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Time-Efficient Constant-Space-Overhead 
Fault-Tolerant Quantum Computation

Hayata Yamasaki    1,2,3   & Masato Koashi    4,5

Scaling up quantum computers to attain substantial speedups over 
classical computing requires fault tolerance. Conventionally, protocols for 
fault-tolerant quantum computation demand excessive space overheads by 
using many physical qubits for each logical qubit. A more recent protocol 
using quantum analogues of low-density parity-check codes needs only 
a constant space overhead that does not grow with the number of logical 
qubits. However, the overhead in the processing time required to implement 
this protocol grows polynomially with the number of computational steps. 
To address these problems, here we introduce an alternative approach 
to constant-space-overhead fault-tolerant quantum computing using a 
concatenation of multiple small-size quantum codes rather than a single 
large-size quantum low-density parity-check code. We develop techniques 
for concatenating different quantum Hamming codes with growing size. As 
a result, we construct a low-overhead protocol to achieve constant space 
overhead and only quasi-polylogarithmic time overhead simultaneously. Our 
protocol is fault tolerant even if a decoder has a non-constant runtime, unlike 
the existing constant-space-overhead protocol. This code concatenation 
approach will make possible a large class of quantum speedups with feasibly 
bounded space overhead yet negligibly short time overhead.

Fault-tolerant quantum computation (FTQC) establishes a way to real-
ize quantum computation, achieving useful computational accelera-
tion compared with conventional classical computation, even in the 
presence of intrinsic noise1,2. To solve computational problems for an 
M-bit input, quantum computation may exploit a quantum circuit of 
polynomial size O(poly(M)) in width and depth. If we run this original 
circuit directly on physical qubits, noise-induced errors may destroy 
the result of quantum computation. A fault-tolerant protocol reduces 
the effect of errors by simulating the original circuit on logical qubits 
of a quantum error-correcting code using an adequate number of 
physical qubits. Conventionally, using concatenated codes such as 
Steane’s seven-qubit code3,4 or quantum low-density parity-check 
(LDPC) codes such as the surface code5–7, fault-tolerant protocols can 
arbitrarily suppress the error rate on logical qubits if that on physical 

qubits is below a certain threshold5,8–16. However, error suppression 
in the conventional protocols requires a growing ratio of the number 
of physical qubits per logical qubit, that is, a space overhead17, which 
scales polylogarithmically in M and diverges to infinity. In practice, the 
number of physical qubits available for a quantum device is severely 
limited, and the space overhead has been a major obstacle to realizing 
quantum computation18–20.

The fault-tolerant protocols also require extra runtime for imple-
menting logical quantum gates in terms of the circuit depth, that is, 
a time overhead17. A class of conventional protocols can achieve a 
polylogarithmic time overhead with transversal implementation of 
Clifford gates and gate teleportation of non-Clifford gates1,2,21–25. The 
gate teleportation is assisted by auxiliary qubits that are to be prepared 
in fixed logical quantum states in a fault-tolerant way while executing 
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time overhead exp(O(polylog(log(M)))) . This time overhead is sub
stantially smaller than polynomials for arbitrarily small degrees, that 
is, that shown for the existing constant-space-overhead protocol17,26,27. 
This advantage is important in realizing useful polynomial quantum 
speedups without polynomially large slowdown. Remarkably, our 
analysis of time overhead takes into account the waiting time for the 
non-zero-time classical computation during FTQC. The novelty of our 
protocol is to use a concatenated code with a non-vanishing rate con-
structed from a sequence of different quantum codes, rather than using 
a quantum LDPC code. In the following, we show a non-vanishing rate 
for our code, an efficient decoder, an implementation of universal 
quantum computation, the existence of a threshold, and the space and 
time overheads, followed by the conclusion.

Concatenated code at non-vanishing rate
The crucial technique here for achieving a constant space overhead is 
to construct a concatenated code 𝒬𝒬(L) with a non-vanishing rate from 
a sequence of L different quantum codes, where L denotes the total 
number of concatenations.

We introduce the code 𝒬𝒬(L) as follows (Fig. 1). With Nr: = 2r − 1, let 
𝒞𝒞r  (r = 2, 3, …) denote the family of [Nr, Nr − r, 3] Hamming codes46, with 
block length of Nr, dimension of (Nr − r) bits and distance 3 (ref. 47). 
Quantum Hamming codes 𝒬𝒬r  (r = 3, 4, …) (ref. 48) are Calderbank–
Shor–Steane (CSS) codes2,4,49 of 𝒞𝒞r  over its dual code 𝒞𝒞⟂r , which are in a 
family of [[Nr, Kr, 3]] codes having Nr = 2r − 1 physical qubits (that is, code 
size Nr), Kr: = Nr − 2r logical qubits and distance 3. We use 𝒬𝒬rl with param-
eter rl: = l + 2 for the concatenation at each level l ∈ {1, …, L}, which leads 
to the sequence 𝒬𝒬3, 𝒬𝒬4,… of quantum Hamming codes starting from 
Steane’s seven-qubit code 𝒬𝒬3 (refs. 3,4) at level 1, with rate converging 
to Krl /Nrl → 1 as l → ∞.

We construct 𝒬𝒬(L) recursively by defining 𝒬𝒬(l) for l = L, L − 1, …, 1. 
Let K(l) and N(l) denote the numbers of logical and physical qubits of  
𝒬𝒬(l), respectively, which turn out to be K(l) = ∏l

l′=1 Krl′ = exp(O(l2))  
and N(l) = ∏l

l′=1 Nrl′ = exp(O(l2)). We define a collection of K(l) logical 
qubits of 𝒬𝒬(l) as a level-l register, where a physical qubit is referred  
to as a level-0 register (or level-0 qubit). The recursive relation  
between 𝒬𝒬(l) and 𝒬𝒬(l−1) is presented in Fig. 1. In particular, we divide  
the K(l) = K(l−1) × Krl  qubits in the level-l register for 𝒬𝒬(l) into K(l−1)  
blocks of Krl qubits. Then, for each k(l−1) ∈ {1, …, K(l−1)}, picking the k(l−1)th  
qubit from each of the Nrl level-(l − 1) registers for 𝒬𝒬(l−1), we encode the 
Krl  qubits in the k(l−1)th block into the picked Nrl  qubits as the logical 
qubits of the quantum Hamming code 𝒬𝒬rl. We design this concatenated 
code so that, even if all the qubits in one of the level-(l − 1) registers 
suffer from correlated errors, we can still recover the encoded level-l 
register. In this way, we obtain a [[N(L), K(L), 3L]] concatenated code  
𝒬𝒬(L). It should be noted that, unlike quantum LDPC codes, the ability 
of our code to suppress errors is not fully characterized by the code 
distance, owing to its concatenated structure.

