
Nature Physics | Volume 20 | February 2024 | 247–253 247

nature physics

https://doi.org/10.1038/s41567-023-02325-8Article

Time-Efficient Constant-Space-Overhead
Fault-Tolerant Quantum Computation

Hayata Yamasaki    1,2,3  & Masato Koashi    4,5

Scaling up quantum computers to attain substantial speedups over
classical computing requires fault tolerance. Conventionally, protocols for
fault-tolerant quantum computation demand excessive space overheads by
using many physical qubits for each logical qubit. A more recent protocol
using quantum analogues of low-density parity-check codes needs only
a constant space overhead that does not grow with the number of logical
qubits. However, the overhead in the processing time required to implement
this protocol grows polynomially with the number of computational steps.
To address these problems, here we introduce an alternative approach
to constant-space-overhead fault-tolerant quantum computing using a
concatenation of multiple small-size quantum codes rather than a single
large-size quantum low-density parity-check code. We develop techniques
for concatenating different quantum Hamming codes with growing size. As
a result, we construct a low-overhead protocol to achieve constant space
overhead and only quasi-polylogarithmic time overhead simultaneously. Our
protocol is fault tolerant even if a decoder has a non-constant runtime, unlike
the existing constant-space-overhead protocol. This code concatenation
approach will make possible a large class of quantum speedups with feasibly
bounded space overhead yet negligibly short time overhead.

Fault-tolerant quantum computation (FTQC) establishes a way to real-
ize quantum computation, achieving useful computational accelera-
tion compared with conventional classical computation, even in the
presence of intrinsic noise1,2. To solve computational problems for an
M-bit input, quantum computation may exploit a quantum circuit of
polynomial size O(poly(M)) in width and depth. If we run this original
circuit directly on physical qubits, noise-induced errors may destroy
the result of quantum computation. A fault-tolerant protocol reduces
the effect of errors by simulating the original circuit on logical qubits
of a quantum error-correcting code using an adequate number of
physical qubits. Conventionally, using concatenated codes such as
Steane’s seven-qubit code3,4 or quantum low-density parity-check
(LDPC) codes such as the surface code5–7, fault-tolerant protocols can
arbitrarily suppress the error rate on logical qubits if that on physical

qubits is below a certain threshold5,8–16. However, error suppression
in the conventional protocols requires a growing ratio of the number
of physical qubits per logical qubit, that is, a space overhead17, which
scales polylogarithmically in M and diverges to infinity. In practice, the
number of physical qubits available for a quantum device is severely
limited, and the space overhead has been a major obstacle to realizing
quantum computation18–20.

The fault-tolerant protocols also require extra runtime for imple-
menting logical quantum gates in terms of the circuit depth, that is,
a time overhead17. A class of conventional protocols can achieve a
polylogarithmic time overhead with transversal implementation of
Clifford gates and gate teleportation of non-Clifford gates1,2,21–25. The
gate teleportation is assisted by auxiliary qubits that are to be prepared
in fixed logical quantum states in a fault-tolerant way while executing

Received: 19 September 2022

Accepted: 7 November 2023

Published online: 16 January 2024

 Check for updates

1Department of Physics, Graduate School of Science, University of Tokyo, Tokyo, Japan. 2Institute for Quantum Optics and Quantum Information,
Austrian Academy of Sciences, Vienna, Austria. 3Atominstitut, Technische Universität Wien, Vienna, Austria. 4Department of Applied Physics, Graduate
School of Engineering, University of Tokyo, Tokyo, Japan. 5Photon Science Center, Graduate School of Engineering, University of Tokyo, Tokyo, Japan.

 e-mail: hayata.yamasaki@gmail.com

http://www.nature.com/naturephysics
https://doi.org/10.1038/s41567-023-02325-8
http://orcid.org/0000-0003-3521-831X
http://orcid.org/0000-0002-4518-1461
http://crossmark.crossref.org/dialog/?doi=10.1038/s41567-023-02325-8&domain=pdf
mailto:hayata.yamasaki@gmail.com

Nature Physics | Volume 20 | February 2024 | 247–253 248

Article https://doi.org/10.1038/s41567-023-02325-8

time overhead exp(O(polylog(log(M)))) . This time overhead is sub
stantially smaller than polynomials for arbitrarily small degrees, that
is, that shown for the existing constant-space-overhead protocol17,26,27.
This advantage is important in realizing useful polynomial quantum
speedups without polynomially large slowdown. Remarkably, our
analysis of time overhead takes into account the waiting time for the
non-zero-time classical computation during FTQC. The novelty of our
protocol is to use a concatenated code with a non-vanishing rate con-
structed from a sequence of different quantum codes, rather than using
a quantum LDPC code. In the following, we show a non-vanishing rate
for our code, an efficient decoder, an implementation of universal
quantum computation, the existence of a threshold, and the space and
time overheads, followed by the conclusion.

Concatenated code at non-vanishing rate
The crucial technique here for achieving a constant space overhead is
to construct a concatenated code 𝒬𝒬(L) with a non-vanishing rate from
a sequence of L different quantum codes, where L denotes the total
number of concatenations.

We introduce the code 𝒬𝒬(L) as follows (Fig. 1). With Nr: = 2r − 1, let
𝒞𝒞r (r = 2, 3, …) denote the family of [Nr, Nr − r, 3] Hamming codes46, with
block length of Nr, dimension of (Nr − r) bits and distance 3 (ref. 47).
Quantum Hamming codes 𝒬𝒬r (r = 3, 4, …) (ref. 48) are Calderbank–
Shor–Steane (CSS) codes2,4,49 of 𝒞𝒞r over its dual code 𝒞𝒞⟂r , which are in a
family of [[Nr, Kr, 3]] codes having Nr = 2r − 1 physical qubits (that is, code
size Nr), Kr: = Nr − 2r logical qubits and distance 3. We use 𝒬𝒬rl with param-
eter rl: = l + 2 for the concatenation at each level l ∈ {1, …, L}, which leads
to the sequence 𝒬𝒬3, 𝒬𝒬4,… of quantum Hamming codes starting from
Steane’s seven-qubit code 𝒬𝒬3 (refs. 3,4) at level 1, with rate converging
to Krl /Nrl → 1 as l → ∞.

We construct 𝒬𝒬(L) recursively by defining 𝒬𝒬(l) for l = L, L − 1, …, 1.
Let K(l) and N(l) denote the numbers of logical and physical qubits of
𝒬𝒬(l), respectively, which turn out to be K(l) = ∏l

l′=1 Krl′ = exp(O(l2))
and N(l) = ∏l

l′=1 Nrl′ = exp(O(l2)). We define a collection of K(l) logical
qubits of 𝒬𝒬(l) as a level-l register, where a physical qubit is referred
to as a level-0 register (or level-0 qubit). The recursive relation
between 𝒬𝒬(l) and 𝒬𝒬(l−1) is presented in Fig. 1. In particular, we divide
the K(l) = K(l−1) × Krl qubits in the level-l register for 𝒬𝒬(l) into K(l−1)
blocks of Krl qubits. Then, for each k(l−1) ∈ {1, …, K(l−1)}, picking the k(l−1)th
qubit from each of the Nrl level-(l − 1) registers for 𝒬𝒬(l−1), we encode the
Krl qubits in the k(l−1)th block into the picked Nrl qubits as the logical
qubits of the quantum Hamming code 𝒬𝒬rl. We design this concatenated
code so that, even if all the qubits in one of the level-(l − 1) registers
suffer from correlated errors, we can still recover the encoded level-l
register. In this way, we obtain a [[N(L), K(L), 3L]] concatenated code
𝒬𝒬(L). It should be noted that, unlike quantum LDPC codes, the ability
of our code to suppress errors is not fully characterized by the code
distance, owing to its concatenated structure.

We analytically prove that 𝒬𝒬(L) has an asymptotically non-
vanishing rate R(L) ∶= K(L)/N(L)

L→∞
→ ∏∞

l=1 Krl /Nrl ≧ 1/η∞ > 0 with a
finite asymptotic overhead factor η∞. The overhead factor, that is, the
inverse of the rate, would diverge to infinity for the conventional
concatenated and quantum LDPC codes, such as the surface code. By
contrast, we numerically show that η∞ < 36 in Fig. 2. Note that η∞ is
not optimized here. For example, the factor could be almost 1 by start-
ing the concatenations from 𝒬𝒬r8 rather than 𝒬𝒬3. Even at lower concat-
enation levels L ≦ 4, the advantage of 𝒬𝒬(L) over the [[7L, 1, 3L]]
concatenated seven-qubit code in the overhead factor can be orders
of magnitude. Nevertheless, both codes can suppress the logical error
rate doubly exponentially as L → ∞, as shown later with our threshold
analysis. See Supplementary Section B for details of our construction
and analysis.

