
Nature Physics | Volume 20 | February 2024 | 240–246 240

nature physics

Article https://doi.org/10.1038/s41567-023-02326-7

Programmable Heisenberg interactions 
between Floquet qubits

Long B. Nguyen    1,2,8  , Yosep Kim    1,2,3,7,8  , Akel Hashim    1,2, Noah Goss    1,2, 
Brian Marinelli    1,2, Bibek Bhandari    4, Debmalya Das    4,5, Ravi K. Naik    1,2, 
John Mark Kreikebaum    2,6, Andrew N. Jordan4,5, David I. Santiago    1,2 & 
Irfan Siddiqi1,2,6

The trade-off between robustness and tunability is a central challenge in the 
pursuit of quantum simulation and fault-tolerant quantum computation. 
In particular, quantum architectures are often designed to achieve high 
coherence at the expense of tunability. Many current qubit designs 
have fixed energy levels and consequently limited types of controllable 
interactions. Here by adiabatically transforming fixed-frequency 
superconducting circuits into modifiable Floquet qubits, we demonstrate 
an XXZ Heisenberg interaction with fully adjustable anisotropy. This 
interaction model can act as the primitive for an expressive set of quantum 
operations, but is also the basis for quantum simulations of spin systems. 
To illustrate the robustness and versatility of our Floquet protocol, we tailor 
the Heisenberg Hamiltonian and implement two-qubit iSWAP, CZ and SWAP 
gates with good estimated fidelities. In addition, we implement a Heisenberg 
interaction between higher energy levels and employ it to construct 
a three-qubit CCZ gate, also with a competitive fidelity. Our protocol 
applies to multiple fixed-frequency high-coherence platforms, providing 
a collection of interactions for high-performance quantum information 
processing. It also establishes the potential of the Floquet framework as a 
tool for exploring quantum electrodynamics and optimal control.

The capability to coherently choreograph interactions between qubits 
is the foundation for the recent advances in quantum technologies.  
A quintessential example is the manipulation of the quantum Heisen-
berg model for the simulation of many-body quantum spin systems1–4, 
which has led to the recent discoveries of intriguing physical phenom-
ena such as discrete time crystal5, phantom spin-helix states6 and forma-
tion of photon bound states7. The Heisenberg interactions are also the 
primitives for expressive multi-qubit gates8 which play important roles 
in quantum algorithms9 and quantum error correction10,11. Therefore, 
endowing quantum architectures with such archetypal interactions 
considerably extends their capabilities and performance.

The required tunability in solid-state quantum devices entails 
additional decoherence channels, demanding design overhead and 
increased operational complexity. For example, in the domain of 
superconducting circuits, the performance in flux-tunable devices is 
typically limited by unavoidable 1/f noise arising from the surround-
ing environment. Meanwhile, fixed-frequency platforms such as 
single-junction transmon12,13 and fluxonium14 biased at the half-integer 
flux quantum15 have the best coherence times to date, but their native 
interactions are limited to the cross-resonance16,17 and longitudinal 
couplings18,19. Parametric longitudinal20–22 and transverse interactions23 
can also be accomplished by introducing additional tunable couplers, 
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Details of the quantum device and experimental setup are presented in 
Supplementary Notes 1 and 2. Although the frequencies of the qubits 
are fixed after fabrication, Floquet engineering has recently emerged as 
a powerful tool that allows the sculpting of effective Hamiltonians that 
are otherwise unavailable33, thus promising an additional dimension 
to tune the system. Here, we synthesize Floquet qubits using detuned 
periodic microwave drives and tailor them to implement the Hamilto-
nian given by equation (1).

The mapping is described by Floquet formalism as follows. The 
Hamiltonian of a two-level spin-half system subjected to a periodic 
driving field with amplitude A, frequency ωd and phase φ is given as

