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Purification-based quantum error mitigation 
of pair-correlated electron simulations

An important measure of the development of quantum computing 
platforms has been the simulation of increasingly complex physical 
systems. Before fault-tolerant quantum computing, robust error-mitigation 
strategies were necessary to continue this growth. Here, we validate recently 
introduced error-mitigation strategies that exploit the expectation that the 
ideal output of a quantum algorithm would be a pure state. We consider the 
task of simulating electron systems in the seniority-zero subspace where all 
electrons are paired with their opposite spin. This affords a computational 
stepping stone to a fully correlated model. We compare the performance 
of error mitigations on the basis of doubling quantum resources in time or 
in space on up to 20 qubits of a superconducting qubit quantum processor. 
We observe a reduction of error by one to two orders of magnitude below 
less sophisticated techniques such as postselection. We study how the gain 
from error mitigation scales with the system size and observe a polynomial 
suppression of error with increased resources. Extrapolation of our results 
indicates that substantial hardware improvements will be required for 
classically intractable variational chemistry simulations.

The prospect of accurately simulating ground states of quantum sys-
tems on quantum hardware has motivated substantial theory and hard-
ware developments over the last decade. With fault-tolerant quantum 
computing in its infancy1 and many years from promised applications2–6, 
attention has focused on algorithms requiring only short-depth quan-
tum circuits, such as the variational quantum eigensolver (VQE)7,8. 
Theoretical developments in ansatz design8–13 and measurement opti-
mization14–18 have enabled small to midscale VQE experiments11,19–26. A 
key target of variational quantum algorithms has been the electronic 
structure problem in chemistry8,11,19–23,27. Such simulations are challeng-
ing to implement on quantum hardware due to a long-range two-body 
fermionic Hamiltonian and stringent accuracy requirements. This 
makes it unclear whether a beyond-classical simulation of chemistry 
can be achieved without fault tolerance. Determining the requirements 
for such a simulation is a critical open problem.

The electronic structure problem can be expressed in models of 
varying complexity and realism. Quantum simulations of chemistry 
in the Hartree–Fock (mean-field) approximation were implemented 
for system sizes up to 12 qubits in ref. 23, and to our knowledge, this 

study retains the record for the largest VQE calculation of a chemical 
ground state on quantum hardware. As a next step, one can consider 
working in the seniority-zero subspace of the entire Hilbert space, 
which assumes all electrons come in spin-up or spin-down pairs12,28–33. 
This has the advantage of projecting a local fermionic problem onto a 
local qubit problem12. The S0 ground state is not a priori classically effi-
ciently simulatable12 (although good approximate methods are known 
to exist for many problems33–35). This makes it a good stepping stone 
beyond Hartree–Fock towards the full electronic structure problem.

Recent quantum experiments have relied on error-mitigation tech-
niques36, which are not scalable like error correction1,37 but promise to 
substantially shrink experimental errors. Popular methods are based 
on postselection38,39, rescaling24,40,41, purification23,42–44 and probabilistic 
cancellation40,45. Various schemes and combinations of error-mitigation 
techniques have been implemented in practice20,22–26,46. However, many 
of these methods do not promise to remove bias to the level of accuracy 
needed for useful simulation of chemistry, or remain untested beyond 
few-qubit experiments. Shifting from non-interacting fermions to cor-
related electronic structure, one loses two error-mitigation advantages 
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state due to finite size effects48–50. This gives us a second physically 
relevant target to simulate and a qualitative feature (the cusp at g = 0) 
to resolve. The traditional order parameter for the BCS state,  
∆BCS =

1
2N
∑j(⟨aj↑aj↓⟩ + ⟨a†

j↓a
†
j↑⟩), is zero on the RG Hamiltonian ground 

state due to number conservation. However, ∆ = 1
N
∑j,σ√⟨n2

jσ
⟩ − ⟨njσ⟩

2 

satisfies Δ = ΔBCS for the BCS ground state of the Hamiltonian, giving a 
many-body-order parameter49. In Fig. 1c, we plot experimental esti-
mates of Δ across the range of g values considered. In the absence of 
error mitigation, although the order parameter dips around g = 0, the 
true cusp is not reproduced. Both EV and PS-VD clearly improve over 
the BCS approximation for g > 0.5, with EV particularly able to repro-
duce the cusp at g = 0. We measure the performance of the 
error-mitigation techniques by plotting the error in Δ against the 
noise-free UpCCD result in Fig. 1d. The suppression (equation (1), y = Δ) 
from EV and PS-VD during order-parameter estimation is slightly less 
than for energy estimation: for EV, we find η̄Δ = 32 and max(ηΔ) = 56; 
and for PS-VD, we find η̄Δ = 18 and max(ηΔ) = 51.

We now study the scaling of the studied error-mitigation tech-
niques for the RG model over system sizes N = 4, 6, 8, 10. In Fig. 2a, 
we plot the absolute error in the energy estimates, averaged across 
all points in Fig. 1, and repeat this for different system sizes N. (Plots 
equivalent to Fig. 1 for different system sizes can be found in Sup-
plementary Information Section VI.D.) We observe that the energy 

that were crucial to the success of ref. 23: efficient density-matrix purifica-
tion by means of McWeeny iteration47, and low-cost gradient estimation.

In this work, we compare the performance of three different 
error-mitigation techniques—postselection, echo verification (EV) and 
virtual distillation (VD)—on the problem of preparing ground states in 
the seniority-zero space, using up to 20 qubits of a superconducting 
quantum processor. Using either EV or postselected VD, we are able 
to accurately reproduce the ground-state energy and order param-
eter for an N = 10–qubit simulation of the Richardson–Gaudin (RG) 
model, improving over unmitigated estimates by one to two orders 
of magnitude. This demonstrates an improvement over classical pair 
coupled-cluster doubles (pCCD) and the non-interacting Bardeen–
Cooper–Schrieffer (BCS) theory, neither of which are qualitatively 
correct over the entire range of coupling values considered. We study 
the scaling of the mean absolute error in energy and the order param-
eter with the system size and observe that EV and VD suppress errors 
by a factor Nα for values of α between 0.8 and 2.5. EV was further able 
to greatly mitigate error of six- and ten-qubit simulations of the ring 
opening of cyclobutene (CB). Although the stringent error require-
ments (<0.05 Hartree) to differentiate between mean-field and the 
exact solution could only be achieved for the six-qubit case, this still 
represents the largest VQE simulation of electronic structure for 
chemistry that we are aware of so far. From these data, we are able to 
estimate the minimum requirements for a beyond-classical quantum 
simulation of similar form: a 25× decrease in hardware error rates 
(from those observed in this work), a limit of O(N) depth for future 
variational ansatzes and the need to pre-optimize ansatzes classically 
without intermediate calls to a device. Even if this list of requirements 
is achieved, meeting the high level of accuracy required for the elec-
tronic structure problem will pose a serious challenge, as chemical 
accuracy is around 60× less than our mean accuracy for the ten-qubit 
CB problem.

The RG model
We first prepare approximate ground states of the RG model on ten 
sites at half-filling across a range of coupling strengths g. This model 
is chosen as a well-known benchmark with well-understood exact and 
approximate solutions. We work in the seniority-zero space (where all 
electrons are paired with their opposite spin) and use a unitary pair 
coupled cluster doubles (UpCCD) variational ansatz12 with parameters 
optimized in noiseless simulation. In Fig. 1a, we estimate the prepared 
states’ energy using various error-mitigation techniques: postselec-
tion, EV and postselected virtual distillation (PS-VD). We compare 
these results to exact diagonalization in the S0 subspace (also known 
as double occupied configuration interaction) and classical pCCD and 
BCS solutions. We see that using EV or PS-VD, we are able to reproduce 
the entire energy curve to high accuracy, which neither pCCD nor the 
non-interacting BCS theory can achieve. The experimental error in the 
result is the sum of the UpCCD model error and the experimental error. 
To disambiguate the effects of UpCCD model error, in Fig. 1b we plot 
the error between our experimental data and the UpCCD ground-state 
energy. The observed gain from error mitigating some estimate y can 
be quantified by the suppression factor

ηy = | yraw − ytrue|/| ymit − ytrue|. (1)

We summarize this across our experimental data in Table 1. For the 
energy (y = E), we find PS-VQE consistently achieves ηE ≈ 2, whereas EV 
achieves η̄E = 85  and max(ηE) = 460  and VD achieves η̄E = 60   
and max(ηE) = 140. The residual error following EV or PS-VD fluctuates 
on a scale larger than statistical error bars, which we attribute to  
device drift.

The RG Hamiltonian has a well-known phase transition in the 
attractive regime (g ≤ 0) in the thermodynamic limit, which appears  
in the BCS state at finite N but is not present in the true ground  
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Fig. 1 | Digital quantum simulation of ground states of the RG model for 
ten spatial orbitals on a superconducting quantum device. a, Energy as a 
function of the coupling parameter g, estimated using various error-mitigation 
techniques (markers) and compared to classical models (lines). The classical 
pCCD results do not converge below a critical value, resulting in their cut-off. 
b, Log plot of experimental energy error (ignoring the model error from the 
UpCCD approximation). c, Many-body order parameter for the RG Hamiltonian 
(see text), again compared to classical models. d, Experimental error in 
estimating the superconducting order parameter versus the target state in the 
UpCCD approximation (again ignoring model error). Error bars show 1 standard 
deviation uncertainty from sampling noise, estimated by propagating variance 
(raw VQE, PS-VQE) or bootstrapping (EV, PS-VD); see Supplementary Information 
Section III for details. a.u., arbitrary units.
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error scales sublinearly after applying EV or VD, demonstrating an 
asymptotic difference from raw VQE or PS-VQE of a factor of ~N2. We 
similarly observe an ~N−N2 gap between EV/VD and VQE/PS-VQE in 
the order-parameter error (Fig. 2b); the difference in the suppression 
factor is not statistically significant. Next, we extract various fidelity 
metrics from the experimental data in Fig. 2c, which approximate the 
(inverse) increased variance of our error-mitigated estimators36. The 
data for PS-VQE (red plus), EV (green square) and PS-VD (yellow trian-
gle) directly correspond to the circuit overhead required by different 
error-mitigation techniques. These fidelity metrics allow us to estimate 
the required number of experiment repetitions to reduce statistical 
noise in the energy estimation to <0.1 a.u.(arbitrary units) in Fig. 2d, 
assuming ten-qubit fidelity is maintained. We observe a substantial gap 
between the experimental and theoretical sampling cost of EV (green 
squares). We attribute this to known overheads of EV that are not in the 
theoretical model (Supplementary Information Section IV.A).

CB ring opening
We further validated scalable error-mitigation protocols by simulat-
ing the conrotatory ring opening pathway for CB in an active space of 
six orbital and six electrons and ten orbitals and ten electrons corre-
sponding to a six- and ten-qubit simulation of the electronic structure 
Hamiltonian. The mechanism of this ring opening is described by the 
Woodward–Hoffmann rules for pericyclic ring openings correspond-
ing to the in-phase combination of the two carbon 2p orbitals when 
brought together to form the four-member carbon ring. Similar to the 
RG model, this was chosen as a well-known benchmark system with 
well-understood chemistry.

The geometries along the reaction path are determined from 
a nudged elastic-band calculation using density functional theory 
(B3LYP) to evaluate forces. The final structures use a minimal basis 
set (STO-3G) to generate the active-space Hamiltonians to project 
into the seniority-zero sector. The Woodward–Hoffmann rules are a 
type of molecular orbital theory, and thus we expect this reaction to 
be qualitatively described in mean-field theory. This is verified numeri-
cally for our seniority-zero model where the largest configuration 
interaction coefficient has an average value of 0.974(9) for six orbitals 
and 0.973(9) for ten orbitals, indicating a single-reference system. As 
such, our unitary pCCDs ansatz targets the dynamic correlation cor-
rections to the mean field.

The average PS-VQE absolute error is 0.058 ± 0.006 and 
0.395 ± 0.023 Hartree, and the mean suppression factor is η̄E = 5.0 
and 2.9 for the six- and ten-orbital systems, respectively. The average 
echo-verified absolute error is 0.011 ± 0.005 and 0.064 ± 0.035 Har-
tree and the mean suppression factor (equation (1)) is η̄E = 54 and 38 
for the six- and ten-orbital system respectively. Although there is 
notable improvement in energy across the reaction pathway for the 

ten-orbital system, the magnitude of the errors is larger than the 0.037 
Hartree energy difference between CB and 1,3-butadiene. Further-
more, a visual inspection of Fig. 3 indicates high parallelity errors in 
the ten-orbital system. Given that the error bars on EV are smaller 
than the parallelity error (point scatter), we attribute the main source 
of error to device drift.

Discussion and outlook
Many of the features of our experimental data can be understood 
physically. The similar performance of EV and PS-VD can be under-
stood following the equivalence of the two techniques shown in  
refs. 46,51, which treat EV as purification of two states separated in 
time. However, this equivalence is broken by the further circuitry of 
the two techniques: EV requires Greenberger-Horne-Zeilinger (GHZ) 
state preparation, whereas VD requires bell-basis measurements and 
more routing. This doubles the susceptibility of the VD fidelity to 
measurement noise, to which we attribute the gap between this and 
the EV fidelity in Fig. 2c. Despite the fidelity gap, we observe PS-VD 
has a substantially smaller sampling cost than EV, which comes from 
known measurement bottlenecks52 and overhead to reduce on-chip 
magnetic field fluctuations (Supplementary Information Section II.D). 
We can attribute the gap in performance between VD with and without 

Table 1 | Observed mean and maximum suppression factors 
η̄η̄η̄ and max(η) (equation (1)) across the RG problems studied 
in Fig. 1 and the CB problems studied in Fig. 3, for all 
error-mitigation methods studied

System Metric PS-VQE EV PS-VD

RG (ten qubits, 
energy)

η̄E 2.1 86 54

max(ηE) 2.5 460 120

RG (ten qubits, 
order parameter)

η̄Δ 1.6 32 18

max(ηΔ) 1.9 56 51

CB (six qubits, 
energy)

η̄E 5.0 54 –

max(ηE) 5.2 140 –

CB (ten qubits, 
energy)

η̄E 2.9 38 –

max(ηE) 3.0 190 –
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and lines a power-law fit. b, Experimental error in order parameter (versus the 
UpCCD ground state) averaged over all points studied of the RG model. Error 
bars and lines same as a. c, Different fidelity metrics for PS-VQE, EV, PS-VD and 
Loschmidt (LS) echo (see legend) averaged over all points studied of the RG 
model. d, Number of shots required for convergence at g = −0.9. Crosses and 
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symbols give experimental shots used.
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postselection to this further measurement circuitry (Supplementary 
Information Section VI.A): we suggest that the bell-basis measure-
ments used are not robust to noise that does not conserve particle 
number and that the primary effect of postselection is to mitigate this 
noise source. The performance improvement of EV/VD over postselec-
tion is expected from numerical predictions in refs. 42,44 and analytic 
results of ref. 53 (although we show in Supplementary Information 
Section VI.B that this cannot be guaranteed). Finally, we can explain 
the qualitative feature in Fig. 1 around g = 0, where the energy error 
drops but the order parameter error increases. This comes from two 
coincidental effects: Δ is more sensitive to error around Δ = 0, but at 
this point the energy becomes less dependent on off-diagonal terms, 
reducing its sensitivity to phase noise.

We now consider how the required number of experiment repeti-
tions (shots) scales to classically intractable simulations, using the 
data in Fig. 2d. Taking a 50-qubit experiment as a proxy lower bound 
for a beyond-classical quantum computation, and assuming the ability 
to freely weight our shot distribution, we estimate that at least 108 or 
109 shots would be required when using VD or EV, respectively. This is 
executable on current hardware in a wall-clock time of >1 hour or >10 
hours, respectively. Including the difference between experiment 
and theory at ten qubits raises the cost of EV to 5 × 1010 shots, which 
would require several days to achieve. These numbers do not include 
the large multiplicative cost of variational optimization. Furthermore, 
the requirements for accurate electronic structure simulations may 
be lower than the 0.1 a.u. requirement considered here. Methods to 

pre-optimize variational ansatzes classically and applications of VQE 
to problems simpler than electronic structure may thus be necessary 
for beyond-classical VQE experiments.

Next, we consider what device fidelity would be required to scale 
to a beyond-classical experiment. To maintain circuit fidelity F over a 
depth 3N/2, fully parallel circuit as N scales from 10 to 50 requires all 
error rates to drop by a factor of 25 (~N2). As any reduction in F incurs 
a poly(F−1) sampling cost42,44, and as F scales exponentially in the error 
rate, and as F ≈ 10% for PS-VD (Fig. 2d), we see little room for negotiation 
on this 25× lower bound. To achieve a 25× decrease in error rate would 
require a 50-qubit device with fidelities on all two-qubit gates ≤3 × 10−4. 
This analysis likely precludes a large number of ansatzes with depth 
much greater than linear. For instance, successfully implementing a 
50-qubit VQE with ansatz depth 3N2/2 with EV or VD would require error 
rates to drop ~1,000×. However, the sublinear scaling in the energy 
error following the application of EV or VD (Fig. 2a) indicates that a 25× 
decrease in error rate would be sufficient to deal with the bias in the 
resulting experiment; the dominant cost of error-mitigated quantum 
experiments comes from the sampling and fidelity requirements. 
Confirming this point in studies on other systems is a key target for 
future work.

We have observed that EV and VD suppress errors by one to two 
orders of magnitude on a range of quantum simulation problems 
using up to 20 superconducting qubits. We further observe that 
the error-suppression performance of these mitigation techniques 
increases with the number of qubits. This allows us to conclude that 
variance, not bias, will be the limiting factor in purification-based 
error-mitigation techniques going forward. As our error-mitigation 
protocols target expectation values themselves and are blind to the 
outer loops combining these to estimate energies or order param-
eters, we expect these results to hold for a wider range of problems 
than the VQE examples studied here. Any algorithm using circuits with 
similar structure, such as time evolution on spin chains, or brick-wall 
parameterized quantum circuits for quantum machine learning, 
should see similar gains in performance. Testing whether this extends 
to more generic circuits (for example, higher-dimensional or sparse 
circuits, or primitive circuits for fault tolerance54) is a clear target 
for future work.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
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acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Methods
Simulating the seniority-zero subspace
The seniority of a Slater determinant is the number of unpaired elec-
trons; thus, the seniority-zero (S0) sector of Hilbert space for an 
N-electron system in M orbitals is the space of ( M

N/2
) determinants leaving 

no electrons unpaired given a particular pairing of the spin orbitals. 
Seniority is not a global symmetry of the electronic structure Hamil-
tonian, and it is basis dependent; it has been used as a way to classify 
determinant subspaces to generate better approximations for solving 
the Schrödinger equation28,29,31,32 and as a starting point for modelling 
strong correlations from electron-pair states55.

Supported by the S0 subspace, there exists a set of operators sat-
isfying the su(2) algebra constructed from pairs of fermion ladder 
operators and the spatial orbital number operator56

P†p = a†pαa
†
pβ
, N = ∑

p,σ
a†pσapσ,

[Pp,P†q] = (1 − Np)δp,q, [Np,Pq] = −2Pqδp,q,
(2)

where p, q and α, β are orbital and spin indices, respectively, and δ is 
the Kronecker delta function. These operators form a basis for Ham-
iltonians projected into the S0 subspace. The equivalence to an su(2) 
algebra means seniority-zero models resemble Heisenberg spin −1/2 
models, which are easily expressed as Pauli operators.

In this work, we focus on two Hamiltonians to validate 
purification-based error-mitigation strategies. The first is the RG or 
pairing model

̂H =
N

∑
p=1

ϵpNp + g
N

∑
p≠q=1

P†pPq, (3)

with εp the single-particle energy for site p, and g the coupling strength. 
At small N this corresponds to a single strength all-to-all coupling of 
fermion pairs. In this Article, we work at half-filling by adding a chemical 
potential μ to the single-particle energies:

ϵp = p − μ, μ = 1
2 (N + 1) (4)

This is a model for a small superconducting grain when g < 0  
(refs. 48–50), but with a g-dependent Debye frequency49. The second 
model is the electronic structure Hamiltonian (Helec) projected into 
the S0 subspace:

HS0 = PS0HelecPS0 = ∑
p
(hp,p)Np

+ 1
4 ∑

p≠q
(2Vpqpq − Vpqqp)NpNq +∑

pq

(Vppqq)P†pPq,
(5)

where h and V are the one- and two-body term coefficients. The 
all-to-all connected Heisenberg spin Hamiltonian is not known to be 
classically solvable in general, but good approximate methods exist. 
This is especially true for the RG model, which is often integrable35, 
well-approximated by density-matrix renormalization group34 and 
pair coupled-cluster techniques in the repulsive regime and solvable 
by quantum Monte Carlo in the attractive regime (where it has no sign 
problem). Pair coupled-cluster theory is also known to work well for 
the electronic structure problem in the S0 subspace29,57–59 while full 
configuration interaction quantum Monte Carlo shows a reduced 
sign problem60. As such, although we have strong evidence that the 
quantum circuits used in this text are not classically simulatable (Sup-
plementary Information Section II.A), we do not believe directly scaling 
S0 simulations represents the easiest path to a quantum advantage in 
chemistry; this is instead a stepping stone between a mean-field solu-
tion and the full electronic structure problem.

The unitary pair coupled-cluster ansatz and energy estimation
In this work, we use a Trotterized UpCCD ansatz12 compiled into a set 
of qubits in a ladder geometry with nearest-neighbour coupling. The 
ladder ansatz (instead of a generic ring) allows us to efficiently measure 
terms in the Hamiltonian corresponding qubits that are not physically 
adjacent after encoding with a minimal number of SWAP operations. 
When mapped from fermions to qubits, the UpCCD ansatz has the form

U(θθθ) =
Nℓ

∏
ℓ

Ue(θe,ℓ)Uo(θo,ℓ) (6)

Uo(θo,ℓ) =
N/2−1
∏
n=0

GS2n+1,(2n+2)%N (θo,l
2n+1,(2n+2)%N) (7)

Ue(θe,ℓ) =
N/2−1
∏
n=0

GS2n,2n+1 (θe,l
2n,2n+1) (8)

where each GSij(θ) is a Givens SWAP gate corresponding to the product 
of a Givens rotation gate by an angle θ on a pair labelled by qubits i and 
j followed by a SWAP operation12

GS(ϕ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦⏟⎵⎵⎵⏟⎵⎵⎵⏟

SWAP

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 cos(ϕ) − sin(ϕ) 0

0 sin(ϕ) cos(ϕ) 0

0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟

Givens

. (9)

The GS gate corresponds to a coherent partial pair excitation (by the 
angle ϕ) followed by a pair SWAP. Given several layers Nℓ in equation 
(6) and total number of qubits N, there are a total of NℓN/2 free param-
eters in the ansatz. To minimize the amount of time qubits are idle, we 
order the spatial orbitals such that the Fermi vacuum is |0101…01⟩—for 
example, the restricted Hartree–Fock state—corresponding to an 
interleaved list of occupied and virtual orbital labels in ascending 
energy order. The Hamiltonian qubit ordering is then chosen such that 
when all θ = 0, the Hartree–Fock state for each model is returned. The 
alternating SWAP gate arrangement allows us to couple each occupied 
pair with each unoccupied pair once in depth N/2 (Supplementary 
Information Section II.C). Thus, in this work, we set Nℓ = N/2 for all 
systems. Each GS(θ) gate is compiled into a product of three 
controlled-Z (CZ) gates interleaved with tunable single-qubit micro-
wave gates (Extended Data Fig. 1, top; see Supplementary Information 
Section II.B for decompositions).

To perform energy estimation on our two S0 models, expectation 
values with respect to nearest-neighbour and non-nearest-neighbour 
qubits are required. The expectation value 〈XiXj + YiYj〉 is estimated by 
performing a number-preserving diagonalization16,23 mapping the 
expectation value to the difference of 〈Zi〉 and 〈Zj〉. The ladder geometry 
allows us to measure all non-nearest-neighbour pairs across the rungs 
of the ladder in a similar fashion at the further cost of at most one SWAP 
operation. The full measurement protocol is detailed further in Sup-
plementary Information Section II.C. All-to-all coupling is achieved in 
N circuits, bringing the total number of different circuits to measure 
the Hamiltonian’s expectation value to N + 1. Strategies with fewer cir-
cuits exist, but they do not allow for postselection on particle number.

EV and VD
EV, introduced in ref. 44, is an error-mitigation technique that uses two 
copies of a quantum state |ψ⟩ reflected in time (preparation ↔ unprepa-
ration) to estimate 〈ψ∣O∣ψ〉 for a unitary O (refs. 46,52). EV can be imple-
mented without control gates, given a known reference eigenstate |ϕ⟩ 
of O orthogonal to |ψ⟩ (here |ϕ⟩ = |00…⟩). To implement (control-free) 
EV, we act O on a prepared superposition of |ψ⟩ and |ϕ⟩, generated by 
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acting our UpCCD ansatz on the cat state |00…0⟩ + |0101…01⟩ .  
Then, we estimate the expectation value of |ϕ⟩ ⟨ψ| (the term |ϕ⟩ ⟨ψ| is  
not Hermitian but may be written as a sum of the Hermitian  
operators |ϕ⟩ ⟨ψ| + |ψ⟩ ⟨ϕ|  and i |ϕ⟩ ⟨ψ| − i |ψ⟩ ⟨ϕ|) on the resulting state  
|Ψ ⟩ = O

1
√2
(|ψ⟩ + |ϕ⟩). The estimation is performed by inverting the prepa-

ration unitary. In total, adding control-free EV to a variational circuit 
requires doubling the circuit depth and adding circuitry to prepare 
and unprepare GHZ states. This will reduce the fidelity of the  
final circuit from F to < F2. As experiment runtime scales inversely with 
circuit fidelity, this will cost us slightly in the experiment.

To estimate expectation values by means of EV, we use the fact that

⟨Ψ |ϕ⟩⟨ψ|Ψ ⟩ = 1
2 ⟨ψ|O|ψ⟩e

iϕ, (10)

where O |ϕ⟩ = eiϕ |ϕ⟩. The expectation value 〈ψ∣O∣ψ〉 can be recovered 
from equation (10) as the other terms are known. The largest effect of 
noise on the echo-verified estimator (equation (10)) is to dampen 〈Ψ∣ϕ〉
〈ψ∣Ψ〉 → F〈Ψ∣ϕ〉〈ψ∣Ψ〉 (ref. 44). We can estimate F independently by 
removing O from the circuit, which yields a Loschmidt echo of the 
preparation unitary61. This is achieved in practice by removing a virtual 
Z rotation (Extended Data Fig. 1, bottom), making the estimated 
Loschmidt fidelity an accurate estimate of F. Further EV implementa-
tion details can be found in Supplementary Information Section II.D.

VD42,43 is an error-mitigation technique that uses collective meas-
urements of k copies of a state ρ to estimate expectation values with 
respect to ρk/Tr[ρk], where Tr is the trace. VD schemes are based on the 
observation that the cyclic shift operator S(k) is easily diagonalized and 
therefore can be measured, which yields, for example, for k = 2,

Tr[ρ⊗ ρS(2)] = Tr[ρ2],Tr[ρ⊗ ρS(2)Os] = Tr[ρ2O], (11)

with Os =
1
2
(I⊗O +O⊗ I), and I is the identity. S(2) can be simultaneously 

diagonalized with Os when O = Zi by a GS(π/4) rotation between pairs 
of identified qubits on the two registers. For two N/2 × 2 ladders on a 
square lattice geometry, this requires one round of SWAP gates to shift 
identified qubits next to each other. Operators O ≠ Zi are measured by 
rotating to Zi (Section 4.2) and following the above procedure. The VD 
circuit is only six two-qubit gates deeper than PS-VQE. However, as we 
double the number of qubits used, we more than double the total circuit 
size and reduce the total circuit fidelity again from F to <F2.

As the GS(π/4) gate is number-conserving, VD can be combined 
with postselection: the global excitation number ∑j(Zj ⊗ I + I ⊗ Zj) is 
a good symmetry. This requires that the state before measurement 
also conserve number. This is true when estimating 〈XiXj + YiYj〉 but not 
when estimating 〈ZiZj〉: when mapping ZiZj → Zi, one can only preserve 
the parity of the total number of excitations. In the main text of this 
work, we present results showing VD with postselection only (PS-VD). 
We compare VD with and without postselection in Supplementary 
Information Section VI.A.

Data availability
Raw and processed experimental data can be found at https://doi.
org/10.5281/zenodo.7225821.

Code availability
Code to generate quantum circuits and process raw data is available in 
ReCirq: https://github.com/quantumlib/ReCirq.
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Extended Data Fig. 1 | The UpCCD ansatz and its compilation to a 2D 
superconducting transmon grid. (top) Decomposition of the gates used in 
this experiment to CZ and single-qubit gates. See Supplementary Information 
Section II.B for details. (second from top, left) 2 × 5 grid with couplers in a square 
lattice geometry, showing couplers used during the ansatz (ring coupler, purple) 
and those used only during measurement (cross-coupler, red). (second from 

top, right) 2+1D circuit cartoon of a combined ansatz and measurement on a 2 × 5 
transmon qubit array. (third from top) Cartoon of error-mitigation techniques 
used in this experiment. Different circuit pieces are described in the legend. 
(bottom) an example 8-qubit echo verification circuit to measure the expectation 
value of (X1X7 + Y1Y7 + Z1 + Z7)/2. Shaded gates at the top and bottom of the qubit 
array wrap around the 2 × 4 ring.
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