the current vector as defined in Eq. (16) as a function 
of the iteration index for OBC c, Elements of the final currents injected into the 
system for a 6-site PBC set-up. d, Plot of the standard deviation of the current 
vector as defined in Eq. (16) as a function of the iteration index for PBC.
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