ℋ̂q(t)
ℏ = −

ωq

2 σ̂z + A cos(ωdt + φ)σ̂x, (2)

where ℏωq is the energy gap of the two-level system, and σ̂z and σ̂x rep-
resent the Pauli operators. There exists no static eigenenergies and 
eigenstates of the system as solutions of the time-dependent 
Schrödinger equation iℏ∂t |ψ(t)⟩ = ℋ̂q(t) |ψ(t)⟩ . However, due to the 
periodicity of ℋ̂q(t), the Schrödinger equation can be modified into 
the Floquet equation34,35 (ℋ̂q(t) − iℏ∂t) |un(t)⟩F = ℏεn|un(t)⟩F, and static 
quasienergies ℏεn can be found for time-periodic Floquet states 
|un(t)⟩F = |un(t + 2π/ωd)⟩F . Here, the Floquet states are denoted with 
subscript F to distinguish them from the bare states in the lab frame. 
The Floquet and bare states are interconvertible following the relation

|un(t)⟩F = eiεnt |ψn(t)⟩ . (3)

Interestingly, eikωdt|un(t)⟩F with integer k also satisfies the Floquet 
equation and has quasienergy ℏ(εn + kωd), resulting in an infinite transition 

spectrum35 ε1 − ε0 = kωd ±√A2 + (ωd − ωq)
2 , where the plus(minus) 

sign corresponds to red(blue)-detuned drive. In addition, the drive 
phase φ acts as a time translation operator on the Hamiltonian in equa-
tion (2), |un(t)⟩F → |un(t + φ/ωd)⟩F. These show how the Floquet states 

but the performance could be undermined by the couplers’ coherence 
and spurious couplings.

In this Article, we present a reliable and hardware-efficient 
protocol to synthesize Floquet qubits24–26 from statically coupled 
single-junction transmon qubits using time-periodic microwave drives, 
showing that the adiabatic mapping procedure can be hastened by 
exploiting a shortcuts-to-adiabaticity (STA) technique27–29. Then, we 
implement an XXZ Heisenberg interaction between these Floquet 
qubits, described by the Hamiltonian

ℋ̂XXZ
ℏ = ∑

i, j
JXY (σ̂ixσ̂

j
x + σ̂iyσ̂

j
y) + JZZσ̂izσ̂

j
z (1)

and demonstrate that the transverse spin-exchange and longitudinal 
spin–spin interaction terms can be adjusted independently by tailor-
ing the drive parameters.

To validate the robustness and practicality of the protocol, we 
characterize two-qubit iSWAP, CZ and SWAP gates which correspond 
to different anisotropy Δ = JZZ/JXY values, achieving estimated fidelities 
of 99.32(3)%, 99.72(2)% and 98.93(5)%, respectively. In addition, we 
show that the Floquet-engineered interactions can be broadly applied 
to other levels in the system. Specifically, we explore the swapping 
between the qutrit states |11⟩ and |02⟩, then employ it to implement a 
three-qubit controlled-controlled-Z (CCZ) gate which is locally equiva-
lent to the Toffoli gate30, achieving an estimated fidelity of 96.18(5)%. 
Our work exemplifies the operational principles of Floquet qubits and 
illustrates their broad potential, thus opening promising pathways for 
future developments of the Floquet framework in enhancing the capa-
bilities of fixed-frequency solid-state quantum platforms.

Synthesizing Floquet qubits
Figure 1a depicts the superconducting device used as a testbed in 
the experiment. It consists of single-junction transmon qubits12 that 
are pair-wise coupled via mutual coplanar stripline resonators31,32.  
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Fig. 1 | Floquet qubit. a, Experimental schematic depicting two single-junction 
transmon qubits Q1 (red) and Q2 (blue) coupled via a shared coplanar stripline 
resonator resulting in an effective static coupling31. Microwave pulses are applied 
to the transmission lines situated below the capacitor pads to sculpt the Floquet 
qubits and control single-qubit rotations. The Heisenberg interactions are 
programmed by tailoring pulses p1, p2 and p3. b, Bloch-sphere representation of 
the adiabatic transformation from a bare qubit in the lab frame to a Floquet qubit 

in the rotating frame. c, Population in the excited state P|1⟩ of Q1, initially in |0⟩, 
when subjected to a microwave pulse with amplitude 100 MHz, detuning 
−40 MHz, ramp time τr and duration τg. Non-adiabaticity manifests as finite 
oscillations for short ramp time τr. d, Dependence of the maximum state leakage 
Pmax
|1⟩  on the pulse’s amplitude and ramp time τr. The drive is applied at the same 

frequency as in c. e, Dependence of Pmax
|1⟩  on the pulse’s ramp time τr and DRAG 

coefficient. The drive amplitude and frequency are the same as in c.
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and their quasienergies depend on the drive parameters A, φ and ωd, 
which we can use to tailor the driven systems (see Supplementary Notes 
3 and 4 for detailed Floquet formalism).

To prepare a Floquet qubit with the desired properties, we have to 
continuously map the undriven qubit to the Floquet basis, as shown in 
Fig. 1b. If the transformation is performed abruptly, finite tunnelling 
exists between the Floquet basis states, and the process becomes 
non-adiabatic. According to the Adiabatic Theorem35, the tunnelling 
rate is proportional to dA/dt, that is, the target Floquet qubit cor-
responding to a larger drive amplitude must be transformed using a 
longer ramp time.

We experimentally explore this by irradiating qubit Q1 initialized 
in |0⟩ using a cosine-ramp pulse with different pulse durations τg and 
ramp times τr. The drive amplitude is set to be 100 MHz in terms of 
on-resonant Rabi frequency, and the drive frequency is red-detuned by 
40 MHz from Q1’s transition frequency. As the qubit should remain in 
its instantaneous eigenstate under the adiabatic process, non-adiabatic 
effects manifest as finite excited state populations P|1⟩ after the pulse, 
which oscillates with respect to the pulse duration due to the dynamical 
phase accumulation of the Floquet qubit (Fig. 1c). Evidently, shorter 
ramp times correspond to more severe non-adiabatic effects. In addi-
tion, the result in Fig. 1d confirms that a larger drive amplitude requires 
a longer ramp time to satisfy the adiabatic condition.

Interestingly, we find that using an STA technique known as deriva-
tive removal by adiabatic gate (DRAG)28,29 helps reduce non-adiabatic 
effects substantially. As shown in Fig. 1e, the excited state leakage Pmax

|1⟩  

corresponding to a short-ramp pulse can be suppressed by adding a 
quadrature component to the pulse with amplitude AQ = λDRAG × dA(t)/
dt. In this case, τr can be reduced from 60 ns to 30 ns by employing a 
DRAG coefficient λDRAG = −0.7. This suggests that advanced optimal 

control techniques can be explored to further accelerate the mapping 
procedure. Importantly, our results below show that once adiabaticity 
is satisfied, the protocol is robust against adverse effects from the 
strong drives, including microwave crosstalk, calibration fluctuations 
and leakage to higher levels.

Tailoring Heisenberg interactions
Having established the general conditions for adiabatic mapping 
between undriven qubit states and Floquet states, we next generate 
the microwave pulses that establish the XXZ Heisenberg interaction 
in equation (1) between the Floquet qubits. The interaction Hamiltonian 
describing the coupling between Q1 and Q2 in Fig. 1a is ℋ̂int/ℏ = Jσ̂(1)x σ̂(2)x , 
where J is the static coupling strength, the superscripts are qubit indi-
ces, and the Pauli operators are defined in the undriven basis. Using 
the relation given by equation (3), this interaction can be described by 
a Floquet Hamiltonian:

ℋ̂int,F
ℏ = J ∑

a,b,c,d
c(1)ab (t)c

(2)
cd (t)e

i(ε(1)ab+ε
(2)
cd )t ̂f

(1)
ab (t) ̂f

(2)
cd (t), (4)

w h e r e  ε(k)ab ≡ ε(k)b − ε(k)a ,  c(k)ab (t) = ⟨ψ(k)
a (t)|σ̂(k)x |ψ(k)

b (t)⟩ , 

̂f
(k)
ab (t) = ||u

(k)
a (t)⟩

F
⟨u(k)b (t)||F  for qubit Qk and a, b, c, d ∈ {0, 1} for two 

qubits. The fast oscillation dynamics can be neglected by invoking the 
rotating wave approximation, leaving only the terms that follow energy 
conservation law, ε(1)ab + ε(2)cd = 0  for abcd ∈ {0110, 1001, 0000, 0011,  
1100, 1111}. Inspecting the reduced Hamiltonian then gives us insight 
on the types of interactions present between the qubits.

On one hand, the terms satisfying ε(1)01 = ε(2)01  correspond  
to the transverse XY spin-exchange interaction in equation (1) with 
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Fig. 2 | Floquet-engineered XXZ Heisenberg interaction. a, Energy diagram of 
qubits Q1 and Q2 and pulse schematics for spin-exchange XY and spin–spin ZZ 
interactions. b, Chevron pattern showing the dependence of P|01⟩ on the 
amplitude AXY and duration τg of pulses p1 and p2 for qubits initialized in |10⟩. The 
pulses are applied at frequencies 40 MHz red(blue)-detuned from Q1(2)’s |0⟩ ↔ |1⟩ 
transition with DRAG coefficients λDRAG = −(+)0.6 and ramp time τr = 50 ns. c, 
Coherent oscillation between |10⟩ and |01⟩ for the optimal pulse amplitude 
AXY/2π = 65.2 MHz highlighted by the red dashed line in b. d, Extracted 

longitudinal coupling angle ΦZZ between the qubits after p1 and p3 are applied at 
40 MHz red-detuned from Q1’s transition frequency. They are 200 ns long, with 
ramp time τr = 50 ns and DRAG coefficient λDRAG = −0.6. The amplitude of p1 is 
fixed at AXY/2π = 65.2 MHz, while the amplitude AZZ and phase φ of p3 are varied to 
tune the ZZ coupling rate. e, Extracted longitudinal coupling angle ΦZZ between 
the qubits after being subjected to all three pulses. The amplitude AXY of p1 and p2 
is tuned to induce a full |10⟩ ↔ |01⟩ swap, while the amplitude AZZ and phase φ of 
p3 are varied to tune the ZZ rate during the swap.
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JXY = J⟨c(1)01 c
(2)
10 ⟩t = J⟨c(1)10 c

(2)
01 ⟩t , where 〈…〉t denotes the time-average 

value. This process follows the conventional wisdom that an XY 
exchange-type interaction between two coupled spins occurs  
when they are brought into resonance with each other. On the  
other hand, the rest of the reduced Hamiltonian produces the longitu-
dinal ZZ spin–spin coupling in equation (1), JZZ = J⟨c(1)11 c

(2)
11 +

c(1)00c
(2)
00 − c(1)00c

(2)
11 − c(1)11 c

(2)
00⟩t. Consequently, we can program the trans-

verse and longitudinal interactions independently by tailoring the 
quasienergies with periodic microwave drives.

We validate this principle as follows. First, we achieve a pure trans-
verse XY spin-exchange interaction corresponding to an XX Heisenberg 
model where the anisotropy is zero, Δ = JZZ/JXY = 0. Given that Q1’s fre-
quency is lower than that of Q2, their quasienergy differences ε(k)01  can 
be brought into resonance if Q1(Q2) is driven with red(blue)-detuned 
microwaves (Supplementary Note 5). After preparing the qubits in |10⟩, 
we apply two such pulses (p1 and p2 in Fig. 2a) with the same duration 
τg and amplitude AXY at a detuning frequency of 40 MHz.

We observe a coherent population transfer to state |01⟩ that forms 
a chevron pattern as a function of τg and AXY, signifying a transverse 
coupling between the qubits (Fig. 2b). Notably, although the interac-
tion occurs between the Floquet qubits in the dressed frame, the adi-
abatic connection ascertains the exchange between the bare qubit 
states after the reverse mapping, which bears resemblance to the 
latching mechanism in classical electronics. Indeed, at the optimal 
drive amplitude AXY/2π = 65.2 MHz (Fig. 2c), |10⟩ and |01⟩ exhibit coher-
ent oscillations at a rate of 3.2 MHz, which is limited by the static cou-
pling constant J (Supplementary Note 5). The lack of fast oscillatory 
behaviour is a clear indication of the high mapping fidelity.

Next, we induce a pure longitudinal ZZ spin–spin coupling corre-
sponding to an Ising interaction between the Floquet qubits. This can 
be accomplished by irradiating microwave drives p1 on Q1 and p3 on Q2 
(Fig. 2a) at a frequency 40 MHz red-detuned from Q1. The amplitude of 
p1 is fixed at AXY/2π = 65.2 MHz, while p3 has parameterized amplitude 
AZZ and phase φ. For weak driving, AXY,ZZ ≪ ωq,d, the ZZ rate is given as 

