Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum-inspired classical algorithms for molecular vibronic spectra

Abstract

Plausible claims for quantum advantage have been made using sampling problems such as random circuit sampling in superconducting qubit devices, and Gaussian boson sampling in quantum optics experiments. Now, the major next step is to channel the potential quantum advantage to solve practical applications rather than proof-of-principle experiments. It has recently been proposed that a Gaussian boson sampler can efficiently generate molecular vibronic spectra, which are an important tool for analysing chemical components and studying molecular structures. The best-known classical algorithm for calculating the molecular spectra scales super-exponentially in the system size. Therefore, an efficient quantum algorithm could represent a computational advantage. However, here we propose an efficient quantum-inspired classical algorithm for molecular vibronic spectra with harmonic potentials. Using our method, the zero-temperature molecular vibronic spectra problems that correspond to Gaussian boson sampling can be exactly solved. Consequently, we demonstrate that those problems are not candidates for quantum advantage. We then provide a more general molecular vibronic spectra problem, which is also chemically well motivated, for which our method does not work and so might be able to take advantage of a boson sampler.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular vibronic spectra generation using boson sampling and the proposed classical algorithm by computing the Fourier components of the spectra.
Fig. 2: Molecular vibronic spectra of formic acid (CH2O2, 11A′→12A′) generated by directly computing all the probabilities and by the solution obtained using an equation in the main text.

Similar content being viewed by others

Data availability

Source data are provided with this paper.

References

  1. Nielsen, M. A. & Chuang, I. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2002).

  2. Shor, P. W. Algorithms for quantum computation: discrete logarithms and factoring. In Proc. 35th Annual Symposium on Foundations of Computer Science 124–134 (IEEE, 1994).

  3. Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  4. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Wu, Y. et al. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127, 180501 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Zhong, H.-S. et al. Phase-programmable Gaussian boson sampling using stimulated squeezed light. Phys. Rev. Lett. 127, 180502 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Huh, J., Guerreschi, G. G., Peropadre, B., McClean, J. R. & Aspuru-Guzik, A. Boson sampling for molecular vibronic spectra. Nat. Photon. 9, 615–620 (2015).

    Article  CAS  ADS  Google Scholar 

  10. Barone, V., Bloino, J. & Biczysko, M. Vibrationally-resolved electronic spectra in Gaussian 09. Rev. A 02, 1 (2009).

    Google Scholar 

  11. Hamilton, C. S. et al. Gaussian boson sampling. Phys. Rev. Lett. 119, 170501 (2017).

    Article  PubMed  ADS  Google Scholar 

  12. Aaronson, S. & Arkhipov, A. The computational complexity of linear optics. In Proc. Forty-Third Annual ACM Symposium on Theory of Computing 333–342 (ACM, 2011).

  13. Deshpande, A. et al. Quantum computational advantage via high-dimensional Gaussian boson sampling. Sci. Adv. 8, eabi7894 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Arrazola, J. et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 54–60 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Shen, Y. et al. Quantum optical emulation of molecular vibronic spectroscopy using a trapped-ion device. Chem. Sci. 9, 836–840 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Paesani, S. et al. Generation and sampling of quantum states of light in a silicon chip. Nat. Phys. 15, 925–929 (2019).

    Article  CAS  Google Scholar 

  17. Wang, C. S. et al. Efficient multiphoton sampling of molecular vibronic spectra on a superconducting bosonic processor. Phys. Rev. X 10, 021060 (2020).

    CAS  ADS  Google Scholar 

  18. Quesada, N. & Arrazola, J. M. Exact simulation of Gaussian boson sampling in polynomial space and exponential time. Phys. Rev. Research 2, 023005 (2020).

    Article  CAS  ADS  Google Scholar 

  19. Wu, B. et al. Speedup in classical simulation of Gaussian boson sampling. Sci. Bull. 65, 832–841 (2020).

    Article  CAS  Google Scholar 

  20. Bulmer, J. F. F. et al. The boundary for quantum advantage in Gaussian boson sampling. Sci. Adv. 8, eabl9236 (2022).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  21. Quesada, N. et al. Quadratic speed-up for simulating Gaussian boson sampling. PRX Quantum 3, 010306 (2022).