We analytically prove that 𝒬𝒬(L)  has an asymptotically non- 
vanishing rate R(L) ∶= K(L)/N(L)

L→∞
→ ∏∞

l=1 Krl /Nrl ≧ 1/η∞ > 0  with a  
finite asymptotic overhead factor η∞. The overhead factor, that is, the 
inverse of the rate, would diverge to infinity for the conventional  
concatenated and quantum LDPC codes, such as the surface code. By 
contrast, we numerically show that η∞ < 36 in Fig. 2. Note that η∞ is  
not optimized here. For example, the factor could be almost 1 by start-
ing the concatenations from 𝒬𝒬r8 rather than 𝒬𝒬3. Even at lower concat-
enation levels L ≦ 4, the advantage of 𝒬𝒬(L)  over the [[7L, 1, 3L]] 
concatenated seven-qubit code in the overhead factor can be orders 
of magnitude. Nevertheless, both codes can suppress the logical error 
rate doubly exponentially as L → ∞, as shown later with our threshold 
analysis. See Supplementary Section B for details of our construction 
and analysis.

Note that the above construction of concatenated codes with 
non-vanishing rate is, in principle, applicable to other sequences of 
codes with rates approaching 1 sufficiently fast. For example, our 

the computation. In such conventional protocols, the gates are appli-
cable to all logical qubits at a time, that is, parallelizable. Each logical 
gate is applied within a polylogarithmic time overhead, which can be 
considered to be negligibly small compared with a polynomial runtime 
of quantum computation.

The reduction of space and time overheads in FTQC is crucial for 
realizing wide-ranged applications of quantum information processing 
and hence has been of great interest from both practical and theoretical 
perspectives. In contrast to the conventional protocols, theoretical 
progress in refs. 17,26,27 has shown that the space overhead can indeed 
be made constant by using quantum expander codes28–31, a family of 
quantum LDPC codes with a non-vanishing rate of logical qubits per 
physical qubit. However, unlike the conventional protocols, the pro-
tocol in refs. 17,26,27 has a drawback that the gates are not completely 
parallelizable, that is, are applicable only to an asymptotically vanish-
ing fraction of the logical qubits at a time. As a result, sequential gate 
implementation is imposed, leading to a polynomially growing time 
overhead17,27. A key open problem in the field of FTQC, originally raised 
in ref. 17, is whether we can resolve this apparent trade-off between the 
space and time overheads in FTQC within the law of quantum mechan-
ics. Simultaneously with the constant space overhead, it would be 
critical to achieve a strictly less time overhead than polynomials of 
arbitrarily small degree, so as not to ruin a large class of useful quantum 
accelerations including polynomial as well as exponential ones.

The establishment of a low-overhead protocol by resolving such 
a trade-off has been challenging as long as existing techniques have 
been used. While the existing constant-space-overhead protocol17,26,27 
implements gates by gate teleportation, error suppression requires a 
large code block, and its non-parallelizability arises from the fact that 
the state preparation required for gate teleportation has been hard for 
such a large code without relying on conventional concatenated codes 
after all17. Without such concatenated codes, non-fault-tolerant state 
preparation, for example, by using the protocols in refs. 32–34, would 
suffer from more errors as the code becomes larger, which is infeasible 
on large scales. However, because concatenated codes incur a growing 
space overhead, complete parallelism in the fault-tolerant state prepa-
ration has been impossible within constant space overhead17. Another 
gate implementation method for quantum LDPC codes may be to use 
code deformation35, but it is unknown whether such an implementa-
tion can be faster than gate teleportation owing to the extra runtime of 
the code deformation. A more recent method based on lattice surgery 
requires many auxiliary qubits for complete parallelization over all the 
logical qubits, which ruins the constant space overhead36. Note that, 
for another family of quantum LDPC codes, that is, hyperbolic toric 
codes37, parallel gate implementation may be possible38,39. However, 
it is unknown whether these codes can feasibly realize FTQC owing to 
the lack of an efficient decoder to decide how to recover from many 
errors within a feasible runtime17,40. Linear-distance quantum LDPC 
codes with non-vanishing rates have been developed more recently41–43, 
but no time-efficient gate implementation method is known for these 
families of codes.

Even more problematically, to prove the existence of a threshold 
for fault tolerance, the analysis of the existing constant-space-overhead 
protocol assumes that classical data processing, which is used in the 
decoder and the gate teleportation, for example, can be performed 
instantaneously in zero time17. In practice, physical experiments 
towards realizing FTQC are indeed challenged by the fact that imple-
mentation of classical computation has non-zero runtime that grows on 
large scales44,45. However, with finite classical computational resources 
incurring such growing runtime, the time overhead and even the exist-
ence of a threshold of the existing constant-space-overhead protocol 
are still unknown.

To address these problems, in this Article, we develop an alterna-
tive fault-tolerant protocol that simulates a O(poly(M))-size circuit 
within a constant space overhead O(1) and only a quasi-polylogarithmic 
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results hold for concatenation of quantum Hamming codes with  
parameter rl ≈ log(l), which would be beneficial for reducing time 
overhead compared with rl: = l + 2 while a constant factor in the space 
overhead may become larger (see Supplementary Section F for details). 
Even more generally, concatenation of a growing sequence of, for 
example, [[2rl − 1, 2rl − 1 − 2trl, 2t + 1]]  quantum Bose–Chaudhuri– 
Hocquenghem codes (t ≧ 1)48, that is, CSS codes of classical Bose–
Chaudhuri–Hocquenghem codes over their dual codes, can also pro-
vide a family of concatenated codes with non-vanishing rate using  
the same code parameter rl as ours, which can have larger distance  
than quantum Hamming codes and thus have a potential advantage  
in faster error suppression as L increases. However, apart from con-
structing the code, our crucial contribution is the explicit construction 
of the overall fault-tolerant protocol for 𝒬𝒬(L) and the analysis of the 
threshold and the runtime, as shown in the following. The general 

protocol construction for other concatenated codes with a 
non-vanishing rate is left for future work, but our results provide a 
fundamental design principle for such protocols.