JZZ ≈ 2JAXYAZZ cos(φ)/√(A2
XY + δ21 )(A

2
ZZ + δ22), where δk is the detuning 

from Qk’s frequency (Supplementary Note 5). Importantly, while the 
transverse coupling rate JXY shown above is limited by the static coupling 
strength J, the longitudinal coupling rate JZZ can be tuned by two knobs, 
namely the drives’ amplitudes and phase difference. We characterize 
the interaction by first initializing the two qubits in the superposition 
state (|0⟩ + |1⟩) ⊗ (|0⟩ + |1⟩)/2, applying the pulses as specified and then 
extracting the entangling phase ΦZZ(τg) = ∫τg

0 JZZ(t)dt  using tomo-
graphic reconstruction assisted by numerical optimization. As shown 
in Fig. 2d, this phase depends on p3’s amplitude AZZ and phase φ, consist-
ent with our description.

Leveraging the independent controls of the transverse and longi-
tudinal interactions, we now tailor the interplay between them to adjust 
the anisotropy of the XXZ Heisenberg interaction model. To this end, 
we apply p1 and p2 pulses with their amplitude AXY and duration τg tuned 
to induce a full |10⟩ ↔ |01⟩ swap (Fig. 2c). Pulse p3 is then jointly applied, 
albeit with parameterized amplitude AZZ and phase φ. Incorporating 
the swap condition into the tomography analysis, we extract the lon-
gitudinal entangling phase ΦZZ which depends on p3’s parameters as 
shown in Fig. 2e. This demonstrates the versatility available in program-
ming the anisotropy of the model given by equation (1). This demon-
stration only includes AZZ ≲ 20 MHz to alleviate the effect from p3 on 
the swap condition, which stems from the large microwave crosstalk 
in the experimental device (Supplementary Note 2).

Benchmarking Heisenberg interactions
The programmable Heisenberg interaction endows quantum proces-
sors with an extensive quantum gate set and the capability to  
simulate many-body spin-half systems. Here we benchmark our 
Floquet-engineered Heisenberg interactions by characterizing a suite 

of representative two-qubit gates: the iSWAP, CZ and SWAP gates  
resulting from the XX Heisenberg model ℋ̂XX/ℏ = JXY(σ̂xσ̂x + σ̂yσ̂y) , 
Ising model ℋ̂ZZ/ℏ = JZZσ̂zσ̂z  and XXX Heisenberg model 
ℋ̂XXX/ℏ = J ( σ̂xσ̂x + σ̂yσ̂y + σ̂zσ̂z ), respectively. Accordingly, an iSWAP 
unitary arises naturally from a pure transverse XY interaction with the 
pulse duration τg corresponding to a full swap in Fig. 2c, implemented 
by applying p1 and p2. In practice, there is a dynamical ZZ coupling 
originating from microwave crosstalk, which can be tracked and com-
pensated by simultaneously applying p3 with appropriate amplitude 
and phase. Likewise, a CZ gate is realized when p1 and p3 are calibrated 
to bring up an entangling phase ΦZZ/2π = 0.25. Finally, we tailor all three 
pulses to sculpt an isotropic XXX Heisenberg interaction that leads to 
a SWAP gate at the correct gate time τg, at which both iSWAP and CZ 
conditions are satisfied. Our calibration steps are detailed in Supple-
mentary Notes 6–8.

To quantify the gates’ performances without state preparation 
and measurement errors, we employ cycle benchmarking (CB)36, which  
tailors all errors into stochastic Pauli channels via Pauli twirling and 
results in tight bounds on the estimated fidelity (Supplementary Note 9).  
Besides the dressed cycles that include the implemented gates, we 
also measure the reference cycle and extract its errors to estimate the 
relevant gate fidelities. Figure 3a shows the Pauli fidelity distribution 
histograms of both the reference and dressed cycles corresponding to 
the intended two-qubit gates. Comparing the dressed cycle data to the 
reference cycle result allows us to estimate the average gate fidelities of 
the implemented iSWAP, CZ and SWAP gates to be 99.32(3)%, 99.72(2)% 
and 98.93(5)%, respectively. We note that these gates are expandable 
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to a continuous fSim gate set8,37, which can be integrated into arbitrary 
quantum circuits compatible with fixed-frequency qubits by using 
more advanced circuit compilation tools38 or efficient physical Z-gates.

Our analysis attributes the limitations of these results primarily 
to decoherence mechanisms (Supplementary Notes 10–12). Intrigu-
ingly, the Floquet qubits appear to exhibit coherence times deviating 
from those of the bare qubits, as shown in Fig. 3b. The measurements 
are performed using nominal energy relaxation and echo dephasing 
procedures on the bare Q1, but with the addition of a microwave pulse 
applied 40 MHz red-detuned from its |0⟩ ↔ |1⟩ transition during idle 
periods. The results are postselected to yield the populations of the 
desired states, and the experiment is repeated over twenty iterations 
to eliminate any potential outlier. While the dynamics remain the same 
at small drive amplitudes, T1 tends to increase while TE

2 tends to decrease 
at strong driving before non-adiabaticity sets in. Interestingly, we also 
discover a heating mechanism that enlarges the excited state popula-
tion in the bare qubit at the end of the 355-μs-long |0⟩ → |1⟩ measure-
ment sequence, with Pfinal

|1⟩  increasing with the driving amplitude  
(Fig. 3b, inset). We include additional details in Supplementary Note 
13 and hope that future investigations can find efficient approaches to 
mitigate these effects, reminiscent of the recent progress in driven 
ultracold-atom systems39.

Floquet qutrit and three-qubit gate
So far, the fundamental and universal importance of spin physics moti-
vates our discussion to portray the implemented Floquet qubits as 
ideal spin-halfs. Nevertheless, many solid-state systems, including the 
transmon, naturally include multiple relevant energy levels. Making 

use of them expands the Hilbert space, allowing more information to 
be encoded, which leads to hardware-efficient execution of quantum 
algorithms40,41 and hastens the development of fault-tolerant computa-
tion42,43. We now show that the presented protocol can be tailored for 
multi-level systems, thereby paving pathways for quantum information 
processing using Floquet qudits.

Specifically, we leverage the techniques described so far to induce 
a transverse qutrit–qutrit interaction between the states |11⟩ and |02⟩. 
Although the cross-Kerr coupling has been explored44, such an 
energy-exchange interaction is still absent in fixed-frequency qutrits. 
While this is a useful ternary gate itself, we presently show that integrat-
ing it into a sequence involving multiple qubits allows the implementa-
tion of a three-body CCZ gate30, which plays an important role in 
quantum applications such as factorization45,46 and quantum error 
correction47,48. Notably, this scheme can be extended to implement an 
n-qubit gate49. To this end, we add to the experiment Q3, which is cou-
pled to the right side of Q2 in Fig. 1a and use Q2 and Q3 as control qubits 
(subscripted c), while Q1 is designated as the target (subscripted t).

Figure 4a depicts the energy diagram of Q2 and Q3. Our approach 
to accomplish the interaction primarily involves applying a microwave 
pulse to Q3 at a frequency red-detuned from its |1⟩ ↔ |2⟩ transition to 
create a Floquet qutrit such that the control Floquet states |11⟩c and 
|02⟩c become degenerate. After initializing the control qubits in |11⟩c, 
we apply such a pulse with ramp time τr = 170 ns, DRAG coefficient 
λDRAG = −0.6 and varying amplitude AXY and duration τg, which are tai-
lored to ensure adiabaticity at a red-detuning of 22 MHz. The transverse 
interaction between |11⟩c and |02⟩c then manifests into an asymmetric 
chevron pattern with respect to AXY and τg in Fig. 4b. Interestingly, we 
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Fig. 4 | Floquet qutrit and three-qubit CCZ gate. a, Energy diagram of two 
coupled transmon circuits Q2 and Q3, with the subscript c denoting they are 
control qubits. A microwave drive with amplitude AXY is applied at a frequency 
red-detuned from Q3’s |1⟩ ↔ |2⟩ transition to create a Floquet qutrit. b, Chevron 
pattern showing a coherent flip-flop between Q2 and Q3’s states |11⟩c and |02⟩c, 
which depends on the amplitude AXY and duration τg of the pulse. The red-
detuning is 22 MHz, the ramp time is τr = 170 ns and the DRAG coefficient is 
λDRAG = −0.6. c, Gate sequence used to implement a three-qubit CCZ unitary, with 
Q1 as the target qubit and Q2, Q3 as the control qubit pair. d, A conditionality 

measurement, using a Ramsey-like sequence {R(t)Y ( π
2
), CCZ, R(t)Z (ϕ), R(t)Y ( π

2
)}, 

reveals the dependence of Q1’s phase on the states of Q2 and Q3 under the CCZ 
gate implemented using the sequence in c, which is characteristic of a three-body 
entanglement. e, Truth table of the implemented Toffoli gate with a 
corresponding fidelity of 96.20(6)%. f, CB result showing the Pauli fidelity 
distributions of the three-qubit reference cycle and CCZ dressed cycle, with the 
solid vertical lines indicating the average values. The average gate fidelity is 
estimated to be 96.18(5)%.
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observe that the optimal swap condition occurs at a stronger amplitude 
relative to the symmetry point.

A CCZ unitary can be implemented using the sequence given in 
Fig. 4c (Supplementary Note 14). The final CPhase gate on the control 
qubits is tuned to bring the effective operation on them to be σ̂I ⊗ σ̂I 
at the end of the sequence. After calibrating the individual gates, we 
verify the entanglement between the three qubits by extracting the 
Z-phase of the target qubit (Q1) for different control states and observe 
a phase shift of approximately π for |10⟩c (Fig. 4d), which evinces the 
CCZ effect. The sequence can be further sandwiched between 
single-qubit rotations on Q1 to construct a Toffoli gate. The process 
can be straightforwardly validated by measuring the truth table30,49, 
from which we extracted a fidelity of ℱtt = Tr(𝒰𝒰exp𝒰𝒰†

ideal)/8 = 96.20(6)% 
(Fig. 4e). Finally, we employ CB to benchmark the CCZ gate (Fig. 4f), 
achieving a fidelity of 96.18(5)%, with the main error resulting from 
decoherence (Supplementary Note 11).

Outlook
Our work embodies a transformative application of Floquet engineer-
ing in superconducting circuits where periodic drives are used to map 
static qubits to Floquet qubits with modifiable quasienergies, granting 
access to an unconventional tuning channel. We demonstrate the prac-
ticality and versatility of this approach by synthesizing Floquet qubits 
and qutrits, then realizing an XXZ Heisenberg interaction between them 
with fully tunable anisotropy. The robustness of the scheme against 
environmental noise, non-adiabaticity, leakage and calibration errors 
is reflected in the high gate fidelities, while overcoming the current 
limitations is straightforward. On one hand, the coherence times of 
the fixed-frequency transmon qubits in the experiment are relatively 
low, so we expect better performance in state-of-the-art devices. On the 
other hand, the coupling rate is primarily limited by the static coupling 
constant J, which can be increased substantially in future devices. In 
addition, the pulse shape used in this work is quite simple, so we believe 
that, in the future, advanced STA techniques can be employed to design 
shorter gates, further reducing errors from dephasing. Our preliminary 
assessment (Supplementary Note 15) shows the promising extensibility 
of the protocol to large-scale devices. We note that the experimental 
device is simply a testbed, and the full potential of this framework 
lies upon its adaptation to other synthetic fixed-frequency quantum 
architectures with better projected performance, such as fluxonium 
quantum processor with all-microwave control50.

Having illustrated the useful properties of the Floquet qubits, we 
envision the following avenues to further develop and propel the con-
cept to scale up fixed-frequency platforms. The protocol presented here 
involves transforming back to the static qubit, so normal operations such 
as readout and single-qubit gates can be employed without recalibration. 
In future applications, a Floquet qubit can, in principle, be permanently 
defined by applying a continuous periodic drive, streamlining the pro-
cess and unlocking opportunities for control and readout of the Flo-
quet qubit25 (Supplementary Note 16). This approach also allows in situ 
tuning of the qubit frequencies, thus providing a practical solution for 
problems arising from two-level-system defects and spectral crowding. 
Alternatively, the ramp time can be reduced substantially if we operate 
in the diabatic regime, where the mapping is close to ideal despite finite 
transition between the Floquet states. We expect the potential develop-
ment of optimal control within the Floquet framework to provide a reli-
able approach in this regime. Last but not least, the heating effect which 
correlates with the reduction in T2 is reminiscent of a similar effect in 
cold-atom systems which has been successfully suppressed39. This calls 
for deeper understanding of the quantum thermodynamics in driven 
solid-state systems and the development of new mitigation strategies.
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