Note that the above construction of concatenated codes with
non-vanishing rate is, in principle, applicable to other sequences of
codes with rates approaching 1 sufficiently fast. For example, our

the computation. In such conventional protocols, the gates are appli-
cable to all logical qubits at a time, that is, parallelizable. Each logical
gate is applied within a polylogarithmic time overhead, which can be
considered to be negligibly small compared with a polynomial runtime
of quantum computation.

The reduction of space and time overheads in FTQC is crucial for
realizing wide-ranged applications of quantum information processing
and hence has been of great interest from both practical and theoretical
perspectives. In contrast to the conventional protocols, theoretical
progress in refs. 17,26,27 has shown that the space overhead can indeed
be made constant by using quantum expander codes28–31, a family of
quantum LDPC codes with a non-vanishing rate of logical qubits per
physical qubit. However, unlike the conventional protocols, the pro-
tocol in refs. 17,26,27 has a drawback that the gates are not completely
parallelizable, that is, are applicable only to an asymptotically vanish-
ing fraction of the logical qubits at a time. As a result, sequential gate
implementation is imposed, leading to a polynomially growing time
overhead17,27. A key open problem in the field of FTQC, originally raised
in ref. 17, is whether we can resolve this apparent trade-off between the
space and time overheads in FTQC within the law of quantum mechan-
ics. Simultaneously with the constant space overhead, it would be
critical to achieve a strictly less time overhead than polynomials of
arbitrarily small degree, so as not to ruin a large class of useful quantum
accelerations including polynomial as well as exponential ones.

The establishment of a low-overhead protocol by resolving such
a trade-off has been challenging as long as existing techniques have
been used. While the existing constant-space-overhead protocol17,26,27
implements gates by gate teleportation, error suppression requires a
large code block, and its non-parallelizability arises from the fact that
the state preparation required for gate teleportation has been hard for
such a large code without relying on conventional concatenated codes
after all17. Without such concatenated codes, non-fault-tolerant state
preparation, for example, by using the protocols in refs. 32–34, would
suffer from more errors as the code becomes larger, which is infeasible
on large scales. However, because concatenated codes incur a growing
space overhead, complete parallelism in the fault-tolerant state prepa-
ration has been impossible within constant space overhead17. Another
gate implementation method for quantum LDPC codes may be to use
code deformation35, but it is unknown whether such an implementa-
tion can be faster than gate teleportation owing to the extra runtime of
the code deformation. A more recent method based on lattice surgery
requires many auxiliary qubits for complete parallelization over all the
logical qubits, which ruins the constant space overhead36. Note that,
for another family of quantum LDPC codes, that is, hyperbolic toric
codes37, parallel gate implementation may be possible38,39. However,
it is unknown whether these codes can feasibly realize FTQC owing to
the lack of an efficient decoder to decide how to recover from many
errors within a feasible runtime17,40. Linear-distance quantum LDPC
codes with non-vanishing rates have been developed more recently41–43,
but no time-efficient gate implementation method is known for these
families of codes.

Even more problematically, to prove the existence of a threshold
for fault tolerance, the analysis of the existing constant-space-overhead
protocol assumes that classical data processing, which is used in the
decoder and the gate teleportation, for example, can be performed
instantaneously in zero time17. In practice, physical experiments
towards realizing FTQC are indeed challenged by the fact that imple-
mentation of classical computation has non-zero runtime that grows on
large scales44,45. However, with finite classical computational resources
incurring such growing runtime, the time overhead and even the exist-
ence of a threshold of the existing constant-space-overhead protocol
are still unknown.

To address these problems, in this Article, we develop an alterna-
tive fault-tolerant protocol that simulates a O(poly(M))-size circuit
within a constant space overhead O(1) and only a quasi-polylogarithmic

http://www.nature.com/naturephysics

Nature Physics | Volume 20 | February 2024 | 247–253 249

Article https://doi.org/10.1038/s41567-023-02325-8

results hold for concatenation of quantum Hamming codes with
parameter rl ≈ log(l), which would be beneficial for reducing time
overhead compared with rl: = l + 2 while a constant factor in the space
overhead may become larger (see Supplementary Section F for details).
Even more generally, concatenation of a growing sequence of, for
example, [[2rl − 1, 2rl − 1 − 2trl, 2t + 1]] quantum Bose–Chaudhuri–
Hocquenghem codes (t ≧ 1)48, that is, CSS codes of classical Bose–
Chaudhuri–Hocquenghem codes over their dual codes, can also pro-
vide a family of concatenated codes with non-vanishing rate using
the same code parameter rl as ours, which can have larger distance
than quantum Hamming codes and thus have a potential advantage
in faster error suppression as L increases. However, apart from con-
structing the code, our crucial contribution is the explicit construction
of the overall fault-tolerant protocol for 𝒬𝒬(L) and the analysis of the
threshold and the runtime, as shown in the following. The general

protocol construction for other concatenated codes with a
non-vanishing rate is left for future work, but our results provide a
fundamental design principle for such protocols.

Efficient decoder
Remarkably, 𝒬𝒬(L) has an efficient decoder even though 𝒬𝒬(L) is not a
quantum LDPC code. Efficient decoders are vital for the feasibility of
FTQC yet challenging to construct in general. Indeed, no candidate
among quantum LDPC codes for constant-space-overhead FTQC
had such an efficient decoder until later research constructed a
sufficiently efficient decoder for the quantum expander code17,26,27.

In our protocol, for each level l, 𝒬𝒬rl has an efficient decoder. In
particular, the efficient decoder for the classical Hamming code 𝒞𝒞rl
(ref. 46) can be used to correct one bit-flip error and one phase-flip
error from syndromes of Z and X stabilizer generators, respectively.
The decoder for 𝒬𝒬(L) runs efficiently by recursively using the decoder
for 𝒬𝒬rl as in the conventional hard-decision decoder for concatenated
codes. With parallel classical computation, we can run this decoder
in O(log(Nrl)) time at each level l, which will turn out to be polylog
arithmic in the problem size M and hence small compared with the
O(poly(M)) depth of the original circuit. Remarkably, our threshold
analysis shows that, even if the decoder has this non-zero runtime, our
fault-tolerant protocol provably has a threshold.

Fault-tolerant protocol
Using this concatenated code 𝒬𝒬(L) with the non-vanishing rate, we con-
struct a fault-tolerant protocol. To solve a family of computational
problems with inputs represented by an M-bit string (i1, …, iM) ∈ {0, 1}M,
we use a W(M)-qubit D(M)-depth original circuit, where the width
and the depth are polynomially bounded, that is, W(M) = O(poly(M))
and D(M) = O(poly(M)). To input (i1, …, iM) into the original circuit,
we use an M-qubit initial state ⊗M

m=1 |im⟩ = (⊗M
m=1X

im) |0 ⟩⊗M , and the
rest of the original circuit is determined by M independently of the
input. The original circuit is written in terms of a gate set of Clifford
gates X, Y, Z, H, S, CNOT and CZ, and non-Clifford gates Ry(±π/4)
(see Methods for details of the notations on gates), starting from
(⊗M

m=1 |im⟩) ⊗ |0 ⟩⊗(W(M)−M) and ending with measurements of all
qubits in Z basis. Our task is to simulate the original circuit by sampling
from its output probability distribution within a given error ϵ in

1 5 8 10 15

L

10

36

100

1,000

1/
R

Fig. 2 | A comparison of the space overheads between our code 𝒬𝒬(L) and the
concatenated seven-qubit code. The overhead factor, that is, the inverse of the
rate R(L), of the concatenated code 𝒬𝒬(L) developed here (blue circles) and that of
the [[7L, 1, 3L]] concatenated seven-qubit code (orange crosses) at concatenation
level L. The overhead factor of 𝒬𝒬(L) converges to a constant η∞ < 36 (horizontal
line), saturated around L = 8 (vertical line), while that of the concatenated
seven-qubit code diverges to infinity exponentially in L.

Level-3 register
(logical qubits)

Level-2 registers

Encode

Level-1 registers

Level-0 registers
(physical qubits) Qubit

Qr2 : [[15, 7, 3]]

Register

Block of quantum Hamming code
Qr1 : [[7, 1, 3]]

Qr3 : [[31, 21, 3]]
Qr3 : [[31, 21, 3]]
Qr3 : [[31, 21, 3]]
Qr3 : [[31, 21, 3]]
Qr3 : [[31, 21, 3]]
Qr3 : [[31, 21, 3]]
Qr3 : [[31, 21, 3]]

Fig. 1 | The construction of the concatenated code 𝒬𝒬(L). We concatenate a
sequence of L different quantum Hamming codes 𝒬𝒬r1 , 𝒬𝒬r2 ,… ,𝒬𝒬rL (L = 3 here).
For each concatenation level l ∈ {L, L − 1, …, 1}, recursively, qubits (circles) in a
level-l register (blue rectangle) are encoded into those of Nrl level-(l − 1) registers

using K(l−1) code blocks of 𝒬𝒬rl (rectangles with dotted red border) in a grid pattern.
The distance-3 code 𝒬𝒬rl can correct one error per code block, and this pattern is
designed so that we can recover the encoded level-l register even if all qubits in
one of the level-(l − 1) registers suffer from correlated errors.

http://www.nature.com/naturephysics

Nature Physics | Volume 20 | February 2024 | 247–253 250

Article https://doi.org/10.1038/s41567-023-02325-8

the total variation distance. On the basis of the original circuit, our
protocol recursively defines a level-l circuit (l ∈ {L, L − 1, …, 0}) com-
posed of level-l elementary operations acting on level-l registers,
where a level-0 circuit is a circuit on physical qubits. The set of level-l
elementary operations consists of a measurement operation, H-, CNOT-,
CZ-, and Pauli-gate operations, initial-, Clifford- and magic-state prep-
aration operations, and a wait operation (Methods). By combining
these elementary operations, our protocol performs Clifford unitaries
on two registers and non-Clifford Ry(±π/4) gates on each register via
gate teleportation.