Efficient decoder
Remarkably, 𝒬𝒬(L) has an efficient decoder even though 𝒬𝒬(L) is not a 
quantum LDPC code. Efficient decoders are vital for the feasibility of 
FTQC yet challenging to construct in general. Indeed, no candidate 
among quantum LDPC codes for constant-space-overhead FTQC  
had such an efficient decoder until later research constructed a  
sufficiently efficient decoder for the quantum expander code17,26,27.

In our protocol, for each level l, 𝒬𝒬rl  has an efficient decoder. In 
particular, the efficient decoder for the classical Hamming code 𝒞𝒞rl  
(ref. 46) can be used to correct one bit-flip error and one phase-flip 
error from syndromes of Z and X stabilizer generators, respectively. 
The decoder for 𝒬𝒬(L) runs efficiently by recursively using the decoder 
for 𝒬𝒬rl as in the conventional hard-decision decoder for concatenated 
codes. With parallel classical computation, we can run this decoder  
in O(log(Nrl ))  time at each level l, which will turn out to be polylog
arithmic in the problem size M and hence small compared with the 
O(poly(M)) depth of the original circuit. Remarkably, our threshold 
analysis shows that, even if the decoder has this non-zero runtime, our 
fault-tolerant protocol provably has a threshold.

Fault-tolerant protocol
Using this concatenated code 𝒬𝒬(L) with the non-vanishing rate, we con-
struct a fault-tolerant protocol. To solve a family of computational 
problems with inputs represented by an M-bit string (i1, …, iM) ∈ {0, 1}M, 
we use a W(M)-qubit D(M)-depth original circuit, where the width  
and the depth are polynomially bounded, that is, W(M) = O(poly(M)) 
and D(M) = O(poly(M)). To input (i1, …, iM) into the original circuit,  
we use an M-qubit initial state ⊗M

m=1 |im⟩ = (⊗M
m=1X

im ) |0 ⟩⊗M , and the 
rest of the original circuit is determined by M independently of the 
input. The original circuit is written in terms of a gate set of Clifford 
gates X, Y, Z, H, S, CNOT and CZ, and non-Clifford gates Ry(±π/4)  
(see Methods for details of the notations on gates), starting from 
(⊗M

m=1 |im⟩) ⊗ |0 ⟩⊗(W(M)−M)  and ending with measurements of all  
qubits in Z basis. Our task is to simulate the original circuit by sampling 
from its output probability distribution within a given error ϵ in  
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Fig. 2 | A comparison of the space overheads between our code 𝒬𝒬(L) and the 
concatenated seven-qubit code. The overhead factor, that is, the inverse of the 
rate R(L), of the concatenated code 𝒬𝒬(L) developed here (blue circles) and that of 
the [[7L, 1, 3L]] concatenated seven-qubit code (orange crosses) at concatenation 
level L. The overhead factor of 𝒬𝒬(L) converges to a constant η∞ < 36 (horizontal 
line), saturated around L = 8 (vertical line), while that of the concatenated 
seven-qubit code diverges to infinity exponentially in L.

Level-3 register
(logical qubits)

Level-2 registers

Encode

Level-1 registers

Level-0 registers
(physical qubits) Qubit

Qr2 : [[15, 7, 3]]

Register

Block of quantum Hamming code
Qr1 : [[7, 1, 3]]

Qr3 : [[31, 21, 3]]
Qr3 : [[31, 21, 3]]
Qr3 : [[31, 21, 3]]
Qr3 : [[31, 21, 3]]
Qr3 : [[31, 21, 3]]
Qr3 : [[31, 21, 3]]
Qr3 : [[31, 21, 3]]

Fig. 1 | The construction of the concatenated code 𝒬𝒬(L). We concatenate a 
sequence of L different quantum Hamming codes 𝒬𝒬r1 , 𝒬𝒬r2 ,… ,𝒬𝒬rL (L = 3 here). 
For each concatenation level l ∈ {L, L − 1, …, 1}, recursively, qubits (circles) in a 
level-l register (blue rectangle) are encoded into those of Nrl  level-(l − 1) registers 

using K(l−1) code blocks of 𝒬𝒬rl  (rectangles with dotted red border) in a grid pattern. 
The distance-3 code 𝒬𝒬rl  can correct one error per code block, and this pattern is 
designed so that we can recover the encoded level-l register even if all qubits in 
one of the level-(l − 1) registers suffer from correlated errors.
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the total variation distance. On the basis of the original circuit, our 
protocol recursively defines a level-l circuit (l ∈ {L, L − 1, …, 0}) com-
posed of level-l elementary operations acting on level-l registers,  
where a level-0 circuit is a circuit on physical qubits. The set of level-l 
elementary operations consists of a measurement operation, H-, CNOT-, 
CZ-, and Pauli-gate operations, initial-, Clifford- and magic-state prep-
aration operations, and a wait operation (Methods). By combining 
these elementary operations, our protocol performs Clifford unitaries 
on two registers and non-Clifford Ry(±π/4) gates on each register via 
gate teleportation.

Figure 3 illustrates the recursive construction of the circuits.  
We first compile the original circuit into a level-L circuit, where  
the required concatenation level L is determined depending on M 
and ϵ. For each l = L, L − 1, …, 1, we further compile the level-l circuit 
into the corresponding level-(l − 1) circuit using level-l gadgets, that 
is, level-(l − 1) circuits to implement level-l elementary operations. 
The construction here is different from the conventional protocol 
with concatenated codes1 in that the circuits here are composed of 
elementary operations acting on registers rather than qubits, and that 
the procedure for converting a level-l circuit to a level-(l − 1) circuit 
depends on l. Unlike the conventional protocol, errors in the multiple 
qubits belonging to the same register may be highly correlated in  
our construction, and thus, we use the register as a unit in place of the 
qubit. The gadgets used in this compilation are designed to satisfy 
appropriate conditions for fault tolerance. To keep the overall space 
overhead constant, we design each level-l gadget to use only a constant 
number of additional auxiliary level-(l − 1) registers per encoded level-l 
register. See Methods for details of our construction.

Provable existence of a threshold
The novelty of our protocol is to use the concatenated code 𝒬𝒬(L)  
constructed from a sequence of different codes 𝒬𝒬r1 ,… , 𝒬𝒬rL. However, 
the growth of code size in this sequence may make the existence of a 

threshold non-trivial. Conventional proofs of the threshold theorem 
for concatenated codes assume concatenation of the same code1. In 
contrast, a level-l register for 𝒬𝒬(l) is encoded into a growing number 
Nrl of level-(l − 1) registers. We nevertheless prove that a threshold exists 
even if the number of level-(l − 1) elementary operations per level-l 
gadget grows polynomially O(poly(Nrl )) , which is the case in our  
gadgets. Remarkably, our analysis deals with the setting where the 
runtime of classical computation in the decoder may also grow. The 
threshold analysis of the existing constant-space-overhead protocol 
has assumed that the decoder must run in zero time at arbitrarily large 
scales17, and whether constant-space-overhead FTQC is possible with 
such growth of the non-zero runtime of classical computation has been 
unknown. After all, large-scale FTQC needs a large-size quantum LDPC 
code for error suppression, but if we wait for a growing runtime of the 
decoder for the large-size quantum LDPC code, physical qubits suffer 
from more errors during waiting. This situation violates the essential 
assumption for the existence of a threshold, that is, having a constant 
physical error rate between performing the error corrections. As a 
result, the protocols for the quantum LDPC codes may fail to correct 
a general class of errors on large scales (see Supplementary Section E 
for details). Note that the problem of requiring the non-growing runt-
ime of classical computation persists even in the conventional proto-
cols using quantum LDPC codes such as the two-dimensional (2D) 
surface code, where decoders must process the stream of syndrome 
data at the rate it is received, even if the code distance grows50–54. By 
contrast, our protocol based on the concatenated code 𝒬𝒬(L) establishes 
how we can perform constant-space-overhead FTQC even with finite 
computational resources.

In our setting, we assume that the circuit on physical qubits  
undergoes a conventional local stochastic error model, where adver-
sarial and correlated errors may occur at faulty locations of operations 
in the level-0 circuit at a physical error rate p0 > 0, but the probability 
of s locations simultaneously having the errors is bounded by ps0  
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Fig. 3 | Compilation in our fault-tolerant protocol. We compile the original 
circuit (top left) into a level-L circuit composed of level-L elementary operations 
acting on level-L registers (top right). Two-register Clifford gates and one-register 
Ry(±π/4) gates are implemented by a combination of elementary operations via 
gate teleportation, which are abbreviated as white boxes indicating UC and 
URy(±π/4). For each l = L, L − 1, …, 1, we further compile the level-l circuit into the 
corresponding level-(l − 1) circuit by substituting each level-l elementary 

operation into the corresponding level-l gadget and inserting level-l error-
correction gadgets in between (bottom). Unlike conventional fault-tolerant 
protocols with concatenated codes, the number of level-(l − 1) elementary 
operations in level-l gadgets may depend on l. We design our protocol in such a 
way that the level-0 circuit on physical qubits achieves the constant space 
overhead and the quasi-polylogarithmic time overhead compared with the 
original circuit.
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(refs. 1,17). We call each level-l elementary operation in a level-l circuit 
a level-l location. Then, our analysis proves that faults at level-L loca-
tions in the level-L circuit of our protocol also occur according to the 
local stochastic error model. Moreover, we prove the following proposi-
tion on error suppression, which scales doubly exponentially in L in 
the same way as the conventional concatenated codes1 (see Methods 
for details):

Proposition 1: error suppression with concatenation of quantum 
Hamming codes. Under the local stochastic error model, we have an 
explicit construction of a fault-tolerant protocol using the concate-
nated code 𝒬𝒬(L) with a non-zero threshold constant pth > 0 such that,  
if the physical error rate is below the threshold p0 < pth, then our  
protocol using the concatenated quantum Hamming code 𝒬𝒬(L)  
can suppress the logical error rate as pL = exp(−O(2L)).

A practical threshold is achievable with minor modifications to 
our protocol. For example, the same threshold as the surface code is 
achievable by encoding each level-0 qubit of 𝒬𝒬(L) for our protocol  
into the logical qubit of a constant-size surface code at a logical error 
rate below the threshold constant pth here, which can take the advan-
tage of the surface code in tolerating biased noise on physical 
qubits55–58. Note that, even if the noise on physical qubits is biased, the 
logical error is not necessarily biased, and thus we do not have to modify 
our protocol for biased noise in this case. Compared with conventional 
protocols, the concatenation of the surface code and our code 𝒬𝒬(L)  
has merits due to the constant space overhead, potential speedup  
of decoders on large scales and provable existence of a threshold  
even with non-zero-time decoders.

Space and time overheads
The significance of our protocol is to simultaneously achieve the  
constant space overhead and the quasi-polylogarithmic time  
overhead compared with the original circuit, as shown in the following 
proposition (see Methods for details):

Proposition 2: overhead achieved by concatenation of quantum 
Hamming codes. Under the local stochastic error model, we have an 
explicit construction of a fault-tolerant protocol using the concate-
nated code 𝒬𝒬(L)  with a concatenation level L = ϴ(log(log(M/ϵ)))   
to simulate any W(M)-qubit D(M)-depth original circuit within error 
ϵ > 0 in total variational distance using at most W(M) × O(1) physical 
qubits and D(M) × exp(O(log2(log(M/ϵ))))  runtime in terms of the  
depth of the fault-tolerant circuit, where W(M) = O(poly(M)) and 
D(M) = O(poly(M)).

These overheads include those for preparing the auxiliary  
states required for the gate teleportation and the error correction. 
Unlike the previous analysis of the existing constant-space-overhead 
protocol17,26,27, the runtime also includes wait operations to wait for 
non-zero-time classical computations such as ones for the decoder 
and the gate teleportation.

As long as one uses the existing techniques for the constant-space- 
overhead protocol17,26,27, it remains challenging to achieve these space 
and time overheads simultaneously. Indeed, the existing protocol17,26,27 
relies on conventional concatenated codes in preparing the auxiliary 
states for gate teleportation and hence cannot achieve the parallel gate 
implementation on all logical qubits within constant space overhead. 
Then, sequential gate implementation incurs a polynomially large  
time overhead in implementing parallel gates of the original circuit. 
By contrast, our protocol is designed to attain complete parallelizabil-
ity in the gate teleportation to apply the gates to all logical qubits of 
𝒬𝒬(L) at a time. All the auxiliary states required for the gate teleportation 
can be prepared in parallel within the constant space overhead  
owing to the non-vanishing rate of 𝒬𝒬(L). Consequently, our protocol is 
advantageous in terms of the time overhead compared with the existing 
constant-space-overhead protocol17,26,27.

Tolerance for architectural overheads
Remarkably, our analysis also shows that a threshold would exist 
even with any polynomially growing architectural time overhead 
O(poly(N(l))) in the code size at each concatenation level l, which may 
be imposed by restrictions such as nearest-neighbour interactions 
on 2D geometry, limited classical computational resources for the 
decoder and insufficient parallelization in preparing auxiliary states 
used for gate teleportation and error correction. The suppression of 
the logical error rate is much faster than the growth of the code size, 
and thus, the concatenated codes can tolerate the time overhead at 
higher concatenation levels by just waiting by performing identity 
gates, as in our protocol. This unique property of the concatenated code 
contrasts with the fact that quantum LDPC codes have to be decoded at 
least once in a constant time to avoid the accumulation of errors. Thus, 
our protocol is expected to be implementable on various architectures 
with minor adaptation.

For example, one can rewrite fault-tolerant protocols with concat-
enated codes into those respecting the 2D (or even one-dimensional) 
geometry by well-established procedures in refs. 9,59–61, and our 
analysis shows that a threshold exists even with a polynomial time 
overhead in such rewriting. Note that, when the original circuit includes 
two-qubit gates on arbitrary pairs of qubits, any protocol on such 2D 
architectures to simulate the original circuit unavoidably incurs a poly-
nomially long time overhead (see Supplementary Section A for details). 
Moreover, the constant space overhead would not be achievable on a 
single fully 2D chip62. Hence, it is essential to investigate architectures 
with multiple 2D layers, such as that in ref. 63, or with full connectivity, 
such as photonics. We leave the investigation of practical architectures 
to implement our protocol for future research.

We also leave exact evaluation of the threshold pth for future 
research. This will require numerical simulation taking the architectural 
overhead into account, as the analytical bound is not usually tight. In 
such numerical simulation, comparison with architectural proposals 
for the constant-space-overhead protocol with quantum LDPC codes63 
may also be an interesting direction. However, importantly, the above 
merit of our protocol in tolerating architectural constraints such as 
non-constant-time decoders is not known to hold for the existing 
constant-space-overhead protocol with the quantum LDPC codes. We 
expect that such numerical simulation will also be able to clarify the 
effects of the architectural constraints that appear in practice.

Conclusion and outlook
We have constructed a protocol for FTQC achieving constant space 
overhead and quasi-polylogarithmic time overhead simultaneously. 
A crucial technical development is to use a concatenated code con-
structed from a growing sequence of quantum Hamming codes. Our 
technique leads to a non-vanishing rate, the existence of an efficient 
decoder, the space-saving and fast protocol for simulating univer-
sal quantum computation and the provable existence of a threshold 
for doubly exponential error suppression as we increase the concat-
enation level. Progressing beyond previous studies of the existing 
constant-space-overhead protocol based on quantum LDPC codes17,26,27, 
we take into account non-zero runtime of classical computation in 
proving these results. Our results are fundamental for realizing FTQC 
feasibly within constant space overhead and yet short time overhead 
with parallelization. Remarkably, this achievement is made possible 
with the technique of code concatenation, which opens a promising 
route for low-overhead FTQC.
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Methods
We first summarize our notation and then present the construc-
tion of our fault-tolerant protocol, the derivation of the existence 
of a threshold and the analysis of the space and time overheads. See  
Supplementary Sections C–F for further details.

Notation
For a qubit ℂ2, the Z basis is denoted by {|0⟩ , |1⟩}  and the X basis by 
{|±⟩ ∶= (1/√2)(|0⟩ ± |1⟩)}. Matrix elements are represented in terms of the 
Z basis. By convention of ref. 2, we use the following notation:

X = (
0 1

1 0
) , (1)

Z = (
1 0

0 −1
) , (2)

Y = (
0 −i

i 0
) ∝ XZ, (3)

H = 1
√2

(
1 1

1 −1
) , (4)

S = (
1 0

0 i
) , (5)

CNOT =

⎛
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟
⎟
⎟
⎟
⎠

, (6)

CZ =

⎛
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟
⎟
⎟
⎟
⎠

, (7)

Ry(θ) = (
cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)
) . (8)

The identity operator is denoted by

= (
1 0

0 1
) . (9)

In the same way as referring to a running time exp(O(logc(M)))   
for fixed c > 0 as a quasi-polynomial time in M, we call

exp (O(logc(log(M)))) (10)

a quasi-polylogarithmic time. A quasi-polylogarithmic time  
with c  > 1  may be larger than a polylogarithmic time 
exp(O(log(log(M)))) = O(polylog(M)). However, a quasi-polylogarithmic 
time for any c > 0 is much smaller than a polynomial time, that is, 
exp(O(log(M))) = O(poly(M)) = O(Mα) , even for an arbitrarily small  
degree α > 0 of the polynomial.

Construction of fault-tolerant protocol
In our fault-tolerant protocol, we use level-l elementary operations to 
write a level-l circuit for each l ∈ {L, L − 1, …, 0}. The set of level-l 

elementary operations consists of a level-l measurement operation, 
level-l H-, CNOT-, CZ-, and Pauli-gate operations, level-l initial-, Clifford- 
and magic-state preparation operations, and a level-l wait operation. 
The measurement operation implements measurements in the  
Z basis of all qubits in a level-l register. The H-, CNOT-, CZ- and Pauli-gate 
operations implement H, CNOT and CZ gates on all qubits in level-l 
registers and the tensor product of any combination of Pauli gates on 
the qubits in a level-l register. The initial-state preparation operation 
prepares a level-l register in |0 ⟩⊗K

(l)
. To assist implementing any given 

two-register Clifford unitary UC on the 2K(l) qubits in two level-l  
registers, the Clifford-state preparation operation prepares four level-l 
registers B1, B2, B3 and B4 in

( B1B2 ⊗ UB3B4
C ) |Φ(l) ⟩

B1B2B3B4 , (11)

where |Φ(l) ⟩
B1B2B3B4 = |Φ ⟩B1B3 ⊗ |Φ ⟩B2B4 , and |Φ ⟩BjBj′ ∝ ∑2K(l) −1

m=0 |m ⟩Bj
⊗|m ⟩Bj′ for ( j, j′) ∈ {(1, 3), (2,4)} is a maximally entangled state between 
Bj and Bj′. To assist implementing any given unitary URy(±π/4)  in the  
form of a tensor product of Ry(π/4), Ry(−π/4) and  on the K(l) qubits  
in a level-l register, the magic-state preparation operation prepares 
two level-l registers in

(Ry(π/4) |0⟩)
⊗K(l) ⊗ (Ry(π/4) |0⟩)

⊗K(l) . (12)

A wait operation is a Pauli-gate operation of ⊗K(l).
Using these operations in combination, we implement UC and 

URy(±π/4) for a level-l circuit by gate teleportation. Note that H-, CNOT- 
and CZ-gate operations in our protocol perform the gates on all qubits 
in the registers simultaneously, and we use UC for implementing all the 
other Clifford gates, for example, a single-qubit H gate in one of the 
two registers (while acting as the identity gate on the other register), 
and a CNOT gate on a specific pair of qubits in the two registers. Indeed, 
UC is not limited to a one- or two-qubit Clifford gate but may represent 
an arbitrary sequence of Clifford gates acting on the 2K(l) qubits in two 
level-l registers as a single Clifford unitary. Similarly, URy(±π/4) is not 
necessarily a single-qubit non-Clifford gate but can apply non-Clifford 
gates on any number of qubits in a level-l register. In particular, a level-l 
two-register Clifford gate UC in our protocol is implemented by means 
of gate teleportation22–24, assisted by the auxiliary state ( B1B2 ⊗ UB3B4C )
|Φ(l) ⟩

B1B2B3B4  prepared by the level-l Clifford-state preparation  
operation, along with other level-l gate and measurement operations. 
The correction of byproducts in the gate teleportation is performed 
by level-l Pauli-gate operations. Regarding level-l URy(±π/4), the gate 
teleportation for URy(±π/4)  is assisted by an auxiliary magic state 
(Ry(π/4) |0⟩)

⊗K(l) prepared by the level-l magic-state preparation opera-
tion, and also an auxiliary state |0⟩⊗K

(l)
 prepared by the level-l initial-state 

preparation operation, along with other level-l gate and measurement 
operations. To apply Ry(±π/4) in URy(±π/4) to a desired subset of qubits 
in a register, we prepare the required auxiliary state in the tensor  
product of Ry(π/4) |0⟩  and |0⟩ by applying single-qubit SWAP gates 
between (Ry(π/4) |0⟩)

⊗K(l)  and |0⟩⊗K
(l)

 using the level-l two-register  
Clifford gate. Then, assisted by this auxiliary state, we perform the gate 
teleportation. The correction of byproducts, which are single-qubit 
Clifford gates on a level-l register, is performed by the level-l two- 
register Clifford gate acting trivially on another auxiliary level-l 
register.

To simulate a level-l circuit at each level l ∈ {L, …, 1}, we construct 
a level-l gadget corresponding to each level-l elementary operation, 
that is, a level-(l − 1) circuit for simulating the elementary operation on 
encoded level-l registers. Apart from these level-l gadgets, we use a 
level-l error-correction gadget, a level-(l − 1) circuit for correcting errors 
on one of the Nrl  level-(l − 1) registers for an encoded level-l register. 
For the existence of a threshold, each level-l gadget must be fault  
tolerant. That is, roughly speaking, even if one of the level-(l − 1)  
locations in the gadget has a fault, the resulting error should be  
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correctable using the decoder of 𝒬𝒬rl  at the end of the gadget (see  
Supplementary Section D for the precise definition). This definition 
of fault-tolerant gadgets in our protocol is a suitable modification of 
the conventional definition for the concatenated codes1 so that we can 
prove the existence of a threshold by applying the conventional argu-
ment in ref. 1 to our protocol. Using the fault-tolerant level-l gadgets, 
we convert a level-l circuit into the corresponding level-(l − 1) circuit 
by replacing each level-l elementary operation with the corresponding 
level-l gadget, followed by inserting the level-l error correction  
gadgets between all pairs of adjacent level-l elementary operations. 
Repeating this conversion recursively for l ∈ {L, …, 1} yields a level-0 
circuit, which leads to a fault-tolerant circuit on physical qubits to 
simulate the original circuit.

In the following, we sketch our construction of level-l gadgets  
used for the fault-tolerant protocol. See Supplementary Section D for 
further details. Note that gate implementations for some classes of 
CSS codes with multiple logical qubits have also been discussed in  
refs. 17,64, but the main contribution of our work is to present the 
gadgets explicitly for our code 𝒬𝒬(l) so that we can prove the existence 
of a threshold and bound the space and time overheads rigorously for 
our fault-tolerant protocol.

We implement the level-l measurement gadget by performing 
level-(l − 1) measurement operations for all the level-(l − 1) registers 
and then calculating bit values of the outcome by a decoder, using  
the logical Z operator for each of the K(l) logical qubits in the  
encoded level-l register. We let ZK(l) label this Z-basis measurement with 
the K(l)-bit outcome. The fault tolerance follows from transversality.

We implement the H-, CNOT- and CZ-gate gadgets by applying 
level-(l − 1) H-, CNOT- and CZ-gate operations, respectively, to all 
level-(l − 1) registers transversally. We implement the Pauli-gate gadget 
by level-(l − 1) Pauli-gate operations to apply the tensor product of 
Pauli gates representing the logical Pauli operators to the level-(l − 1) 
registers transversally. The wait gadget is a special case of the Pauli-gate 
gadget to apply the identity gate. The fault tolerance follows from 
transversality.

The level-l initial-state preparation gadget is implemented by 
transforming states |0 ⟩⊗K

(l−1)
 prepared by the level-(l − 1) initial- 

state preparation operations into logical |0 ⟩⊗K
(l)

 by a level-(l − 1) stabi-
lizer circuit in a non-fault-tolerant way65–67, followed by verification 
with post-selection. For the verification, we prepare another logical 
|0 ⟩⊗K

(l)
, and using this auxiliary |0 ⟩⊗K

(l)
, we measure the logical Z opera-

tors and the Z stabilizer generators of 𝒬𝒬rl. If no logical X error is detected 
from this measurement on the logical |0 ⟩⊗K

(l)
 prepared in this first run, 

that is, in the case of success in the verification, then the gadget outputs 
this state. Otherwise, the gadget discards the prepared state and 
repeats the same level-(l − 1) stabilizer circuit to output the logical 
|0 ⟩⊗K

(l)
 prepared in this second run without verification. This repetition 

makes the gadget fault tolerant while at most doubling the depth of 
the gadget.

Assisted by the registers in logical states |0⟩⊗K
(l)

 prepared by the 
level-l initial-state preparation gadgets, the level-l error correction 
gadget is implemented here in a fault-tolerant way by Knill’s error cor-
rection22,23 based on quantum teleportation68. The fault tolerance 
follows from transversality. Unlike the quantum LDPC codes using an 
auxiliary physical qubit per extracting each syndrome bit, the weight 
of stabilizer generators does not matter for the feasibility of error cor-
rection with the concatenated codes. In particular, using the above 
technique for the concatenated codes, we can prepare encoded code-
words |0 ⟩⊗K

(l)
 in a fault-tolerant way, and using this fault-tolerant state 

preparation to perform Knill’s error correction, we can obtain all the 
syndrome bits simultaneously from the measurement outcomes for 
quantum teleportation, without using the auxiliary physical qubit per 
syndrome.

Note that we could also use Steane’s error correction here1, but 
Knill’s error correction may have merits in our protocol since Knill’s 

error correction can be implemented in the same way as the gate  
teleportation used for implementing the level-l two-register  
Clifford gates. An additional advantage of Knill’s error correction over 
Steane’s error correction is its ability to correct leakage errors23, while 
the error model in our analysis does not explicitly consider the leakage 
errors for simplicity.

The level-l Clifford-state preparation gadget is implemented  
by non-fault-tolerant state preparation followed by verification,  
similar to the level-l initial-state preparation gadget. In particular,  
we first transform logical states |0⟩⊗4K(l)  prepared by the level-l 
initial-state preparation gadgets into logical ( ⊗ UC) |Φ(l) ⟩  by a 
level-(l − 1) stabilizer circuit in a non-fault-tolerant way65. Then, we 
perform verification with post-selection. In the verification, we let  
the state be in the code space of 𝒬𝒬rl using the level-l error-correction 
gadgets. Then, as ( ⊗ UC) |Φ(l) ⟩  is a stabilizer state, we measure  
the logical stabilizer operators for ( ⊗ UC) |Φ(l) ⟩ (that is, multi-qubit 
Pauli operators) using the controlled Pauli gates implemented by  
the gate teleportation. To make the gadget fault tolerant, we  
design the gadget in such a way that an error on the auxiliary registers 
used as the control qubits for these controlled Pauli gates should  
not propagate to ( ⊗ UC) |Φ(l) ⟩  conditioned on the post-selection, 
using the technique of flag qubits69. Since we concatenate the  
distance-3 quantum Hamming codes, the verification can be made 
fault tolerant by adding one flag qubit per extraction of logical  
stabilizer operators as in ref. 69. Note that flag qubit techniques in  
refs. 70,71 may also be used for potential generalization to conca
tenating higher-distance codes. If no error is detected from  
measuring the logical stabilizer operators and the flag qubits,  
that is, in the case of success in the verification, then the gadget  
outputs the logical ( ⊗ UC) |Φ(l) ⟩ prepared in this first run. Otherwise, 
the gadget discards the prepared state and repeats the same level-(l − 1) 
stabilizer circuit to output the logical ( ⊗ UC) |Φ(l) ⟩ prepared in this 
second run without verification. In the same way as the initial-state 
preparation gadget, the repetition at most doubles the depth of  
the gadget.

The level-l magic-state preparation gadget is also implemented 
by non-fault-tolerant state preparation followed by verification. First, 
we prepare states (Ry(π/4) |0⟩)

⊗2K(l)  and |0⟩⊗2(N(l)−K(l)) by the level-(l − 1) 
magic- and initial-state preparation operations, respectively, and 
transform them into logical (Ry(π/4) |0⟩)

⊗K(l) ⊗ (Ry(π/4) |0⟩)
⊗K(l)  by a 

level-(l − 1) stabilizer circuit for encoding, that is, for transforming the 
magic states into the same logical states in a non-fault-tolerant way65. 
Then, we perform the verification with post-selection by ensuring the 
state in the code space of 𝒬𝒬rl and measuring the logical stabilizer opera-
tors. This magic-state preparation does not use magic state distilla-
tion72,73 but instead uses verification to reduce errors. In particular, 
since (Ry(π/4) |0⟩) is stabilized by H, that is, H(Ry(π/4) |0⟩) = Ry(π/4) |0⟩, 
we implement controlled H gates for measuring the logical stabi
lizer operators for (Ry(π/4) |0⟩)

⊗K(l) ⊗ (Ry(π/4) |0⟩)
⊗K(l), using techniques  

similar to state-of-the-art low-overhead magic-state preparation  
protocols in refs. 74–76. To make the gadget fault tolerant, similar to 
the level-l Clifford-state preparation gadget, the level-l magic- 
state preparation gadget is also designed in such a way that an error on 
the auxiliary registers used as the control qubits for the controlled  
H gates should not propagate to (Ry(π/4) |0⟩)

⊗K(l) ⊗ (Ry(π/4) |0⟩)
⊗K(l)   

conditioned on the post-selection, using the technique of flag  
qubits69. If no error is detected from measuring the logical  
stabilizer operators and the flag qubits, that is, in the case of  
success in the verification, then the gadget outputs the logical 
(Ry(π/4) |0⟩)

⊗K(l) ⊗ (Ry(π/4) |0⟩)
⊗K(l) prepared in this first run. Otherwise, 

the gadget discards the prepared state and repeats the same level- 
(l − 1) circuit to output the logical (Ry(π/4) |0⟩)

⊗K(l) ⊗(Ry(π/4) |0⟩)
⊗K(l)   

prepared in this second run without verification. In the same way as 
the initial- and Clifford-state preparation gadgets, the repetition at 
most doubles the depth of the gadget.
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With a synthesis of stabilizer circuits77,78, we show that all the  
level-l gadgets here have at most O(poly(Nrl ))  depths, including the  
wait operations to wait for classical computation. Consequently, each 
level-l gadget has at most O(poly(Nrl ))  locations, even if we take into 
account wait operations to wait for non-zero-time classical computa-
tion such as ones in the decoder and the gate teleportation.

Analysis of threshold existence and improvement
We sketch the proof of the existence of a threshold in our fault-tolerant 
protocol and discuss how to achieve a practical threshold with minor 
protocol modifications. See Supplementary Section E for further 
details.

As in the conventional proof for the concatenated code, the proof 
of the existence of a threshold in our protocol is given by bounding a 
logical error rate at a higher concatenation level by that at a lower level, 
based on counting the number of locations in extended rectangles 
(ExRecs)1 (see also the figure illustrating ExRecs in Supplementary 
Section E). Given a level-l circuit for l ∈ {1, …, L}, a level-l ExRec refers 
to a part of the corresponding level-(l − 1) circuit that includes a level-l 
gadget at each level-l location and its adjacent level-l error-correction 
gadgets1. For the distance-3 code such as the code used here, a level-l 
ExRec is said to be good if the ExRec contains at most one faulty 
level-(l − 1) location, and bad otherwise. Intuitively, a good ExRec can 
implement the logical operation correctly, but a bad ExRec may not. 
Thus, to bound the logical error rate, it suffices to evaluate the prob-
ability of having a bad ExRec using the number of locations therein.

In particular, let A(l) be the maximum number of pairs of level- 
(l − 1) locations in a level-l ExRec, where we take the maximum over  
all the possible level-l ExRecs. Since all the level-l gadgets used  
in our protocol have O(poly(Nrl ))  level-(l − 1) locations, we have 
A(l) = O(poly(Nrl )) = exp(O(l)). For simplicity of presentation, let α > 0 
denote a constant factor such that

A(l) ≦ 2αl (13)

for all l ≧ 1. Crucially, our definition of a gadget being fault tolerant is 
made analogous to the conventional definition in ref. 1, so that the same 
argument as in ref. 1 is applicable to our protocol. When a level-(l − 1) 
circuit simulates a level-l circuit, this argument leads to the fact that, 
if the level-(l − 1) circuit undergoes the local statistic error model, the 
level-l circuit also does. Then, let p0 be the physical error rate of level-0 
locations, and pl denote the logical error rate of level-l locations at each 
level l. The conventional argument for the threshold theorem proves 
that the logical error rates are upper bounded by the probability  
of having two errors in an ExRec, that is, pl ≦ A(l)p2l−1 for each l (ref. 1), 
which leads to pl ≦ 2αlp2

l−1 . Using this bound recursively, we can  
prove that the logical error rate pL is bounded by pL ≦ (22αp0)

2L /22α ,  
as shown in Supplementary Section E. This shows the existence of a 
threshold pth ≧ 2−2α > 0 such that the logical error rate pL ≦ (p0/pth)

2L
pth 

can be suppressed doubly exponentially in L if the physical error  
rate satisfies p0 < pth. Note that the same argument as ours for the 
threshold existence holds even in cases where the exponent αl of 2αl  
in equation (13) is replaced with poly(l). For example, even if the  
gadgets had O(poly(N(l))) depths due to architectural overhead or 
insufficient parallelization, a threshold would still exist.

Remarkably, a practical threshold is also achievable with minor 
modifications to our protocol. Any quantum code with one logical 
qubit can be concatenated with 𝒬𝒬(L) by using the logical qubit of the 
code in place of each level-0 qubit of 𝒬𝒬(L), as long as the code can imple-
ment required operations for our fault-tolerant protocol at level 0, 
namely preparation of a qubit in |0⟩, a single-qubit measurement in  
the Z basis and the H, S, CNOT, CZ, Pauli and Ry(±π/4) gates. For  
example, we can concatenate the surface code and 𝒬𝒬(L) and replace 
physical operations for our fault-tolerant protocol at concatenation 
level 0 with the corresponding logical operations on the surface code. 

Indeed, the surface code has well-established procedures for imple-
menting logical operations for universal quantum computation79,80. 
Thus, we can use the logical qubit of a constant-size surface code in 
place of each physical qubit of 𝒬𝒬(L) in our protocol. With this modifica-
tion, we can achieve the same threshold as that of the surface code, and 
at the same time attain the constant overhead asymptotically. See  
also Supplementary Section E regarding further options for protocol 
modifications for a better threshold.

We also remark that the above lower bound 2−2α of the non-zero 
threshold value pth, derived here for the rigorous proof of its existence 
is not necessarily close to pth. Thus, it would be misleading to use 2−2α as 
an estimate of pth. To estimate pth, one needs to perform a more precise 
numerical simulation, which is essential for finding out which part of 
the protocol is a bottleneck to be modified for further improvement. 
In addition to the threshold value itself, the achievable logical error 
rate at a finite concatenation level may also be of interest. After all, 
what matters to FTQC in practice is the overall balance of the protocol, 
depending on the specific settings of the error model and the architec-
tural constraint. We leave the numerical simulation of the protocols 
based on concatenating quantum Hamming codes for future work, 
but our theoretical contribution is fundamental for research towards 
such a practical direction.

Analysis of space and time overhead
We sketch the analysis of space and time overheads of our fault-tolerant 
protocol. See Supplementary Section F for further details.

To achieve the constant space overhead, our protocol uses the 
code 𝒬𝒬(L) with a non-vanishing rate of logical qubits per physical  
qubit. However, it is still non-trivial to achieve the constant space 
overhead since the protocol may additionally use auxiliary level-(l − 1) 
registers in level-l gadgets for implementability. Crucially, we design 
each level-l gadget to use only a constant number of auxiliary level-(l − 1) 
registers per encoded level-l register, so as to keep the overall space 
overhead constant

O(1) asM→∞, (14)

including physical qubits used for the auxiliary registers.
To save time overhead, it is essential to realize gates acting on all 

the level-L registers in parallel. At the same time, it is also crucial to 
keep the code size for sufficient error suppression as small as possible. 
After all, a smaller code size leads to a faster preparation of auxiliary 
states for gate teleportation and thus a smaller time overhead in imple-
menting each gate acting on the level-L registers. As our threshold 
analysis shows, the suppression of the logical error rate pL = exp(−O(2L)) 
in our protocol is exponentially faster than the growth of the code size 
N(L) = exp(O(L2)) of 𝒬𝒬(L). By choosing L = Θ(log log(M/ϵ)), we can reduce 
the overall error in simulating the original circuit to ϵ. With this  
choice, the size of each code block 𝒬𝒬(L)  becomes only quasi- 
polylogarithmic N(L) = exp(O(L2)) = exp(O(log2(log(M/ϵ)))). On the other 
hand, each gadget in our protocol is designed to be implementable 
within at most polynomial time in the code size. Therefore, this code 
size leads to the quasi-polylogarithmically small time overhead

exp (O(log2(log(M/ϵ)))) (15)

in implementing the gates and thus in simulating the original circuit. 
This time overhead includes that for preparing auxiliary states for gate 
teleportation and error correction, and also that for waiting for the 
non-zero-time classical computation during the protocol, such as the 
ones required for the decoder and the gate teleportation.

Data availability
The data used in this study are available from the corresponding author 
upon reasonable request.
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