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Quantum transport can distinguish between dynamical phases of matter. 
For instance, ballistic propagation characterizes the absence of disorder, 
whereas in many-body localized phases, particles do not propagate for 
exponentially long times. Additional possibilities include states of matter 
exhibiting anomalous transport in which particles propagate with a 
non-trivial exponent. Here we report the experimental observation of 
anomalous transport across a broad range of the phase diagram of a kicked 
quasicrystal. The Hamiltonian of our system has been predicted to exhibit a 
rich phase diagram, including not only fully localized and fully delocalized 
phases but also an extended region comprising a nested pattern of 
localized, delocalized and multifractal states, which gives rise to anomalous 
transport. Our cold-atom realization is enabled by new Floquet engineering 
techniques, which expand the accessible phase diagram by five orders of 
magnitude. Mapping transport properties throughout the phase diagram, 
we observe disorder-driven re-entrant delocalization and sub-ballistic 
transport, and we present a theoretical explanation of these phenomena 
based on eigenstate multifractality.

Although transport-based diagnostics of static quantum phases1–4 
generally reveal anomalous transport regimes only if the system is 
fine-tuned to a critical point5–8, externally driven quantum matter9 can 
exhibit exotic states with no equilibrium counterpart. As we demon-
strate in this work, driven systems can thus open up the exploration of 
new states of matter characterized by an intricate interplay of fractal 
structure and quantum dynamics.

The time-independent Aubry–André–Harper (AAH) Hamilto-
nian10,11 describes particles hopping in a one-dimensional lattice with 
quasiperiodic pseudo-disorder. This paradigmatic model of quan-
tum transport and quantum Hall phenomena exhibits Hofstadter 
butterfly energy spectra and hosts multifractal eigenstates only at a 
duality-protected localization phase transition10–13. If the incommen-
surate potential is applied instead as brief periodic kicks, the resulting 
‘occasional quasicrystal’ described by the kicked Aubry–André–Harper 

(kAAH) model epitomizes the interplay between disorder and driv-
ing in quantum matter. Although pioneering experiments in various  
platforms have explored static and sinusoidally driven AAH models 
and incommensurate kicked rotors14–20, the kAAH model has previously 
been explored only theoretically21–28.

We demonstrate experimentally that the kAAH model exhibits 
signatures of anomalous transport across an extended range of param-
eter space, in agreement both with numerical calculations and with 
theoretical expectations for related models21–24. This letter reports 
three interconnected advances. The first is the experimental realization 
of the kAAH model itself. The second is the development of apodized 
Floquet engineering techniques that use spectrally tailored pulses 
to extend the accessible parameter range of our quantum simulator 
into the region where an extended regime of anomalous transport is 
theoretically expected. The third main advance is the measurement of 
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reduces to the static AAH Hamiltonian. Much richer behaviours  
emerge at larger values of T and Λ (Fig. 1a,b). Numerically analysing  
the inverse participation ratio (IPR) ∑L

j=1 |ψj|4 ≈ L−ξ  of single-particle 
position-space eigenstates ψj, we find four regimes in the (Λ, T)  
plane, in agreement with previous analyses of the equivalent quantum 
chaotic kicked Harper model21–25,31. The regime with T ≫ Λ is a com-
pletely delocalized phase in which the IPR exponent averaged  
over all states ξ = 1. This and a duality mapping (Supplementary Infor-
mation section I B) implies a localized phase (ξ = 0) for T ≪ Λ. Between 
these two limits, for sufficiently large T and Λ, there is an extended 
parameter range in which localized and delocalized states coexist in 
an intricate nested pattern with a finite fraction of multifractal states 
(Extended Data Fig. 1)25,31. At constant T (for example, T = 1.5), the pre-
dicted average IPR exponents and fraction of localized states can 
depend non-monotonically on Λ, suggesting the possibility of anoma-
lous ‘re-entrant’32 states in which continuously increasing disorder 
strength can drive localization, then delocalization and then 
re-localization. In the thermodynamic limit, multifractality is theoreti-
cally expected to persist along the self-dual line 2T = Λ and in a region 
of measure zero with a complex shape (Supplementary Information 
section IV B 5)21–25,31. However, the fraction of multifractal states 
becomes vanishingly small only for extremely large system sizes of 107 
sites25,31. For system sizes relevant to our experiment and even to many 
conceivable condensed-matter experiments, our theoretical results 
clearly predict a non-zero fraction of multifractal states in an extended 
parameter range away from the duality line. This is consistent with 
earlier studies that had suggested that an extended multifractal regime 
persists in the thermodynamic limit24. The existence and form of this 
anomalous regime are crucial for understanding our experimental  
measurements of the kAAH phase diagram. In particular, theory  
predicts that anomalous transport and re-entrant localization/ 
delocalization transitions should emerge when T, Λ/2 ≳ 1.

Figure 2 encompasses the first main result of our work: the experi-
mental realization of the kAAH model. Figure 2a,b show the measured 

the global phase diagram of the kAAH model, which reveals re-entrant 
delocalization and an extended parameter regime of anomalous trans-
port that we argue theoretically is a consequence of multifractal states.

The experiments begin by loading a Bose–Einstein condensate 
(BEC) of a tunable number of 84Sr atoms (typically around 2 × 105)  
into the ground band of a 10Er-deep primary optical lattice, where 
Er = h2/2mλ2P  is the recoil energy, m is the atomic mass, h is Planck’s 
constant and λP = 1,063.9774(23) nm is the primary lattice laser  
wavelength. To implement the kAAH Hamiltonian, pulsed incom-
mensurate pseudo-disorder is realized by periodically applying a sepa-
rate overlapped optical lattice of wavelength λS = 914.4488(17) nm.  
The kAAH Hamiltonian thus realized is given in the tight-binding 
approximation by

̂H = −J
L
∑
i=1

( ̂b
†
i ̂bi+1 + h.c.) + F(t)Δ

L
∑
i=1

cos(2παi + φ) ̂b
†
i ̂bi, (1)

where J = 0.0192Er ≈ h × 40 Hz is the tunnelling energy, which gives  
rise to a tunnelling time TJ = ℏ/J = (1/2π) × 25 ms, ̂bi( ̂b

+
i )  is the  

bosonic annihilation (creation) operator at the i-th lattice site, Δ is the 
disorder strength, α = λP/λS is the wavelength ratio of the two lattices, 
φ is the relative phase of the two lattices, and F(t) = ∑nfτ(t − nTP) is the 
waveform of a periodic pulse train composed of finite-width, unit-height 
pulses with an effective pulse width τ = ∫ fτ(t) dt and pulse interval TP 
(Supplementary Information section II). As we will discuss, proper  
selection of the form of fτ(t) is crucial for exploring the majority of the 
phase diagram. We study the phase diagram in a two-dimensional 
parameter space with dimensionless axes T = TP/TJ = TPJ/ℏ and 
Λ = Δ/Δτ = Δτ/ℏ, which characterize the kick period and kick strength, 
respectively. To map out this phase diagram, we measure the long-time 
evolution of the density distribution of an initial tightly confined wave 
packet for different T and Λ using in situ absorption imaging14,29,30.

Theory predicts a rich phase diagram for this experimentally 
unexplored model26,27. In the high-frequency limit (1/T ≫ 1), the model 
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Fig. 1 | Phase diagram of the kAAH model and experimental approach. a, Average IPR scaling exponent ̄ξ  as a function of Λ and T, for α = 1.162842. b, Standard 
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density evolution at two points in the phase diagram, one localized 
and one delocalized. The late-time width clearly distinguishes the two 
phases. The exponent γ characterizing the time evolution of the width 
σx of the density distribution (σx ∝ tγ for large t) provides another diag-
nostic, with γ near 1 indicating delocalization and γ near zero indicating 

localization (Fig. 2c). Deviations of measured values from exactly 
one or zero may be attributed to the finite duration of the experi-
ment or to interparticle interactions, as discussed in Supplementary 
Information section II B. Figure 2d demonstrates the first experimen-
tal exploration of a swath of the kAAH phase diagram, obtained by 
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(Supplementary Information section III B). d, Measured localization phase 
diagram of the kAAH model for small Λ and T, using a simple rectangular form  
for the pulse shape fτ(t) with τ = 1 μs. The colour map depicts the fitted width of 
the density distribution σx as a function of Λ and T at thold = 2 s. The dashed line 

indicates the time-averaged static Aubry–André transition at Λ/T = 2. The centre 
point (white) of the colour map is set to the σx observed at the same hold time 
when the expansion exponent is in the centre of its transition from localized to 
delocalized values. Black crosses indicate the (Λ, T) values of the data in a, b and c. 
Cross-hatched pixels indicate data that failed cuts of the fitting procedure 
(Supplementary Information section III A) due to heating by interband 
transitions. Without mitigative measures, such heating prevents exploration  
of the phase diagram much beyond the region shown here. See Fig. 3 for details  
of the characterization and suppression of this effect. Max., maximum; Min., 
minimum; OD, optical density.
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Fig. 3 | Apodized Floquet engineering. a, Decay rate of atoms kicked by square 
pulses with a pulse duration of τ = 1 μs and a kick strength of Λ = 0.018 for thold = 2 s 
as a function of kick period TP. The solid curve is the result of a numerical 
calculation (Supplementary Information section IV A). Arrows indicate the 
dominant transitions from the ground band |n = 0⟩ to excited bands |n = 1, 2,…⟩ 
(see also Extended Data Fig. 2). Error bars represent 95% confidence intervals 
from an exponential fit to 20 measurements. b, Form of the power spectrum of 
square (top), Gaussian (middle) and filtered (bottom) pulses. Shaded areas 
represent interband transitions. The frequency comb spacing is not drawn to 

scale for visibility. c, Net power in frequency ranges corresponding to interband 
transitions for square, Gaussian and filtered pulses of two pulse widths, each with 
period TP = 1 ms. For longer pulses, the Gaussian pulse already has little power in 
the interband transition frequencies and so filtering has little additional effect.  
d, Measured density profile at various times for each pulse shape. e, Measured 
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TP and τ. The baseline of each symbol corresponds to the measured decay rate. 
Error bars represent 95% confidence bounds from an exponential fit. a.u., 
arbitrary units.

http://www.nature.com/naturephysics


Nature Physics | Volume 20 | March 2024 | 409–414 412

Article https://doi.org/10.1038/s41567-023-02329-4

measuring the late-time width of the atomic density distribution for 
a range of values of T and Λ both ≪1, using a simple rectangular form 
for the kick pulse shape fτ(t). In accordance with expectations for this 
high-frequency regime, we observe a period-dependent localization 
transition near the Aubry–André critical point at Λ/T = 2. However, our 
quantum simulator using a rectangular fτ(t) breaks down at values of T 
and Λ a hundred times smaller than those where the anomalous trans-
port regime is predicted to emerge, due to higher-band excitations  
that invalidate the single-band approximation implicit in the kAAH 
model. This breakdown is visible in the cross-hatched data points 
near the upper right of Fig. 2d, which are (Λ, T) pairs where the  
density distribution failed experimental cuts (Supplementary Informa-
tion section III A) on signal-to-noise ratio and centre position, indicating 
severe heating. Such interband heating prevents experimental access 
to the rich anomalous transport regime of the kAAH phase diagram; 
however, as we show next, this challenge can be overcome.

To extend the kAAH quantum simulator to the regime of the phase 
diagram with T, Λ/2 ≳ 1 where anomalous behaviour is predicted, we 
developed a spectrally tailored (‘apodized’) Floquet engineering tech-
nique, which is the second main result of this work and which may prove 
useful in other contexts. Apodization is a filtering technique common 
in areas from optics to radio-frequency engineering. Here, we perform 

an analogous procedure by changing the shape of the pulse function 
fτ(t), thereby modifying the spectrum of the kicking waveform. The goal 
is to eliminate the population transfer to excited bands, which breaks 
the single-band assumption of the kAAH model. Figure 3a demon-
strates the origin of this problem. Values of TP higher than a few tens of  
microseconds give rise to the rapid decay of ground-band atoms. Peaks 
in the decay rate match numerically calculated rates of interband 
transfer, suggesting that the root cause of the heating is the overlap 
of the spectrum of the kicking waveform with interband transition 
frequencies (see also Extended Data Figs. 2 and 3). We investigated two 
approaches for eliminating the interband heating: (1) conventional 
apodization with a Gaussian window function and (2) spectral filtering 
of the pulse train to specifically remove interband transition frequen-
cies. In both cases, the time-domain pulse shape fτ(t) is renormalized 
to give equivalent pulse areas. Figure 3b,c shows the power spectra 
of different pulse shapes (square, Gaussian and spectrally filtered), 
superimposed (b) and integrated (c) over the frequency ranges of 
interband transitions, indicating that pulse shaping can address the 
problem of interband heating. Figure 3d shows experimental results for 
the density evolution with the three different pulse shapes for different 
pulse lengths τ, demonstrating the substantially better performance of 
shaped pulses, and Fig. 3e shows the measured decay rate for different 
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Fig. 4 | Experimental signatures of anomalous localization in the kAAH 
model. a, Measured phase diagram of the kAAH model for large T and Λ using 
apodized kicking waveforms (equivalent to a Gaussian with τ = 319.3 μs). The 
colour map shows the fitted width of the density distribution σx for thold = 2 s.  
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http://www.nature.com/naturephysics


Nature Physics | Volume 20 | March 2024 | 409–414 413

Article https://doi.org/10.1038/s41567-023-02329-4

pulse shapes, kick periods and repetition rates. Longer lifetimes are 
consistently achieved by spectrally engineering the kicking pulse 
shape. For the kAAH model, apodized Floquet engineering is absolutely 
required for accessing the non-trivial regions of the phase diagram at 
large T and Λ with quantum gas experiments.

Figure 4a shows phase map data from such an apodized quan-
tum simulator including the predicted anomalous transport regime. 
Although the time-averaged Aubry–André phase transition at Λ/T = 2 
is visible for small T, areas of anomalous localization and delocali-
zation appear at larger T, in qualitative agreement with theoretical 
predictions. As the disorder strength is increased for T > 1.5, the sys-
tem appears to localize. Then it exhibits re-entrant disorder-driven 
delocalization and finally localizes again at strong disorder. Both these 
features agree with phase maps of an equivalent measurement on a 
numerically simulated kAAH model, shown in Fig. 4b. A simpler but 
less experimentally motivated map of the same numerical results 
appears in Extended Data Fig. 4, which maps the second moment of 
the density distribution without any convolution or fit. Although the 
fine details of the phase map depend on the specific quantity plot-
ted, features like the small-T Aubry–André transition, the anomalous 
regime and re-entrant delocalization are always observed. To further 
investigate this newly realized state of driven matter, we measured 
the full expansion dynamics at selected points on the phase diagram. 
The transport scaling exponent γ serves as a signature of localized, 
delocalized and multifractal states in the kAAH model (Supplementary 
Information section IV B 6)22,29,30. Transport can also be diagnosed in 
the numerics by the time evolution of the IPR of the real-space density 
profile (Supplementary Information section IV B 2). As shown in Fig. 4c,  
across a broad swath of the phase diagram, the transport exponent 
lies between 0.4 and 0.6, which, based on the results of our theoreti-
cal calculations, we attribute to the presence of multifractal states. 
Our experimental observations accord with theoretical predictions 
also plotted in Fig. 4c. Here we note two important subtleties. First, 
states in the regime between the completely localized and completely 
delocalized areas have mixed character (Fig. 4d), and for any non-zero 
fraction of delocalized states, transport at the longest timescales is 
expected to be ballistic. However, for experimentally relevant system 
sizes, the theoretically predicted presence of multifractal states leads 
to sub-ballistic transport persisting up to timescales much longer than 
those explored experimentally (Supplementary Information section 
IV B 5). Second, note that continuously varying transport exponents 
can also arise in disordered systems due to rare regions in which the 
system locally resembles a localized state33. However, in a quasiperiodic 
system such as ours, such rare regions do not exist34.

These results represent the first experimental glimpse, to our 
knowledge, of the rich phase diagram of a prototypical model of locali-
zation in driven quantum matter. The simple but unexpectedly power-
ful apodization techniques we demonstrate could be applied in a broad 
range of contexts and may enhance the range of quantum simulators in 
any situation in which a kicked system emulates a single-band model35. 
The results raise several fascinating questions for future investigation. 
How can multifractality and extended criticality be directly experi-
mentally probed? Is the observed anomalous regime stable against 
the introduction of interactions19,28,36 or the presence of gapless propa-
gating modes such as phonons? Can the duality of the phase map be 
directly imaged? In the low-frequency regime, the Floquet Hamilto-
nian is generically long-ranged, and the appearance of an anomalous 
transport phase recalls predictions of such phases in Hamiltonians 
with long-range hopping37. This raises the possibility of engineer-
ing other long-range Hamiltonians using the techniques of apodized 
low-frequency Floquet engineering presented here, potentially allow-
ing the study of phenomena unattainable with local Hamiltonians 
such as robust error-correcting quantum codes38. A final intriguing 
possibility for future work is the realization of related anomalous 
states in Floquet-engineered solids or solid-state heterostructures39.
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Methods
Preparing the initial state
The experiments began by preparing a BEC of 84Sr by evaporation in a 
crossed dipole trap with trapping frequencies of 50 and 70 Hz in the 
horizontal and vertical directions, respectively. The BEC was adiabati-
cally loaded over 250 ms into a primary optical lattice with an initial 
width of 6 μm. The lattice was formed by retro-reflecting a small portion 
of a 1,064 nm beam, thereby creating a lattice potential superimposed 
on a single-beam dipole trap. This non-reflected portion of the beam 
produced most of the transverse confinement with a transverse trap-
ping frequency near 100 Hz and a weak longitudinal confinement with 
a trapping frequency near 0.3 Hz. The dynamics were initiated by sud-
denly removing the axial confinement due to the crossed dipole trap.

Implementing the kAAH Hamiltonian
The incommensurate kicking lattice formed by λS = 915 nm light was 
superimposed onto the primary lattice as a periodic pulse train. The 
pulse intensity, pulse width and pulse waveform were controlled by 
tailoring the radio-frequency waveform sent to the acousto-optic modu-
lator used to modulate the 915 nm light intensity. Lattice depths were 
calibrated by Kapitza–Dirac diffraction. The depth of the primary lattice 
was stabilized to 10Er unless otherwise specified. The time-dependent 
depth of the kicking lattice was monitored by a photodiode and 
recorded. The 1,064 and 915 nm standing waves shared a retro-reflecting 
mirror, which passively stabilized the relative phase of the two lattices.

Generating apodized waveforms
To obtain driving waveforms that do not drive excitation to higher 
bands, unwanted frequency components were filtered out of initial trial 
waveforms (either Gaussian or square pulses) by repeated application 
of appropriate digital band-pass filters, setting negative amplitudes 
to zero for physical realizability. The resulting waveform was used as 
an envelope for the radio-frequency signal sent to the acousto-optic 
modulator that controlled the power of the kicking lattice beam. For 
large T values (TP > 1 ms), simply using a Gaussian waveform was equally 
effective, as shown in Fig. 3.

Data processing
The density distribution after a time evolution of up to 2 s in the kicked 
lattice was obtained by analysing in situ absorption images. The width 
of the distribution was extracted from a Gaussian fit to the transversely 
integrated density profile. Data were omitted (hashed points in Fig. 2a) if 
the centre position of this fit differed substantially from the mean and if 
the signal-to-noise ratio was less than 40% of the mean. These cuts were 
failed for experimental realizations that produced density profiles so 
sparse as to not be reliably fitted and analysed. This was generally due to 
atom loss associated with substantial transverse or higher-band excita-
tion. As discussed in the manuscript and Supplementary Information, 
we were able to identify the specific excitations that were being reso-
nantly driven for all areas where the cuts were failed. See Supplementary 
Information section III for quantitative details of this procedure.

Data availability
The data that support the findings of this study are available from the 
corresponding author upon reasonable request.

Code availability
The codes used for data analysis and numerical simulation are available 
from the corresponding author upon reasonable request.
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Extended Data Fig. 1 | Multifractality in the kicked Aubry-André-Harper 
model. a, Examples of extended, localized, and fractal (self-similar) 
wavefunctions. b, Calculated phase diagram of the kAAH model for α = 1.162842. 
Colorbar shows the percentage of multifractal states, defined operationally 
by the inequality 0.1 < ξ < 0.9, versus normalized kick period T = TP/TJ and kick 
strength Λ. ξ is the IPR scaling exponent. c, Percentage of multifractal states 

versus Λ, for the static AAH model and the two line cuts of the kAAH phase 
diagram indicated by dotted lines in b. Λ0 corresponds to the point where Λ = T/2. 
In the static and rapidly kicked models, fractality occurs only at the phase 
transition Δ/J = 2 and Λ = T/2, respectively, while at high kick periods an extended 
multifractal regime emerges.
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Extended Data Fig. 2 | Multiband time-domain simulations. Results of 
numerically simulating band population for 1 s of kicking with 1 μs square pulses. 
a, Band population distribution as a function of kick period TP for the ground 

and excited bands at t = 1 s. b-c, Examples of population dynamics for TP = 50 μs 
(b) and TP = 100 μs (c). See Supplementary Information Sec. IV A for details of 
numerical simulations.
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Extended Data Fig. 3 | Spread of the excited eigenmodes with kicking.  
a,b, Numerical simulations of eigenmode occupation evolution during square-
pulse kicking with τ = 100 μs and TP = 1 ms for (a) diabatic and (b) adiabatic 
loading of the primary optical lattice. y-axis tick marks correspond to band 
boundaries. c, Eigenmode occupation evolution during Gaussian-pulse kicking 

with equivalent pulse area and kicking period to those of a and b. The primary 
lattice is adiabatically loaded. While in a and b, the kicking results in excitation 
to higher bands, in c, excitations are mainly confined to the ground band. See 
Supplementary Information Sec. IV A for details of numerical simulations.
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Extended Data Fig. 4 | Numerically calculated phase diagram of the kAAH 
model. Numerically calculated second moment of the density distribution of 
particles evolving under the kAAH model is shown for parameters and initial 
conditions chosen to match those of the experiment. The underlying simulations 
are identical to those for which an experimentally-motivated Gaussian fit 
is plotted in Fig. 4. Qualitatively the two maps exhibit the same localized, 
delocalized, and intermediate regimes, but some quantitative differences are 

apparent. The difference in the maps stems from the non-normal character 
of the density distributions in delocalized and intermediate areas, where the 
second moment can be dominated by small populations at large distances. 
The map is averaged over 40 randomly chosen phases φ of the quasiperiodic 
potential, though this does not substantially affect the result (see Supplementary 
Information Sec. IV B 1).
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Extended Data Fig. 5 | Transport measurement of the expansion. Measured 
expansion exponent γ and fixed-time width are shown for (T, Λ) points on the 
horizontal dot dashed line in Fig. 4(a). γ is extracted by fitting the late-time width 

evolution to σx(t) ∝ tγ in the same procedure as Fig. 4(c). Error bars for each data 
point are 95% confidence bounds from the curve fit to a time-series data set 
consisting of 11 data points.
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