    Article  ADS  Google Scholar 

  22. Oh, C., Lim, Y., Fefferman, B. & Jiang, L. Classical simulation of boson sampling based on graph structure. Phys. Rev. Lett. 128, 190501 (2022).

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  23. Drucker, A. & de Wolf, R. Quantum proofs for classical theorems. Theory Comput. Grad. Surv. 2, 1–54 (2011).

    Google Scholar 

  24. Shin, S. W., Smith, G., Smolin, J. A. & Vazirani, U. How ‘quantum’ is the D-Wave machine? Preprint at https://arxiv.org/abs/1401.7087 (2014).

  25. Heim, B., Rønnow, T. F., Isakov, S. V. & Troyer, M. Quantum versus classical annealing of Ising spin glasses. Science 348, 215–217 (2015).

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  26. Tang, E. A quantum-inspired classical algorithm for recommendation systems. In Proc. 51st Annual ACM SIGACT Symposium on Theory of Computing 217–228 (ACM, 2019).

  27. Gilyén, A., Lloyd, S. & Tang, E. Quantum-inspired low-rank stochastic regression with logarithmic dependence on the dimension. Preprint at https://arxiv.org/abs/1811.04909 (2018).

  28. Aaronson, S. Chinese BosonSampling experiment: the gloves are off. https://scottaaronson.blog/?p=5159 (2020).

  29. Doktorov, E., Malkin, I. & Man’Ko, V. Dynamical symmetry of vibronic transitions in polyatomic molecules and the Franck-Condon principle. J. Mol. Spectrosc. 64, 302–326 (1977).

    Article  ADS  Google Scholar 

  30. Gurvits, L. On the complexity of mixed discriminants and related problems. In International Symposium on Mathematical Foundations of Computer Science 447–458 (Springer, 2005).

  31. Aaronson, S. & Hance, T. Generalizing and derandomizing Gurvits’s approximation algorithm for the permanent. Quantum Inf. Comput. 14, 541–559 (2014).

    MathSciNet  Google Scholar 

  32. Hassanieh, H., Indyk, P., Katabi, D. & Price, E. Nearly optimal sparse Fourier transform. In Proc. Forty-Fourth Annual ACM Symposium on Theory of Computing 563–578 (ACM, 2012).

  33. Drummond, P. & Gardiner, C. Generalised p-representations in quantum optics. J. Phys. A: Math. Gen. 13, 2353 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  34. Drummond, P. D., Opanchuk, B., Dellios, A. & Reid, M. D. Simulating complex networks in phase space: Gaussian boson sampling. Phys. Rev. A 105, 012427 (2022).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  35. Janszky, J. & Vinogradov, A. V. Squeezing via one-dimensional distribution of coherent states. Phys. Rev. Lett. 64, 2771 (1990).

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  36. Vargas-Martínez, J., Moya-Cessa, H. & Fernández Guasti, M. Normal and anti-normal ordered expressions for annihilation and creation operators. Rev. Mex. Fis. E 52, 13 (2006).

    MathSciNet  Google Scholar 

  37. Walls, D. F. & Milburn, G. J. Quantum Optics (Springer Science & Business Media, 2007).

  38. Huh, J. & Yung, M.-H. Vibronic boson sampling: generalized Gaussian boson sampling for molecular vibronic spectra at finite temperature. Sci. Rep. 7, 7462 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  39. Baiardi, A., Bloino, J. & Barone, V. General time dependent approach to vibronic spectroscopy including Franck-Condon, Herzberg-Teller, and Duschinsky effects. J. Chem. Theory Comput. 9, 4097–4115 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huh, J. & Berger, R. Coherent state-based generating function approach for Franck–Condon transitions and beyond. In Journal of Physics: Conference Series 380, 012019 (IOP Publishing, 2012).