Figure 3 illustrates the recursive construction of the circuits.
We first compile the original circuit into a level-L circuit, where
the required concatenation level L is determined depending on M
and ϵ. For each l = L, L − 1, …, 1, we further compile the level-l circuit
into the corresponding level-(l − 1) circuit using level-l gadgets, that
is, level-(l − 1) circuits to implement level-l elementary operations.
The construction here is different from the conventional protocol
with concatenated codes1 in that the circuits here are composed of
elementary operations acting on registers rather than qubits, and that
the procedure for converting a level-l circuit to a level-(l − 1) circuit
depends on l. Unlike the conventional protocol, errors in the multiple
qubits belonging to the same register may be highly correlated in
our construction, and thus, we use the register as a unit in place of the
qubit. The gadgets used in this compilation are designed to satisfy
appropriate conditions for fault tolerance. To keep the overall space
overhead constant, we design each level-l gadget to use only a constant
number of additional auxiliary level-(l − 1) registers per encoded level-l
register. See Methods for details of our construction.

Provable existence of a threshold
The novelty of our protocol is to use the concatenated code 𝒬𝒬(L)
constructed from a sequence of different codes 𝒬𝒬r1 ,… , 𝒬𝒬rL. However,
the growth of code size in this sequence may make the existence of a

threshold non-trivial. Conventional proofs of the threshold theorem
for concatenated codes assume concatenation of the same code1. In
contrast, a level-l register for 𝒬𝒬(l) is encoded into a growing number
Nrl of level-(l − 1) registers. We nevertheless prove that a threshold exists
even if the number of level-(l − 1) elementary operations per level-l
gadget grows polynomially O(poly(Nrl)) , which is the case in our
gadgets. Remarkably, our analysis deals with the setting where the
runtime of classical computation in the decoder may also grow. The
threshold analysis of the existing constant-space-overhead protocol
has assumed that the decoder must run in zero time at arbitrarily large
scales17, and whether constant-space-overhead FTQC is possible with
such growth of the non-zero runtime of classical computation has been
unknown. After all, large-scale FTQC needs a large-size quantum LDPC
code for error suppression, but if we wait for a growing runtime of the
decoder for the large-size quantum LDPC code, physical qubits suffer
from more errors during waiting. This situation violates the essential
assumption for the existence of a threshold, that is, having a constant
physical error rate between performing the error corrections. As a
result, the protocols for the quantum LDPC codes may fail to correct
a general class of errors on large scales (see Supplementary Section E
for details). Note that the problem of requiring the non-growing runt-
ime of classical computation persists even in the conventional proto-
cols using quantum LDPC codes such as the two-dimensional (2D)
surface code, where decoders must process the stream of syndrome
data at the rate it is received, even if the code distance grows50–54. By
contrast, our protocol based on the concatenated code 𝒬𝒬(L) establishes
how we can perform constant-space-overhead FTQC even with finite
computational resources.

In our setting, we assume that the circuit on physical qubits
undergoes a conventional local stochastic error model, where adver-
sarial and correlated errors may occur at faulty locations of operations
in the level-0 circuit at a physical error rate p0 > 0, but the probability
of s locations simultaneously having the errors is bounded by ps0

|0
|0
|0
|0
|0
|0
|0

|0
|0
|0
|0
|0
|0
|0

X i 1

X i 2

X i 3

X i 4

X i 5

X i 6

X i 7

X i 8

X i 9

X i 10

X i 11

X i 12

X i 13

X i 14

R y (π/4)
R y (π/4)
R y (π/4)
R y (π/4)
R y (π/4)
R y (π/4)
R y (π/4)

R y (π/4)
R y (π/4)
R y (π/4)
R y (π/4)
R y (π/4)
R y (π/4)
R y (π/4)

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

H
H
H
H
H
H
H

H
H
H
H
H
H
H

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

K(L)

K(L)

Cli�ord
UC

Non-Cli�ord
URy (±π/4)

Input

A level-L register

A level-L register

Auxiliary level-L registers

Auxiliary level-L registers

|0 K (L)

|0 K (L)

7
m = 1 X i m

14
m = 8 X i m

URy (±π/4)

URy (±π/4)

UC

ZK (L)

ZK (L)

Nrl level-(L − 1) registers

Nrl level-(L − 1) registers

Nrl level-(L − 1) registers

Nrl level-(L − 1) registers

Auxiliary level-(L − 1) registers

Auxiliary level-(L − 1) registers

Auxiliary level-(L − 1) registers

Auxiliary level-(L − 1) registers

Level-L
gadget
|0 K(L)

Level-L
gadget
|0 K(L)

Level-L
error-
correction
gadget

Level-L
error-
correction
gadget

Level-L Pauli-
gate gadget

Level-L Pauli-
gate gadget

Level-L
error-
correction
gadget

Level-L
error-
correction
gadget

Level-L gadgets
for gate tele-
portation of
URy (±π/4) and
error correction

Level-L
error-
correction
gadget

Level-L
error-
correction
gadget

Level-L gadgets
for gate telepor-
tation of UC and
error correction

Level-L
error-
correction
gadget

Level-L
error-
correction
gadget

Level-L gadget ZK (L)

Level-L gadget ZK (L)

Original circuit

Level-L circuit

Level-(L – 1) circuit

Level-L gadgets
for gate tele-
portation of
URy (±π/4) and
error correction

Fig. 3 | Compilation in our fault-tolerant protocol. We compile the original
circuit (top left) into a level-L circuit composed of level-L elementary operations
acting on level-L registers (top right). Two-register Clifford gates and one-register
Ry(±π/4) gates are implemented by a combination of elementary operations via
gate teleportation, which are abbreviated as white boxes indicating UC and
URy(±π/4). For each l = L, L − 1, …, 1, we further compile the level-l circuit into the
corresponding level-(l − 1) circuit by substituting each level-l elementary

operation into the corresponding level-l gadget and inserting level-l error-
correction gadgets in between (bottom). Unlike conventional fault-tolerant
protocols with concatenated codes, the number of level-(l − 1) elementary
operations in level-l gadgets may depend on l. We design our protocol in such a
way that the level-0 circuit on physical qubits achieves the constant space
overhead and the quasi-polylogarithmic time overhead compared with the
original circuit.

http://www.nature.com/naturephysics

Nature Physics | Volume 20 | February 2024 | 247–253 251

Article https://doi.org/10.1038/s41567-023-02325-8

(refs. 1,17). We call each level-l elementary operation in a level-l circuit
a level-l location. Then, our analysis proves that faults at level-L loca-
tions in the level-L circuit of our protocol also occur according to the
local stochastic error model. Moreover, we prove the following proposi-
tion on error suppression, which scales doubly exponentially in L in
the same way as the conventional concatenated codes1 (see Methods
for details):

Proposition 1: error suppression with concatenation of quantum
Hamming codes. Under the local stochastic error model, we have an
explicit construction of a fault-tolerant protocol using the concate-
nated code 𝒬𝒬(L) with a non-zero threshold constant pth > 0 such that,
if the physical error rate is below the threshold p0 < pth, then our
protocol using the concatenated quantum Hamming code 𝒬𝒬(L)
can suppress the logical error rate as pL = exp(−O(2L)).

A practical threshold is achievable with minor modifications to
our protocol. For example, the same threshold as the surface code is
achievable by encoding each level-0 qubit of 𝒬𝒬(L) for our protocol
into the logical qubit of a constant-size surface code at a logical error
rate below the threshold constant pth here, which can take the advan-
tage of the surface code in tolerating biased noise on physical
qubits55–58. Note that, even if the noise on physical qubits is biased, the
logical error is not necessarily biased, and thus we do not have to modify
our protocol for biased noise in this case. Compared with conventional
protocols, the concatenation of the surface code and our code 𝒬𝒬(L)
has merits due to the constant space overhead, potential speedup
of decoders on large scales and provable existence of a threshold
even with non-zero-time decoders.

Space and time overheads
The significance of our protocol is to simultaneously achieve the
constant space overhead and the quasi-polylogarithmic time
overhead compared with the original circuit, as shown in the following
proposition (see Methods for details):

Proposition 2: overhead achieved by concatenation of quantum
Hamming codes. Under the local stochastic error model, we have an
explicit construction of a fault-tolerant protocol using the concate-
nated code 𝒬𝒬(L) with a concatenation level L = ϴ(log(log(M/ϵ)))
to simulate any W(M)-qubit D(M)-depth original circuit within error
ϵ > 0 in total variational distance using at most W(M) × O(1) physical
qubits and D(M) × exp(O(log2(log(M/ϵ)))) runtime in terms of the
depth of the fault-tolerant circuit, where W(M) = O(poly(M)) and
D(M) = O(poly(M)).

These overheads include those for preparing the auxiliary
states required for the gate teleportation and the error correction.
Unlike the previous analysis of the existing constant-space-overhead
protocol17,26,27, the runtime also includes wait operations to wait for
non-zero-time classical computations such as ones for the decoder
and the gate teleportation.

As long as one uses the existing techniques for the constant-space-
overhead protocol17,26,27, it remains challenging to achieve these space
and time overheads simultaneously. Indeed, the existing protocol17,26,27
relies on conventional concatenated codes in preparing the auxiliary
states for gate teleportation and hence cannot achieve the parallel gate
implementation on all logical qubits within constant space overhead.
Then, sequential gate implementation incurs a polynomially large
time overhead in implementing parallel gates of the original circuit.
By contrast, our protocol is designed to attain complete parallelizabil-
ity in the gate teleportation to apply the gates to all logical qubits of
𝒬𝒬(L) at a time. All the auxiliary states required for the gate teleportation
can be prepared in parallel within the constant space overhead
owing to the non-vanishing rate of 𝒬𝒬(L). Consequently, our protocol is
advantageous in terms of the time overhead compared with the existing
constant-space-overhead protocol17,26,27.

Tolerance for architectural overheads
Remarkably, our analysis also shows that a threshold would exist
even with any polynomially growing architectural time overhead
O(poly(N(l))) in the code size at each concatenation level l, which may
be imposed by restrictions such as nearest-neighbour interactions
on 2D geometry, limited classical computational resources for the
decoder and insufficient parallelization in preparing auxiliary states
used for gate teleportation and error correction. The suppression of
the logical error rate is much faster than the growth of the code size,
and thus, the concatenated codes can tolerate the time overhead at
higher concatenation levels by just waiting by performing identity
gates, as in our protocol. This unique property of the concatenated code
contrasts with the fact that quantum LDPC codes have to be decoded at
least once in a constant time to avoid the accumulation of errors. Thus,
our protocol is expected to be implementable on various architectures
with minor adaptation.

For example, one can rewrite fault-tolerant protocols with concat-
enated codes into those respecting the 2D (or even one-dimensional)
geometry by well-established procedures in refs. 9,59–61, and our
analysis shows that a threshold exists even with a polynomial time
overhead in such rewriting. Note that, when the original circuit includes
two-qubit gates on arbitrary pairs of qubits, any protocol on such 2D
architectures to simulate the original circuit unavoidably incurs a poly-
nomially long time overhead (see Supplementary Section A for details).
Moreover, the constant space overhead would not be achievable on a
single fully 2D chip62. Hence, it is essential to investigate architectures
with multiple 2D layers, such as that in ref. 63, or with full connectivity,
such as photonics. We leave the investigation of practical architectures
to implement our protocol for future research.

We also leave exact evaluation of the threshold pth for future
research. This will require numerical simulation taking the architectural
overhead into account, as the analytical bound is not usually tight. In
such numerical simulation, comparison with architectural proposals
for the constant-space-overhead protocol with quantum LDPC codes63
may also be an interesting direction. However, importantly, the above
merit of our protocol in tolerating architectural constraints such as
non-constant-time decoders is not known to hold for the existing
constant-space-overhead protocol with the quantum LDPC codes. We
expect that such numerical simulation will also be able to clarify the
effects of the architectural constraints that appear in practice.

Conclusion and outlook
We have constructed a protocol for FTQC achieving constant space
overhead and quasi-polylogarithmic time overhead simultaneously.
A crucial technical development is to use a concatenated code con-
structed from a growing sequence of quantum Hamming codes. Our
technique leads to a non-vanishing rate, the existence of an efficient
decoder, the space-saving and fast protocol for simulating univer-
sal quantum computation and the provable existence of a threshold
for doubly exponential error suppression as we increase the concat-
enation level. Progressing beyond previous studies of the existing
constant-space-overhead protocol based on quantum LDPC codes17,26,27,
we take into account non-zero runtime of classical computation in
proving these results. Our results are fundamental for realizing FTQC
feasibly within constant space overhead and yet short time overhead
with parallelization. Remarkably, this achievement is made possible
with the technique of code concatenation, which opens a promising
route for low-overhead FTQC.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41567-023-02325-8.

http://www.nature.com/naturephysics
https://doi.org/10.1038/s41567-023-02325-8

Nature Physics | Volume 20 | February 2024 | 247–253 252

Article https://doi.org/10.1038/s41567-023-02325-8

References
1.	 Gottesman, D. An introduction to quantum error correction and

fault-tolerant quantum computation. In Proc. Symposia in Applied
Mathematics vol. 68 (ed. Lomonaco Jr., S. J.) 13–58 (American
Mathematical Society, 2010).

2.	 Nielsen, M. A. & Chuang, I. L. Quantum Computation and
Quantum Information: 10th Anniversary Edition (Cambridge Univ.
Press, Cambridge, 2010).

3.	 Steane, A. M. Error correcting codes in quantum theory. Phys. Rev.
Lett. 77, 793–797 (1996).

4.	 Steane, A. Multiple-particle interference and quantum error
correction. Proc. R. Soc. Lond. A 452, 2551–2577 (1996).

5.	 Kitaev, A. Y. Quantum computations: algorithms and error
correction. Russ. Math. Surv. 52, 1191–1249 (1997).

6.	 Kitaev, A. Fault-tolerant quantum computation by anyons.
Ann. Phys. 303, 2–30 (2003).

7.	 Bravyi, S. B. & Kitaev, A. Y. Quantum codes on a lattice with
boundary. Preprint at https://arxiv.org/abs/quant-ph/9811052
(1998).

8.	 Aharonov, D. & Ben-Or, M. Fault-tolerant quantum computation
with constant error. In Proc. 29th Annual ACM Symposium on
Theory of Computing 176–188 (Association for Computing
Machinery, 1997).

9.	 Aharonov, D. & Ben-Or, M. Fault-tolerant quantum computation
with constant error rate. SIAM J. Comput. 38, 1207–1282 (2008).

10.	 Shor, P. W. Fault-tolerant quantum computation. In Proc. 37th
Annual Symposium on Foundations of Computer Science
(ed. Sipple, R. S.) 56 (IEEE Computer Society, 1996).

11.	 Knill, E., Laflamme, R. & Zurek, W. H. Resilient quantum
computation: error models and thresholds. Proc. R. Soc. Lond. A
454, 365–384 (1998).

12.	 Aliferis, P., Gottesman, D. & Preskill, J. Quantum accuracy
threshold for concatenated distance-3 codes. Quantum Inf.
Comput. 6, 97–165 (2006).

13.	 Reichardt, B. W. Fault-tolerance threshold for a distance-three
quantum code. In Proc. 33rd International Conference on
Automata, Languages and Programming (eds Bugliesi, M., et al.)
50–61 (Springer-Verlag, 2006).

14.	 Terhal, B. M. & Burkard, G. Fault-tolerant quantum computation
for local non-markovian noise. Phys. Rev. A 71, 012336 (2005).

15.	 Dennis, E., Kitaev, A., Landahl, A. & Preskill, J. Topological
quantum memory. J. Math. Phys. 43, 4452–4505 (2002).

16.	 Fowler, A. G. Proof of finite surface code threshold for matching.
Phys. Rev. Lett. 109, 180502 (2012).

17.	 Gottesman, D. Fault-tolerant quantum computation with constant
overhead. Quantum Inf. Comput. 14, 1338–1372 (2014).

18.	 Preskill, J. Quantum computing in the NISQ era and beyond.
Quantum 2, 79 (2018).

19.	 Sanders, Y. R. et al. Compilation of fault-tolerant quantum
heuristics for combinatorial optimization. PRX Quantum 1, 020312
(2020).

20.	 Gidney, C. & Ekerå, M. How to factor 2048 bit RSA integers in
8 hours using 20 million noisy qubits. Quantum 5, 433 (2021).

21.	 Gottesman, D. Theory of fault-tolerant quantum computation.
Phys. Rev. A 57, 127–137 (1998).

22.	 Knill, E. Quantum computing with realistically noisy devices.
Nature 434, 39–44 (2005).

23.	 Knill, E. Scalable quantum computing in the presence of large
detected-error rates. Phys. Rev. A 71, 042322 (2005).

24.	 Gottesman, D. & Chuang, I. L. Demonstrating the viability
of universal quantum computation using teleportation and
single-qubit operations. Nature 402, 390–393 (1999).

25.	 Zhou, X., Leung, D. W. & Chuang, I. L. Methodology for
quantum logic gate construction. Phys. Rev. A 62, 052316
(2000).

26.	 Kovalev, A. A. & Pryadko, L. P. Fault tolerance of quantum
low-density parity check codes with sublinear distance scaling.
Phys. Rev. A 87, 020304 (2013).

27.	 Fawzi, O., Grospellier, A. & Leverrier, A. Constant overhead
quantum fault tolerance with quantum expander codes.
Commun. ACM 64, 106–114 (2020).

28.	 Tillich, J. & Zémor, G. Quantum ldpc codes with positive rate
and minimum distance proportional to the square root of the
blocklength. IEEE Trans. Inf. Theory 60, 1193–1202 (2014).

29.	 Kovalev, A. A. & Pryadko, L. P. Improved quantum hypergraph-
product ldpc codes. In Proc. 2012 IEEE International Symposium
on Information Theory Proceedings (eds) 348–352 (IEEE, 2012).

30.	 Fawzi, O., Grospellier, A. & Leverrier, A. Efficient decoding of
random errors for quantum expander codes. In Proc. 50th
Annual ACM SIGACT Symposium on Theory of Computing (eds
Diakonikolas, I. et al.) 521–534 (Association for Computing
Machinery, 2018).

31.	 Leverrier, A., Tillich, J.-P. & Zemor, G. Quantum expander codes.
In Proc. 2015 IEEE 56th Annual Symposium on Foundations of
Computer Science (ed. O’Conner, L.) 810–824 (IEEE Computer
Society, 2015).

32.	 Lai, C.-Y., Zheng, Y.-C. & Brun, T. A. Fault-tolerant preparation of
stabilizer states for quantum Calderbank–Shor–Steane codes by
classical error-correcting codes. Phys. Rev. A 95, 032339 (2017).

33.	 Zheng, Y.-C., Lai, C.-Y. & Brun, T. A. Efficient preparation of
large-block-code ancilla states for fault-tolerant quantum
computation. Phys. Rev. A 97, 032331 (2018).

34.	 Zheng, Y.-C., Lai, C.-Y., Brun, T. A. & Kwek, L.-C. Constant depth
fault-tolerant clifford circuits for multi-qubit large block codes.
Quantum Sci. Technol. 5, 045007 (2020).

35.	 Krishna, A. & Poulin, D. Fault-tolerant gates on hypergraph
product codes. Phys. Rev. X 11, 011023 (2021).

36.	 Cohen, L. Z., Kim, I. H., Bartlett, S. D. & Brown, B. J. Low-overhead
fault-tolerant quantum computing using long-range connectivity.
Sci. Adv. 8, eabn1717 (2022).

37.	 Freedman, M. H., Meyer, D. A. & Luo, F. Z2-systolic freedom
and quantum codes. In Mathematics of Quantum Computation
(eds Brylinski,R. K., & Chen, G.) (Chapman & Hall/CRC, 2002).

38.	 Lavasani, A., Zhu, G. & Barkeshli, M. Universal logical gates with
constant overhead: instantaneous Dehn twists for hyperbolic
quantum codes. Quantum 3, 180 (2019).

39.	 Breuckmann, N. P. & Burton, S. Fold-transversal clifford gates for
quantum codes. Preprint at https://arxiv.org/abs/2202.06647
(2022).

40.	 Hastings, M. B. Decoding in hyperbolic spaces: quantum LDPC
codes with linear rate and efficient error correction. Quantum Inf.
Comput. 14, 1187–1202 (2014).

41.	 Panteleev, P. & Kalachev, G. Asymptotically good quantum and
locally testable classical ldpc codes. In Proc. 54th Annual ACM
SIGACT Symposium on Theory of Computin (eds Leonardi, S. &
Gupta, A.) 375–388 (Association for Computing Machinery,
2022).

42.	 Leverrier, A. & Zemor, G. Quantum Tanner codes. In Proc. 2022
IEEE 63rd Annual Symposium on Foundations of Computer
Science (ed. O’Conner, L.) 872–883 (IEEE Computer Society,
2022).

43.	 Dinur, I., Hsieh, M.-H., Lin, T.-C. & Vidick, T. Good quantum ldpc
codes with linear time decoders. In Proc. 55th Annual ACM
SIGACT Symposium on Theory of Computing (eds Saha, B. &
Servedio, R. A.) 905–918 (Association for Computing Machinery,
2023).

44.	 Ueno, Y., Kondo, M., Tanaka, M., Suzuki, Y. & Tabuchi, Y. Qecool:
on-line quantum error correction with a superconducting
decoder for surface code. In Proc. 2021 58th ACM/IEEE Design
Automation Conference 451–456 (IEEE, 2021).

http://www.nature.com/naturephysics
https://arxiv.org/abs/quant-ph/9811052
https://arxiv.org/abs/2202.06647

Nature Physics | Volume 20 | February 2024 | 247–253 253

Article https://doi.org/10.1038/s41567-023-02325-8

45.	 Bourassa, J. E. et al. Blueprint for a scalable photonic
fault-tolerant quantum computer. Quantum 5, 392 (2021).

46.	 Hamming, R. W. Error detecting and error correcting codes.
Bell Syst. Tech. J. 29, 147–160 (1950).

47.	 Lint, J. H. V. Introduction to Coding Theory, 3rd edn
(Springer-Verlag, 1998).

48.	 Steane, A. M. Simple quantum error-correcting codes. Phys. Rev. A
54, 4741–4751 (1996).

49.	 Calderbank, A. R. & Shor, P. W. Good quantum error-correcting
codes exist. Phys. Rev. A 54, 1098–1105 (1996).

50.	 Holmes, A. et al. Nisq+: boosting quantum computing power by
approximating quantum error correction. In Proc. ACM/IEEE 47th
Annual International Symposium on Computer Architecture
(ed. O’Conner, L.) 556–569 (IEEE, 2020).

51.	 Chamberland, C., Goncalves, L., Sivarajah, P., Peterson, E. &
Grimberg, S. Techniques for combining fast local decoders with
global decoders under circuit-level noise. Quantum Sci. Technol.
8, 045011 (2022).

52.	 Skoric, L., Browne, D. E., Barnes, K. M., Gillespie, N. I. &
Campbell, E. T. Parallel window decoding enables scalable
fault tolerant quantum computation. Nat. Commun. 14, 7040
(2022).

53.	 Tan, X., Zhang, F., Chao, R., Shi, Y. & Chen, J. Scalable surface
code decoders with parallelization in time. Preprint at
https://arxiv.org/abs/2209.09219 (2022).

54.	 Bombín, H. et al. Modular decoding: parallelizable real-time
decoding for quantum computers. Preprint at https://arxiv.org/
abs/2303.04846 (2023).

55.	 Tuckett, D. K., Bartlett, S. D. & Flammia, S. T. Ultrahigh error
threshold for surface codes with biased noise. Phys. Rev. Lett. 120,
050505 (2018).

56.	 Tuckett, D. K. et al. Tailoring surface codes for highly biased noise.
Phys. Rev. X 9, 041031 (2019).

57.	 Tuckett, D. K., Bartlett, S. D., Flammia, S. T. & Brown, B. J.
Fault-tolerant thresholds for the surface code in excess of 5%
under biased noise. Phys. Rev. Lett. 124, 130501 (2020).

58.	 Ataides, J. P. B., Tuckett, D. K., Bartlett, S. D., Flammia, S. T. &
Brown, B. J. The XZZX surface code. Nat. Commun. 12, 2172 (2021).

59.	 Gottesman, D. Fault-tolerant quantum computation with local
gates. J. Mod. Opt. 47, 333–345 (2000).

60.	 Svore, K. M., Terhal, B. M. & DiVincenzo, D. P. Local fault-tolerant
quantum computation. Phys. Rev. A 72, 022317 (2005).

61.	 Svore, K. M., DiVincenzo, D. P. & Terhal, B. M. Noise threshold for a
fault-tolerant two-dimensional lattice architecture. Quantum Inf.
Comput. 7, 297–318 (2007).

62.	 Baspin, N., Fawzi, O. & Shayeghi, A. A lower bound on the
overhead of quantum error correction in low dimensions. In Proc.
13th Innovations in Theoretical Computer Science Conference,
Vol. 215 (ed. Braverman, M.) 68:1–68:20 (Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022).

63.	 Tremblay, M. A., Delfosse, N. & Beverland, M. E.
Constant-overhead quantum error correction with thin planar
connectivity. Phys. Rev. Lett. 129, 050504 (2022).

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

http://www.nature.com/naturephysics
https://arxiv.org/abs/2209.09219
https://arxiv.org/abs/2303.04846
https://arxiv.org/abs/2303.04846
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Nature Physics

Article https://doi.org/10.1038/s41567-023-02325-8

Methods
We first summarize our notation and then present the construc-
tion of our fault-tolerant protocol, the derivation of the existence
of a threshold and the analysis of the space and time overheads. See
Supplementary Sections C–F for further details.

Notation
For a qubit ℂ2, the Z basis is denoted by {|0⟩ , |1⟩} and the X basis by
{|±⟩ ∶= (1/√2)(|0⟩ ± |1⟩)}. Matrix elements are represented in terms of the
Z basis. By convention of ref. 2, we use the following notation:

X = (
0 1

1 0
) , (1)

Z = (
1 0

0 −1
) , (2)

Y = (
0 −i

i 0
) ∝ XZ, (3)

H = 1
√2

(
1 1

1 −1
) , (4)

S = (
1 0

0 i
) , (5)

CNOT =

⎛
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟
⎟
⎟
⎟
⎠

, (6)

CZ =

⎛
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟
⎟
⎟
⎟
⎠

, (7)

Ry(θ) = (
cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)
) . (8)

The identity operator is denoted by

= (
1 0

0 1
) . (9)

In the same way as referring to a running time exp(O(logc(M)))
for fixed c > 0 as a quasi-polynomial time in M, we call

exp (O(logc(log(M)))) (10)

a quasi-polylogarithmic time. A quasi-polylogarithmic time
with c  > 1 may be larger than a polylogarithmic time
exp(O(log(log(M)))) = O(polylog(M)). However, a quasi-polylogarithmic
time for any c > 0 is much smaller than a polynomial time, that is,
exp(O(log(M))) = O(poly(M)) = O(Mα) , even for an arbitrarily small
degree α > 0 of the polynomial.

Construction of fault-tolerant protocol
In our fault-tolerant protocol, we use level-l elementary operations to
write a level-l circuit for each l ∈ {L, L − 1, …, 0}. The set of level-l

elementary operations consists of a level-l measurement operation,
level-l H-, CNOT-, CZ-, and Pauli-gate operations, level-l initial-, Clifford-
and magic-state preparation operations, and a level-l wait operation.
The measurement operation implements measurements in the
Z basis of all qubits in a level-l register. The H-, CNOT-, CZ- and Pauli-gate
operations implement H, CNOT and CZ gates on all qubits in level-l
registers and the tensor product of any combination of Pauli gates on
the qubits in a level-l register. The initial-state preparation operation
prepares a level-l register in |0 ⟩⊗K

(l)
. To assist implementing any given

two-register Clifford unitary UC on the 2K(l) qubits in two level-l
registers, the Clifford-state preparation operation prepares four level-l
registers B1, B2, B3 and B4 in

(B1B2 ⊗ UB3B4
C) |Φ(l) ⟩

B1B2B3B4 , (11)

where |Φ(l) ⟩
B1B2B3B4 = |Φ ⟩B1B3 ⊗ |Φ ⟩B2B4 , and |Φ ⟩BjBj′ ∝ ∑2K(l) −1

m=0 |m ⟩Bj
⊗|m ⟩Bj′ for (j, j′) ∈ {(1, 3), (2,4)} is a maximally entangled state between
Bj and Bj′. To assist implementing any given unitary URy(±π/4) in the
form of a tensor product of Ry(π/4), Ry(−π/4) and on the K(l) qubits
in a level-l register, the magic-state preparation operation prepares
two level-l registers in

(Ry(π/4) |0⟩)
⊗K(l) ⊗ (Ry(π/4) |0⟩)

⊗K(l) . (12)

A wait operation is a Pauli-gate operation of ⊗K(l).
Using these operations in combination, we implement UC and

URy(±π/4) for a level-l circuit by gate teleportation. Note that H-, CNOT-
and CZ-gate operations in our protocol perform the gates on all qubits
in the registers simultaneously, and we use UC for implementing all the
other Clifford gates, for example, a single-qubit H gate in one of the
two registers (while acting as the identity gate on the other register),
and a CNOT gate on a specific pair of qubits in the two registers. Indeed,
UC is not limited to a one- or two-qubit Clifford gate but may represent
an arbitrary sequence of Clifford gates acting on the 2K(l) qubits in two
level-l registers as a single Clifford unitary. Similarly, URy(±π/4) is not
necessarily a single-qubit non-Clifford gate but can apply non-Clifford
gates on any number of qubits in a level-l register. In particular, a level-l
two-register Clifford gate UC in our protocol is implemented by means
of gate teleportation22–24, assisted by the auxiliary state (B1B2 ⊗ UB3B4C)
|Φ(l) ⟩

B1B2B3B4 prepared by the level-l Clifford-state preparation
operation, along with other level-l gate and measurement operations.
The correction of byproducts in the gate teleportation is performed
by level-l Pauli-gate operations. Regarding level-l URy(±π/4), the gate
teleportation for URy(±π/4) is assisted by an auxiliary magic state
(Ry(π/4) |0⟩)

⊗K(l) prepared by the level-l magic-state preparation opera-
tion, and also an auxiliary state |0⟩⊗K

(l)
 prepared by the level-l initial-state

preparation operation, along with other level-l gate and measurement
operations. To apply Ry(±π/4) in URy(±π/4) to a desired subset of qubits
in a register, we prepare the required auxiliary state in the tensor
product of Ry(π/4) |0⟩ and |0⟩ by applying single-qubit SWAP gates
between (Ry(π/4) |0⟩)

⊗K(l) and |0⟩⊗K
(l)

 using the level-l two-register
Clifford gate. Then, assisted by this auxiliary state, we perform the gate
teleportation. The correction of byproducts, which are single-qubit
Clifford gates on a level-l register, is performed by the level-l two-
register Clifford gate acting trivially on another auxiliary level-l
register.

To simulate a level-l circuit at each level l ∈ {L, …, 1}, we construct
a level-l gadget corresponding to each level-l elementary operation,
that is, a level-(l − 1) circuit for simulating the elementary operation on
encoded level-l registers. Apart from these level-l gadgets, we use a
level-l error-correction gadget, a level-(l − 1) circuit for correcting errors
on one of the Nrl level-(l − 1) registers for an encoded level-l register.
For the existence of a threshold, each level-l gadget must be fault
tolerant. That is, roughly speaking, even if one of the level-(l − 1)
locations in the gadget has a fault, the resulting error should be

http://www.nature.com/naturephysics

Nature Physics

Article https://doi.org/10.1038/s41567-023-02325-8

correctable using the decoder of 𝒬𝒬rl at the end of the gadget (see
Supplementary Section D for the precise definition). This definition
of fault-tolerant gadgets in our protocol is a suitable modification of
the conventional definition for the concatenated codes1 so that we can
prove the existence of a threshold by applying the conventional argu-
ment in ref. 1 to our protocol. Using the fault-tolerant level-l gadgets,
we convert a level-l circuit into the corresponding level-(l − 1) circuit
by replacing each level-l elementary operation with the corresponding
level-l gadget, followed by inserting the level-l error correction
gadgets between all pairs of adjacent level-l elementary operations.
Repeating this conversion recursively for l ∈ {L, …, 1} yields a level-0
circuit, which leads to a fault-tolerant circuit on physical qubits to
simulate the original circuit.

In the following, we sketch our construction of level-l gadgets
used for the fault-tolerant protocol. See Supplementary Section D for
further details. Note that gate implementations for some classes of
CSS codes with multiple logical qubits have also been discussed in
refs. 17,64, but the main contribution of our work is to present the
gadgets explicitly for our code 𝒬𝒬(l) so that we can prove the existence
of a threshold and bound the space and time overheads rigorously for
our fault-tolerant protocol.

We implement the level-l measurement gadget by performing
level-(l − 1) measurement operations for all the level-(l − 1) registers
and then calculating bit values of the outcome by a decoder, using
the logical Z operator for each of the K(l) logical qubits in the
encoded level-l register. We let ZK(l) label this Z-basis measurement with
the K(l)-bit outcome. The fault tolerance follows from transversality.

We implement the H-, CNOT- and CZ-gate gadgets by applying
level-(l − 1) H-, CNOT- and CZ-gate operations, respectively, to all
level-(l − 1) registers transversally. We implement the Pauli-gate gadget
by level-(l − 1) Pauli-gate operations to apply the tensor product of
Pauli gates representing the logical Pauli operators to the level-(l − 1)
registers transversally. The wait gadget is a special case of the Pauli-gate
gadget to apply the identity gate. The fault tolerance follows from
transversality.

The level-l initial-state preparation gadget is implemented by
transforming states |0 ⟩⊗K

(l−1)
 prepared by the level-(l − 1) initial-

state preparation operations into logical |0 ⟩⊗K
(l)

 by a level-(l − 1) stabi-
lizer circuit in a non-fault-tolerant way65–67, followed by verification
with post-selection. For the verification, we prepare another logical
|0 ⟩⊗K

(l)
, and using this auxiliary |0 ⟩⊗K

(l)
, we measure the logical Z opera-

tors and the Z stabilizer generators of 𝒬𝒬rl. If no logical X error is detected
from this measurement on the logical |0 ⟩⊗K

(l)
 prepared in this first run,

that is, in the case of success in the verification, then the gadget outputs
this state. Otherwise, the gadget discards the prepared state and
repeats the same level-(l − 1) stabilizer circuit to output the logical
|0 ⟩⊗K

(l)
 prepared in this second run without verification. This repetition

makes the gadget fault tolerant while at most doubling the depth of
the gadget.

Assisted by the registers in logical states |0⟩⊗K
(l)

 prepared by the
level-l initial-state preparation gadgets, the level-l error correction
gadget is implemented here in a fault-tolerant way by Knill’s error cor-
rection22,23 based on quantum teleportation68. The fault tolerance
follows from transversality. Unlike the quantum LDPC codes using an
auxiliary physical qubit per extracting each syndrome bit, the weight
of stabilizer generators does not matter for the feasibility of error cor-
rection with the concatenated codes. In particular, using the above
technique for the concatenated codes, we can prepare encoded code-
words |0 ⟩⊗K

(l)
 in a fault-tolerant way, and using this fault-tolerant state

preparation to perform Knill’s error correction, we can obtain all the
syndrome bits simultaneously from the measurement outcomes for
quantum teleportation, without using the auxiliary physical qubit per
syndrome.

Note that we could also use Steane’s error correction here1, but
Knill’s error correction may have merits in our protocol since Knill’s

error correction can be implemented in the same way as the gate
teleportation used for implementing the level-l two-register
Clifford gates. An additional advantage of Knill’s error correction over
Steane’s error correction is its ability to correct leakage errors23, while
the error model in our analysis does not explicitly consider the leakage
errors for simplicity.

The level-l Clifford-state preparation gadget is implemented
by non-fault-tolerant state preparation followed by verification,
similar to the level-l initial-state preparation gadget. In particular,
we first transform logical states |0⟩⊗4K(l) prepared by the level-l
initial-state preparation gadgets into logical (⊗ UC) |Φ(l) ⟩ by a
level-(l − 1) stabilizer circuit in a non-fault-tolerant way65. Then, we
perform verification with post-selection. In the verification, we let
the state be in the code space of 𝒬𝒬rl using the level-l error-correction
gadgets. Then, as (⊗ UC) |Φ(l) ⟩ is a stabilizer state, we measure
the logical stabilizer operators for (⊗ UC) |Φ(l) ⟩ (that is, multi-qubit
Pauli operators) using the controlled Pauli gates implemented by
the gate teleportation. To make the gadget fault tolerant, we
design the gadget in such a way that an error on the auxiliary registers
used as the control qubits for these controlled Pauli gates should
not propagate to (⊗ UC) |Φ(l) ⟩ conditioned on the post-selection,
using the technique of flag qubits69. Since we concatenate the
distance-3 quantum Hamming codes, the verification can be made
fault tolerant by adding one flag qubit per extraction of logical
stabilizer operators as in ref. 69. Note that flag qubit techniques in
refs. 70,71 may also be used for potential generalization to conca
tenating higher-distance codes. If no error is detected from
measuring the logical stabilizer operators and the flag qubits,
that is, in the case of success in the verification, then the gadget
outputs the logical (⊗ UC) |Φ(l) ⟩ prepared in this first run. Otherwise,
the gadget discards the prepared state and repeats the same level-(l − 1)
stabilizer circuit to output the logical (⊗ UC) |Φ(l) ⟩ prepared in this
second run without verification. In the same way as the initial-state
preparation gadget, the repetition at most doubles the depth of
the gadget.

The level-l magic-state preparation gadget is also implemented
by non-fault-tolerant state preparation followed by verification. First,
we prepare states (Ry(π/4) |0⟩)

⊗2K(l) and |0⟩⊗2(N(l)−K(l)) by the level-(l − 1)
magic- and initial-state preparation operations, respectively, and
transform them into logical (Ry(π/4) |0⟩)

⊗K(l) ⊗ (Ry(π/4) |0⟩)
⊗K(l) by a

level-(l − 1) stabilizer circuit for encoding, that is, for transforming the
magic states into the same logical states in a non-fault-tolerant way65.
Then, we perform the verification with post-selection by ensuring the
state in the code space of 𝒬𝒬rl and measuring the logical stabilizer opera-
tors. This magic-state preparation does not use magic state distilla-
tion72,73 but instead uses verification to reduce errors. In particular,
since (Ry(π/4) |0⟩) is stabilized by H, that is, H(Ry(π/4) |0⟩) = Ry(π/4) |0⟩,
we implement controlled H gates for measuring the logical stabi
lizer operators for (Ry(π/4) |0⟩)

⊗K(l) ⊗ (Ry(π/4) |0⟩)
⊗K(l), using techniques

similar to state-of-the-art low-overhead magic-state preparation
protocols in refs. 74–76. To make the gadget fault tolerant, similar to
the level-l Clifford-state preparation gadget, the level-l magic-
state preparation gadget is also designed in such a way that an error on
the auxiliary registers used as the control qubits for the controlled
H gates should not propagate to (Ry(π/4) |0⟩)

⊗K(l) ⊗ (Ry(π/4) |0⟩)
⊗K(l)

conditioned on the post-selection, using the technique of flag
qubits69. If no error is detected from measuring the logical
stabilizer operators and the flag qubits, that is, in the case of
success in the verification, then the gadget outputs the logical
(Ry(π/4) |0⟩)

⊗K(l) ⊗ (Ry(π/4) |0⟩)
⊗K(l) prepared in this first run. Otherwise,

the gadget discards the prepared state and repeats the same level-
(l − 1) circuit to output the logical (Ry(π/4) |0⟩)

⊗K(l) ⊗(Ry(π/4) |0⟩)
⊗K(l)

prepared in this second run without verification. In the same way as
the initial- and Clifford-state preparation gadgets, the repetition at
most doubles the depth of the gadget.

http://www.nature.com/naturephysics

Nature Physics

Article https://doi.org/10.1038/s41567-023-02325-8

With a synthesis of stabilizer circuits77,78, we show that all the
level-l gadgets here have at most O(poly(Nrl)) depths, including the
wait operations to wait for classical computation. Consequently, each
level-l gadget has at most O(poly(Nrl)) locations, even if we take into
account wait operations to wait for non-zero-time classical computa-
tion such as ones in the decoder and the gate teleportation.

Analysis of threshold existence and improvement
We sketch the proof of the existence of a threshold in our fault-tolerant
protocol and discuss how to achieve a practical threshold with minor
protocol modifications. See Supplementary Section E for further
details.

As in the conventional proof for the concatenated code, the proof
of the existence of a threshold in our protocol is given by bounding a
logical error rate at a higher concatenation level by that at a lower level,
based on counting the number of locations in extended rectangles
(ExRecs)1 (see also the figure illustrating ExRecs in Supplementary
Section E). Given a level-l circuit for l ∈ {1, …, L}, a level-l ExRec refers
to a part of the corresponding level-(l − 1) circuit that includes a level-l
gadget at each level-l location and its adjacent level-l error-correction
gadgets1. For the distance-3 code such as the code used here, a level-l
ExRec is said to be good if the ExRec contains at most one faulty
level-(l − 1) location, and bad otherwise. Intuitively, a good ExRec can
implement the logical operation correctly, but a bad ExRec may not.
Thus, to bound the logical error rate, it suffices to evaluate the prob-
ability of having a bad ExRec using the number of locations therein.

In particular, let A(l) be the maximum number of pairs of level-
(l − 1) locations in a level-l ExRec, where we take the maximum over
all the possible level-l ExRecs. Since all the level-l gadgets used
in our protocol have O(poly(Nrl)) level-(l − 1) locations, we have
A(l) = O(poly(Nrl)) = exp(O(l)). For simplicity of presentation, let α > 0
denote a constant factor such that

A(l) ≦ 2αl (13)

for all l ≧ 1. Crucially, our definition of a gadget being fault tolerant is
made analogous to the conventional definition in ref. 1, so that the same
argument as in ref. 1 is applicable to our protocol. When a level-(l − 1)
circuit simulates a level-l circuit, this argument leads to the fact that,
if the level-(l − 1) circuit undergoes the local statistic error model, the
level-l circuit also does. Then, let p0 be the physical error rate of level-0
locations, and pl denote the logical error rate of level-l locations at each
level l. The conventional argument for the threshold theorem proves
that the logical error rates are upper bounded by the probability
of having two errors in an ExRec, that is, pl ≦ A(l)p2l−1 for each l (ref. 1),
which leads to pl ≦ 2αlp2

l−1 . Using this bound recursively, we can
prove that the logical error rate pL is bounded by pL ≦ (22αp0)

2L /22α ,
as shown in Supplementary Section E. This shows the existence of a
threshold pth ≧ 2−2α > 0 such that the logical error rate pL ≦ (p0/pth)

2L
pth

can be suppressed doubly exponentially in L if the physical error
rate satisfies p0 < pth. Note that the same argument as ours for the
threshold existence holds even in cases where the exponent αl of 2αl
in equation (13) is replaced with poly(l). For example, even if the
gadgets had O(poly(N(l))) depths due to architectural overhead or
insufficient parallelization, a threshold would still exist.

Remarkably, a practical threshold is also achievable with minor
modifications to our protocol. Any quantum code with one logical
qubit can be concatenated with 𝒬𝒬(L) by using the logical qubit of the
code in place of each level-0 qubit of 𝒬𝒬(L), as long as the code can imple-
ment required operations for our fault-tolerant protocol at level 0,
namely preparation of a qubit in |0⟩, a single-qubit measurement in
the Z basis and the H, S, CNOT, CZ, Pauli and Ry(±π/4) gates. For
example, we can concatenate the surface code and 𝒬𝒬(L) and replace
physical operations for our fault-tolerant protocol at concatenation
level 0 with the corresponding logical operations on the surface code.

Indeed, the surface code has well-established procedures for imple-
menting logical operations for universal quantum computation79,80.
Thus, we can use the logical qubit of a constant-size surface code in
place of each physical qubit of 𝒬𝒬(L) in our protocol. With this modifica-
tion, we can achieve the same threshold as that of the surface code, and
at the same time attain the constant overhead asymptotically. See
also Supplementary Section E regarding further options for protocol
modifications for a better threshold.

We also remark that the above lower bound 2−2α of the non-zero
threshold value pth, derived here for the rigorous proof of its existence
is not necessarily close to pth. Thus, it would be misleading to use 2−2α as
an estimate of pth. To estimate pth, one needs to perform a more precise
numerical simulation, which is essential for finding out which part of
the protocol is a bottleneck to be modified for further improvement.
In addition to the threshold value itself, the achievable logical error
rate at a finite concatenation level may also be of interest. After all,
what matters to FTQC in practice is the overall balance of the protocol,
depending on the specific settings of the error model and the architec-
tural constraint. We leave the numerical simulation of the protocols
based on concatenating quantum Hamming codes for future work,
but our theoretical contribution is fundamental for research towards
such a practical direction.

Analysis of space and time overhead
We sketch the analysis of space and time overheads of our fault-tolerant
protocol. See Supplementary Section F for further details.

To achieve the constant space overhead, our protocol uses the
code 𝒬𝒬(L) with a non-vanishing rate of logical qubits per physical
qubit. However, it is still non-trivial to achieve the constant space
overhead since the protocol may additionally use auxiliary level-(l − 1)
registers in level-l gadgets for implementability. Crucially, we design
each level-l gadget to use only a constant number of auxiliary level-(l − 1)
registers per encoded level-l register, so as to keep the overall space
overhead constant

O(1) asM→∞, (14)

including physical qubits used for the auxiliary registers.
To save time overhead, it is essential to realize gates acting on all

the level-L registers in parallel. At the same time, it is also crucial to
keep the code size for sufficient error suppression as small as possible.
After all, a smaller code size leads to a faster preparation of auxiliary
states for gate teleportation and thus a smaller time overhead in imple-
menting each gate acting on the level-L registers. As our threshold
analysis shows, the suppression of the logical error rate pL = exp(−O(2L))
in our protocol is exponentially faster than the growth of the code size
N(L) = exp(O(L2)) of 𝒬𝒬(L). By choosing L = Θ(log log(M/ϵ)), we can reduce
the overall error in simulating the original circuit to ϵ. With this
choice, the size of each code block 𝒬𝒬(L) becomes only quasi-
polylogarithmic N(L) = exp(O(L2)) = exp(O(log2(log(M/ϵ)))). On the other
hand, each gadget in our protocol is designed to be implementable
within at most polynomial time in the code size. Therefore, this code
size leads to the quasi-polylogarithmically small time overhead

exp (O(log2(log(M/ϵ)))) (15)

in implementing the gates and thus in simulating the original circuit.
This time overhead includes that for preparing auxiliary states for gate
teleportation and error correction, and also that for waiting for the
non-zero-time classical computation during the protocol, such as the
ones required for the decoder and the gate teleportation.

Data availability
The data used in this study are available from the corresponding author
upon reasonable request.

http://www.nature.com/naturephysics

Nature Physics

Article https://doi.org/10.1038/s41567-023-02325-8

Code availability
The codes used in this study are available from the corresponding
author upon reasonable request.

References
64.	 Steane, A. M. & Ibinson, B. Fault-tolerant logical gate networks for

calderbank-shor-steane codes. Phys. Rev. A 72, 052335 (2005).
65.	 Cleve, R. & Gottesman, D. Efficient computations of encodings for

quantum error correction. Phys. Rev. A 56, 76–82 (1997).
66.	 Paetznick, A. & Reichardt, B. W. Fault-tolerant ancilla preparation

and noise threshold lower boudds for the 23-qubit golay code.
Quantum Inf. Comput. 12, 1034–1080 (2012).

67.	 Steane, A. M. Fast fault-tolerant filtering of quantum codewords.
Preprint at https://arxiv.org/abs/quant-ph/0202036 (2002).

68.	 Bennett, C. H. et al. Teleporting an unknown quantum state via
dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev.
Lett. 70, 1895–1899 (1993).

69.	 Chao, R. & Reichardt, B. W. Quantum error correction with only
two extra qubits. Phys. Rev. Lett. 121, 050502 (2018).

70.	 Chamberland, C. & Beverland, M. E. Flag fault-tolerant error
correction with arbitrary distance codes. Quantum 2, 53 (2018).

71.	 Chao, R. & Reichardt, B. W. Flag fault-tolerant error correction for
any stabilizer code. PRX Quantum 1, 010302 (2020).

72.	 Bravyi, S. & Kitaev, A. Universal quantum computation with ideal
clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005).

73.	 Knill, E. Fault-tolerant postselected quantum computation:
schemes. Preprint at https://arxiv.org/abs/quant-ph/0402171
(2004).

74.	 Yamasaki, H., Fukui, K., Takeuchi, Y., Tani, S. & Koashi, M.
Polylog-overhead highly fault-tolerant measurement-based
quantum computation: all-Gaussian implementation with
Gottesman–Kitaev–Preskill code. Preprint at https://arxiv.org/
abs/2006.05416 (2020).

75.	 Goto, H. Minimizing resource overheads for fault-tolerant
preparation of encoded states of the steane code. Sci. Rep. 6,
19578 (2016).

76.	 Chamberland, C. & Cross, A. W. Fault-tolerant magic state
preparation with flag qubits. Quantum 3, 143 (2019).

77.	 Aaronson, S. & Gottesman, D. Improved simulation of stabilizer
circuits. Phys. Rev. A 70, 052328 (2004).

78.	 Patel, K. N., Markov, I. L. & Hayes, J. P. Optimal synthesis of linear
reversible circuits. Quantum Inf. Comput. 8, 282–294 (2008).

79.	 Horsman, C., Fowler, A. G., Devitt, S. & Meter, R. V. Surface code
quantum computing by lattice surgery. N. J. Phys. 14, 123011
(2012).

80.	 Litinski, D. A game of surface codes: large-scale quantum
computing with lattice surgery. Quantum 3, 128 (2019).

Acknowledgements
H.Y. acknowledges K. Fujii and Y. Suzuki for comments in the meeting
of JST PRESTO. This work was supported by JSPS Overseas Research
Fellowships, JST PRESTO grant no. JPMJPR201A and JST (Moonshot
R&D, grant no. JPMJMS2061).

Author contributions
H.Y. and M.K. contributed to the conception of the work, the analysis
and interpretation in the work, and the preparation and revision of the
manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s41567-023-02325-8.

Correspondence and requests for materials should be addressed to
Hayata Yamasaki.

Peer review information Nature Physics thanks Nicolas Delfosse and
the other, anonymous, reviewers for their contribution to the peer
review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

http://www.nature.com/naturephysics
https://arxiv.org/abs/quant-ph/0202036
https://arxiv.org/abs/quant-ph/0402171
https://arxiv.org/abs/2006.05416
https://arxiv.org/abs/2006.05416
https://doi.org/10.1038/s41567-023-02325-8
http://www.nature.com/reprints

	Time-Efficient Constant-Space-Overhead Fault-Tolerant Quantum Computation

	Concatenated code at non-vanishing rate

	Efficient decoder

	Fault-tolerant protocol

	Provable existence of a threshold

	Space and time overheads

	Tolerance for architectural overheads

	Conclusion and outlook

	Online content

	Fig. 1 The construction of the concatenated code .
	Fig. 2 A comparison of the space overheads between our code and the concatenated seven-qubit code.
	Fig. 3 Compilation in our fault-tolerant protocol.