  41. Hollas, J. M. High Resolution Spectroscopy (Butterworth-Heinemann, 2013).

  42. Hollas, J. M. Modern Spectroscopy (John Wiley & Sons, 2004).

  43. Braunstein, S. L. Squeezing as an irreducible resource. Phys. Rev. A 71, 055801 (2005).

    Article  ADS  Google Scholar 

  44. Björklund, A., Gupt, B. & Quesada, N. A faster hafnian formula for complex matrices and its benchmarking on a supercomputer. ACM J. Exp. Algorithmics 24, 1–17 (2019).

    Article  MathSciNet  Google Scholar 

  45. Quesada, N. Franck-Condon factors by counting perfect matchings of graphs with loops. J. Chem. Phys. 150, 164113 (2019).

    Article  PubMed  ADS  Google Scholar 

  46. Barvinok, A. I. Two algorithmic results for the traveling salesman problem. Math. Oper. Res. 21, 65–84 (1996).

    Article  MathSciNet  Google Scholar 

  47. Barvinok, A. Combinatorics and Complexity of Partition Functions Vol. 9 (Springer, 2016).

  48. Kan, R. From moments of sum to moments of product. J. Multivar. Anal. 99, 542–554 (2008).

    Article  MathSciNet  Google Scholar 

  49. Jnane, H. et al. Analog quantum simulation of non-Condon effects in molecular spectroscopy. ACS Photonics 8, 2007 (2021).

    Article  CAS  Google Scholar 

  50. Jahangiri, S., Arrazola, J. M., Quesada, N. & Delgado, A. Quantum algorithm for simulating molecular vibrational excitations. Phys. Chem. Chem. Phys. 22, 25528 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Sparrow, C. et al. Simulating the vibrational quantum dynamics of molecules using photonics. Nature 557, 660–667 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  52. McArdle, S., Mayorov, A., Shan, X., Benjamin, S. & Yuan, X. Digital quantum simulation of molecular vibrations. Chem. Sci. 10, 5725–5735 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sawaya, N. P. & Huh, J. Quantum algorithm for calculating molecular vibronic spectra. J. Phys. Chem. Lett. 10, 3586–3591 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Sawaya, N. P., Paesani, F. & Tabor, D. P. Near- and long-term quantum algorithmic approaches for vibrational spectroscopy. Phys. Rev. A 104, 062419 (2021).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank N. Quesada, J. Huh, S. Irani, B. O’Gorman, J. Whitfield and N. Sawaya for interesting and fruitful discussions. B.F. acknowledges support from AFOSR (YIP nos. FA9550-18-1-0148 and FA9550-21-1-0008). This material is based on work partially supported by the National Science Foundation (NSF) under Grant CCF-2044923 (CAREER) and by the US Department of Energy (DOE), Office of Science, National Quantum Information Science Research Centers, as well as by DOE QuantISED grant DE-SC0020360. We acknowledge support from the ARO (W911NF-18-1-0020 and W911NF-18-1-0212), ARO MURI (W911NF-16-1-0349 and W911NF-21-1-0325), AFOSR MURI (FA9550-19-1-0399 and FA9550-21-1-0209), AFRL (FA8649-21-P-0781), DOE Q-NEXT, NSF (EFMA-1640959, OMA-1936118, EEC-1941583, OMA-2137642), NTT Research and the Packard Foundation (2020-71479). This research was supported in part by the NSF under PHY-1748958. Y.L. acknowledges the National Research Foundation of Korea for a grant funded by the Ministry of Science and ICT (NRF-2020M3E4A1077861) and KIAS Individual Grant (CG073301) at the Korea Institute for Advanced Study. We also acknowledge the University of Chicago’s Research Computing Center for their support of this work.

Author information

Authors and Affiliations

Authors

Contributions

C.O., Y.L. and Y.W. developed the theory, and C.O. wrote the paper. B.F. and L.J. directed the research and developed the theory. All authors edited the paper.

Corresponding author

Correspondence to Changhun Oh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Alexandra Moylett and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–10 and Fig. 1.

Source data

Source Data Fig. 2

Source data for the molecular vibronic spectra.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, C., Lim, Y., Wong, Y. et al. Quantum-inspired classical algorithms for molecular vibronic spectra. Nat. Phys. 20, 225–231 (2024). https://doi.org/10.1038/s41567-023-02308-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02308-9

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics