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Memory-induced Magnus effect
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Spinning objects moving through air or a liquid experience a lift force—a 
phenomenon known as the Magnus effect. This effect is commonly exploited 
in ball sports but also is of considerable importance for applications in 
the aviation industry. Whereas Magnus forces are strong for large objects, 
they are weak at small scales and eventually vanish for overdamped 
micrometre-sized particles in simple liquids. Here we demonstrate a roughly 
one-million-fold enhanced Magnus force of spinning colloids in viscoelastic 
fluids. Such fluids are characterized by a time-delayed response to external 
perturbations, which causes a deformation of the fluidic network around 
the moving particle. When the particle also spins, the deformation field 
becomes misaligned relative to the particle’s moving direction, leading 
to a force perpendicular to the direction of travel and the spinning axis. 
Our uncovering of strongly enhanced memory-induced Magnus forces at 
microscales opens up applications for particle sorting and steering, and the 
creation and visualization of anomalous flows.

When a spinning object travels through a fluid, its trajectory is typically 
curved. Although Isaac Newton was the first to describe it in 1671 (ref. 1), this 
effect is commonly named after Heinrich Gustav Magnus, who provided a 
physical explanation on the influence of rotation on the motion of objects2. 
Nowadays, the Magnus effect is well established and is not only used in ball 
games but also exploited, for example, as an economic propulsion mecha-
nism for ships3–6 and to provide lifting forces for air vehicles7. In addition 
to such applications, Magnus effects are also relevant for understanding 
planet formation in protoplanetary disks8 and the behaviour of ions in 
superfluids9,10 and are even discussed in the context of the motion of vortex 
lines in superconductors11,12. In general, the Magnus force results from an 
asymmetry of the velocity field in the medium around a translating and 
simultaneously rotating object. According to the Bernoulli equation, this 
results in pressure inhomogeneities near the object and a force perpen-
dicular to the direction of travel: that is, the Magnus force FM = f(ω × v), 
an expression that is also expected to be valid for viscous liquids at small 
Reynolds numbers13. Here the Magnus coefficient f quantifies the coupling 
of the particle to its surroundings, and ω and v are the angular and linear 
velocities of the object relative to the fluid, respectively. Although in most 
cases f > 0, it can be also negative: for example, at high velocities, when the 
flow around the object is partially turbulent7,14, or when spinning objects 
move through rarefied gases or granular media15–17. Whereas Magnus 

forces can be very strong for large objects, they are weak at small scales. 
In the case of Brownian particles—that is, micrometre-sized particles in 
simple fluids—Magnus forces eventually vanish, because viscous forces 
dominate over inertial effects18,19. Therefore, applications of Magnus forces 
in such systems are rare.

Here we report the experimental observation of a strong 
memory-induced Magnus effect for spinning micrometre-sized col-
loidal particles moving through an overdamped viscoelastic fluid. 
Unlike viscous—that is, Newtonian—liquids, which instantaneously 
respond to external perturbations, viscoelastic fluids are characterized 
by stress-relaxation times τ on the order of seconds or more20,21. Similar 
to the Magnus force FM generated in a viscous liquid, in viscoelastic 
liquid the memory-induced Magnus force FmM = ̃f(ω × v) is exerted 
on a translating and spinning object. The coefficient ̃f < 0, and its 
amplitude is larger than f (that is, the coefficient in a pure viscous fluid) 
by a factor of more than 106. Our experimental results are in excellent 
agreement with a theoretical description in which the time-delayed 
response of the fluid around a moving object is modelled by a density 
dipole. Although this dipole points in the direction of v for a pure 
translational particle motion, it is rotated when the particle also exhib-
its a spinning motion. As a result, a force component perpendicular to 
the driving force arises, which eventually leads to FmM. This model also 
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at which both fluids exhibit pronounced viscoelastic behaviours as 
confirmed by microrheological experiments28,29 (see Methods and 
Supplementary Fig. 2 for details).

To demonstrate that conventional Magnus forces in colloidal 
systems are vanishingly small when suspended in merely viscous—that 
is, Newtonian—fluids18,19, we first studied the motion of a colloidal 
particle in a water-glycerol mixture. Figure 1c shows the corresponding 
trajectory of a particle subjected to a rotating magnetic field 
(H = 732 A m−1) and a driving force F = 156 fN. The rotation direction of 
H is periodically reversed from clockwise to anticlockwise to rule out 
the possible influence of particle drift in the y direction. In our experi-
mental resolution, no particle deflection from the direction of the 
driving force is observed. This is consistent with the theoretically 
predicted conventional Magnus force in viscous liquids in the limit of 
low Reynolds numbers, FM = πρ(σ/2)3ω × v, where ρ is the fluid  
mass density13,19. For our liquid, this yields a deflection angle 
θd = arctan(FM/F) ≪ 0.0002∘  (considering ω ≪ ωH), which is below  
the experimental resolution. When repeating the experiment in a 
viscoelastic fluid, however, a pronounced deflection of the trajectory 
is observed (Fig. 1d). From the measured velocity ratio |vy/vx|, we deter-
mine the deviation angle θd = arctan(|vy/vx|) ≈ 15∘ . The deflection 
changes its direction when we reverse the direction of rotation of H. 
Although we are particularly interested in the angular motion of the 
spinning particles, it cannot be resolved for the case of single colloidal 
spheres. Therefore, in the following, we use colloidal trimers whose 
angular motion is easily measured and that show almost identical 
behaviour (Fig. 1e and Supplementary Videos 1 and 2). For details about 
the formation of such trimers, we refer readers to the Methods section. 
For trimers with a spinning frequency ω = 0.97 rad s−1 and drift velocity 
vx = 0.16 μm s−1, we find an angular deflection θd ≈ 14.4∘, which dem-
onstrates a force pointing in the direction −ω × v.

To quantify our observations, we measured the velocity ratio |vy/vx| 
as a function of the trimer spinning velocity ω and for different driving 
forces F (Fig. 2a). At small ω, we observe for both viscoelastic fluids a 
linear behaviour that eventually saturates for larger ω (Fig. 2a, inset). 
In addition, |vy/vx| is independent of vx when ω is kept constant (Fig. 2b). 
Both findings indicate that in the linear regime, a memory-induced 

explains our experimental finding that when the particle’s spinning 
motion is stopped, the force FmM remains and only decays after time τ. 
Because our findings should apply to many viscoelastic fluids, we 
expect that this unusual type of Magnus force will lead to new applica-
tions—for example, in the field of particle sorting and steering—as well 
as the creation and visualization of anomalous flows22–26.

In our experiments, we use superparamagnetic colloidal spheres 
(diameter σ = 4.45 μm) suspended in a viscoelastic fluid (see below) 
and contained in a thin sample cell. Owing to gravity, the particles 
sediment towards the bottom surface of the cell, where they remain 
during our experiments. We note, however, that trajectories similar to 
those that will be discussed have also been recorded for particles far 
from any surface (Supplementary Information). The colloid motion is 
imaged with a video camera mounted to an inverted microscope. After 
each experiment, the data are analysed using digital video microscopy. 
The microscope is mounted on a tilting stage, which allows an external 
(gravitational) drift force F = mg sinα x̂ to be exerted on each particle. 
Here mg = 286 fN is the buoyant particle weight (obtained by multiply-
ing the buoyant mass m and the acceleration of gravity g), α the tilting 
angle and x̂ the unit vector along the x direction. The angle α can be 
tuned between 0° and 35°, which leads to a maximum driving force of 
about 160 fN for a single particle or 480 fN for a colloidal trimer (see 
below). Additionally, we use two perpendicular pairs of coils (Fig. 1a,b) 
that create a rotating magnetic field H(t) in the sample plane, with 
components Hx(t) = H cosωHt  and Hy(t) = H sinωHt . The frequency 
ωH = 20π s−1 is fixed in our experiments. The rotating H induces a rotat-
ing magnetization M in the colloidal particles. Owing to a phase lag in 
M, the rotating magnetic field applies a torque Γ = |M × H| ∝ H2 to the 
colloid spheres. This results in a spinning motion with angular fre-
quency ω ∝ Γ (see Methods and Supplementary Fig. 1 for details).

Two different types of viscoelastic fluids were used in our experi-
ments: (1) a solution of entangled giant wormlike micelles27 composed 
of about 5 mM equimolar cetylpyridinium chloride monohydrate 
(CPyCl) and sodium salicylate (NaSal) dissolved in water, and (2) a 
semidilute aqueous polymer solution of polyacrylamide (PAAM) with 
molecular weight 18 MDa and mass concentration 0.03%. All our experi-
ments have been performed at a constant sample temperature of 25 °C, 
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Fig. 1 | Memory-induced Magnus force acting on colloidal particles in viscous 
and viscoelastic fluids. a, Illustration of a superparamagnetic colloid sphere 
spinning at angular frequency ω (rotation axis in z direction) and driven by a force 
F along x direction through a viscoelastic fluid. b, Sketch of the experimental 
setup, with two perpendicular pairs of magnetic coils generating a rotating 
magnetic field H(t) with frequency ωH, in the xy plane. Due to a magnetic 
torque the colloid is set into a spinning motion with ω ≪ ωH. c,d, Trajectories 

(green) of spinning colloidal particles driven through a fluid with H = 732 A m−1, 
ωH = 20π s−1 and F = 156 fN. The sign of the spinning direction is periodically 
reversed, as indicated by the curved arrows. c, Single colloidal particle in a purely 
viscous water-glycerol (1:1 by weight) mixture, for a colloid driving velocity 
vx = 0.288 μm s−1. d, Single colloidal particle in a 5 mM micellar solution with 
vx = 0.065 μm s−1 and θd ≈ 15.0°. e, Colloidal trimer in the same micellar solution 
with vx = 0.178 μm s−1 and θd ≈ 14.4°.
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Magnus force FmM = ̃f(ω × v)  is acting on the colloidal trimer, with 
prefactor ̃f  depending on the colloid–fluid interaction.

For a theoretical understanding of the above observations, we first 
consider a non-spinning particle moving at velocity v due to an external 
force F through a viscoelastic fluid. Owing to the finite stress-relaxation 
time τ, a front-back inhomogeneity in the fluid builds up around the 
particle. It can be characterized by a density dipole p∥ pointing in the 
direction of v (Fig. 3a, top, and Supplementary Information)20,30–33. In 
linear response theory34, the time-dependent magnitude of p∥ is given 
by a history integral of the force

p∥(t) = ∫
t

−∞
χT(t − t′)F(t′)dt′, (1)

where χT(t) is a memory kernel that characterizes the dipole relaxation 
dynamics35. Experimentally, χT(t) can be determined when the driv-
ing force acting on the particle is suddenly removed. This results in a 
restoring force antiparallel to p∥, leading to a recoil motion opposite to 
the driving direction. Figure 3b (see also Supplementary Videos 3 and 
4) shows such recoil for a colloidal trimer driven by a magnetic field 
gradient force that was turned off at t = 0. In agreement with previous 
studies, the recoil is well described by a double-exponential decay33,36. 
From these data, we immediately obtain the memory kernel χT(t), as 
shown in Fig. 3c (see details in Supplementary Information).

When the particle is also set into a spinning motion by an external 
torque Γ, the orientation of the density dipole in the xy plane changes 
by an angle θp (Fig. 3a, bottom) due to the particle-fluid interaction. 
Accordingly, one obtains a dipole p = p∥ + p⊥, with p⊥ the component 
perpendicular to F. Similar to the restoring force caused by p∥, a force 
perpendicular to F is caused by p⊥. This perpendicular force is identi-
fied as the memory-induced Magnus force FmM, which is proportion 
to −p⊥. We consider the regime where p⊥ is a linear function of F and Γ, 
for which we find (see details in Supplementary Information)

p⟂(t) = ∫
t

−∞
dt′χR(t − t′)Γ (t′)p∥(t′). (2)

Here χR(t) is the memory kernel associated with the relaxation of the 
dipole component p⊥. Because in the range of our experiments we have 
Γ ∝ ω and p∥ ∝ F ∝ vx (Supplementary Fig. 3), this leads to p⊥ ∝ ωvx or 

FmM = ̃f(ω × v), in agreement with the observations in Fig. 2. As a side 
note, we mention that after the particle starts to move in the y direction 
under the influence of FmM, this motion creates—similar to p∥—a further 
density dipole that is opposite to p⊥ and reduces the velocity compo-
nent vy. This effect is already included in equation (2) by considering 
χR(t) for a moving particle.

According to equation (2), p⊥ (and hence FmM) should not instan-
taneously vanish when we remove the external torque applied to the 
particle. This means the particle motion in the y direction decays 
on a timescale given by χR(t) that characterizes how fast p⊥ decays 
to zero. To demonstrate this, Fig. 3d shows for t < 0 the motion of a 
trimer in the y direction under the influence of a force F = 468 fN in 
the x direction and torque Γ = 66.6 pN μm. When Γ is set to zero at 
t = 0 s, the cluster’s motion in the y direction decays only on a time-
scale of several tens of seconds. This decay can be directly compared 
to the corresponding prediction (solid line) of equation (2) when 
assuming χR(t) ∝ χT(t). Such proportionality is plausible because 
the susceptibilities describe relaxations of dipole fields in different 
directions and can thus be expected to be similar due to isotropy of 
the quiescent fluid.

On the basis of the dipole-rotation picture as described in Fig. 3a, we 
also construct a simple Maxwell-like model for the time dependence of 
the dipole orientation ϕ, which contains a driving term proportional to 
the applied torque Γ and a restoring term owing to the relaxation of p⊥:

ϕ̇ = C Γ

γR
− ϕ

τ (3)

with γR the steady-state rotational friction coefficient, so that Γ/γR = ω is 
the rotational velocity of the colloid and C ≤ 1 is a constant that describes 
the coupling between the rotation of the colloid and that of the density 
dipole. In the absence of Γ, the solution of equation (3) relaxes expo-
nentially with a timescale τ. We remark that recent experiments37 as 
well as Fig. 3b demonstrate that the relaxation process of a colloidal 
particle in a micellar fluid is governed by two timescales. For the sake 
of a minimal model, however, here only a single relaxation time is con-
sidered. Under steady-state driving conditions, the value of the dipole 
orientation angle ϕ becomes

θp = Cωτ. (4)
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Fig. 2 | Dependence of translational and angular velocities. a, Measured 
velocity ratio |vy/vx| (left axis) and deflection angle |θd| (right axis) of a colloidal 
trimer in a micellar fluid as a function of its rotational speed ω for an applied force 
F = 468 fN in x direction (orange circles), 321 fN (purple triangles) and 180 fN 
(blue squares), respectively. The dashed line is a fit to all data with equation 
|vy/vx| = kω and the fitting parameter k = 0.201 ±0.008 s. Inset: |vy/vx| as a function 
of ω for a colloidal trimer driving through viscoelastic PAAM (black circles) 
and micellar solutions (blue circles). The dashed line indicates a linear relation 
between |vy/vx| and ω. The vertical arrow indicates, for micellar solution, the 

theoretically predicted angular frequency where |vy/vx| saturates. b, |vy/vx| and 
|θd| versus the drift velocity vx for colloidal trimer in PAAM (black circles) and 
micellar solutions (blue circles). The data in PAAM and micellar solutions were 
obtained at magnetic fields H = 976 A m−1 and H = 732 A m−1, respectively, which 
correspond to a rotational trimer velocity of ω ≈ 0.17 rad s−1 and ω ≈ 1.2 rad s−1. 
Dashed lines indicate |vy/vx| = 0.52 and |vy/vx| = 0.23. The scatter in a and b is due 
to the measurements being performed with different colloidal trimers whose 
properties (magnetization, size, surface properties) vary slightly.
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Considering that the dipole force, the viscous force and the exter-
nal force must balance altogether, this leads to a simple relationship 
between θp and the velocity ratio |vy/vx| (see Supplementary Informa-
tion for details):

|||
vy
vx
||| = rθp = rCωτ. (5)

Here r is the dimensionless recoil ratio given by the ratio of the particle 
velocities immediately after and before turning off the driving force. 
From the typical recoil shown in Fig. 3b for the micellar system, we 
determine that r ≈ 1.8 ± 0.1 (a similar analysis can be applied to the 
PAAM solutions to obtain the corresponding r; see Supplementary  
Fig. 2). Equation (5) allows us to estimate ̃f  defined above by interpret-
ing the motion in y to arise from the force FmM. It yields ̃f = −rCτγ, with 
γ the translational friction coefficient. By fitting equation (5) to the 
linear part of our data shown in the Fig. 2a inset, we obtain 
rCτ = 0.146 ± 0.013 s, or | ̃f | = 0.95 ± 0.08 pN s2 μm−1, considering 
γ = 6.50 ± 0.09 pN s μm−1 in 5 mM micellar fluid (Supplementary  
Fig. 3). This is considerably larger than the Magnus coefficient for a 
viscous liquid, which is f = πρ(2σ/2)3 = 0.28 × 10−6 pN s2 μm−1 (for this 
estimate, we have approximated the cluster of three colloids, each with 
diameter σ, with a single spherical particle with diameter 2σ). We have 
also performed similar experiments in micellar solutions at a lower 
micellar concentration (4 mM), where the fluid is only slightly viscoe-
lastic. As expected, at such low concentrations, the Magnus coefficient 

becomes considerably smaller (still much larger than in viscous liquid) 
compared to that in 5 mM due to weak colloid–fluid interaction  
(Supplementary Fig. 4).

In the above framework, we also obtain a simple estimate for 
the upper limit of ω where the linear relation between |vy/vx| and ω 
ends. Assuming that the magnitude of p⊥ cannot exceed that of the 
original dipole, this yields |vy/vx| < r (Supplementary Information). 
From this, one obtains a rough estimate of the saturation velocity, 
ωsat ≤ 1/Cτ ≈ 12 s−1, which is consistent with our data in the inset of  
Fig. 2a. Following a similar procedure, for a colloidal trimer in a poly-
mer fluid, we obtain a saturation velocity of about ωsat ≤ 1/Cτ ≈ 3.4 s−1.

As an alternative approach to Magnus forces, one can  
introduce a viscosity tensor η mM, which is defined by 
FmM = ̃f(ω × v) = −3πσηmM ⋅ v . Writing the cross product using  
the Levi-Civita symbol, FmM,i = − ̃fωe3ijvj , shows that ηmM is 
anti-symmetric. When also considering the translational friction 
force −γv to obtain the diagonal components of the viscosity tensor 
with the friction coefficient γ for ω = 0, introduced below equation (5), 
this yields, for ω pointing in the z direction,

3πσηij = (
γ ̃fω

− ̃fω γ
) . (6)

Such non-symmetric viscosity tensors (typically referred to as odd 
viscosity22–26,38,39), which generally result from the violation of Onsager’s 
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Fig. 3 | Theoretical model. a, Top, illustration of a colloidal particle moving at 
linear velocity v in a viscoelastic fluid. The linear motion deforms the microscopic 
network structure of the liquid, leading to a density gradient, as characterized by 
the density dipole p∥ parallel to v. Bottom, when the particle is also set into 
rotation ω, the dipole is rotated in the xy plane by an angle θp, which leads  
to the deflection of the particle trajectory by an angle θd. b, Measured x 
displacement of a non-spinning trimer (orange symbols) during a recoil 
experiment in which the trimer is first driven with velocity v0 = 0.95 μm s−1 
through the micellar fluid and the applied force is suddenly removed at t,x = 0. 
The data are normalized by v0. The solid line represents a fitting to the equation 
x = a1 exp(−t/τ1) + a2 exp(−t/τ2) − a1 − a2, with a1 = 3.14 μm, τ1 = 5.20 s, 

a2 = 7.60 μm and τ2 = 44.5 s. Inset: Magnified region near t = 0. From the ratio of 
the slopes (as indicated by the dashed lines) after and before t = 0, we obtain the 
recoil ratio r = 1.8 ± 0.1. c, The memory kernel χT(t) (normalized by χT(0)) as defined 
in equation (1), which is derived from the fitted curve shown in b. d, Measured 
(orange symbols) y(t) displacement of a trimer in a micellar fluid that is subjected 
for t < 0 to a driving force F = 468 fN in the x direction and a torque Γ = 66.6 pN μm. 
After we set Γ = 0 at t = 0, the displacement in the y direction decays only after 
about 44.5 s. The data are averaged over 11 measurements, with the error bars 
corresponding to the standard deviation. The solid line is the theoretically 
predicted trajectory y(t) = 0.093[a1 exp(−t/τ1) + a2 exp(−t/τ2) − a1 − a2], with 
a1, τ1, a2 and τ2 the same as in b.
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reciprocal relations40,41, are caused in our system by the time-delayed 
dynamics of the density dipole. Accordingly, the off-diagonal elements 
of the viscosity tensor can easily be tuned by means of the rotation 
frequency.

In summary, our work demonstrates that Magnus forces, which 
typically vanish in the realm of small Reynolds numbers, can be surpris-
ingly strong in the case of viscoelastic fluids owing to their time-delayed 
response to perturbations. In addition to rotating magnetic fields, 
which have been used in our study to induce a spinning motion, electri-
cal42 and optical fields43 have also been shown to impose considerable 
torques on particles down to the nanometre scale. This allows the 
use of Magnus forces to be extended to the regime of small Reynold 
numbers, which may lead to new types of microswimmers and strate-
gies for steering and sorting particles as well as visualizing complex 
flow patterns in liquids. Finally, we remark that our observations bear 
some phenomenological resemblance to elastic turbulence. Unlike 
turbulence in Newtonian liquids, which only arises at high Reynolds 
numbers, turbulent flow patterns in viscoelastic fluids have already 
been observed for Re ≈ 10−3 (ref. 44).
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Methods
Sample preparation
We prepare highly diluted colloidal suspensions of superparamagnetic 
spheres (Dynabeads M-450, diameter ~4.5 μm) dispersed in a viscoe-
lastic fluid. The number density (roughly 108 per litre) corresponds to 
fewer than ten colloid spheres in our field of view, 240 × 300 μm2. For 
viscoelastic fluid, we use either a polymer solution or a micellar solu-
tion. The polymer solution is a semidilute aqueous solution of PAAM 
with molecular weight 18 MDa and mass concentration 0.03%. The 
micellar solution is an equimolar, aqueous solution of CPyCl and NaSal. 
The molar density is 5.5 mM for the data in Fig. 2a and 5.0 mM for the  
Fig. 2a inset and all other relevant data. To make a colloid sample,  
we inject the colloid suspension into a glass sample cell about 
20 × 10 × 0.2 mm3 in size, where 0.2 mm is the sample thickness. After 
the sample is made, it is transferred to an inverted Nikon microscope 
where we can observe the motion of the colloid. During the experiment, 
the temperature of the sample is kept at 25 ± 1 °C using a flow thermostat.

Formation of colloidal trimers
The rotating magnetic field creates an effective long-range attrac-
tion (∝r3) between the magnetic colloids45. In the presence of a 
rotating magnetic field with H = 732 A m−1, colloidal particles with 
distances of ~5σ experience a strong attraction and form dense clusters  
(Supplementary Video 5). To increase the chance of particle encounters 
during the cluster formation process, the sample stage is tilted by ~10°. 
This leads to the formation of rigid and stable colloidal clusters with 
random sizes, including trimers.

Calibration of magnetic torques
Due to the large viscosity in our experiments, the rotating speed of the 
colloids is much less than the rotating frequency 10 Hz of the magnetic 
field. This leads to a time-averaged magnetic torque of Γ = γmH2 (ref. 46) 
applied by the rotating magnetic field, as shown in Fig. 1b. In steady 
rotation, the magnetic torque balances the viscous torque of the fluid: 
that is, Γ = γRω, where γR = 6πησ3 for colloid trimers47. This leads to 
ω = kH2, where k = γm/γR. To calibrate the magnetic torque, we first rotate 
the colloid trimer in water, where the measured rotating speed ω of a 
colloid trimer as a function of H exactly follows the equation ω = kH2, as 
shown in Supplementary Fig. 1, with the fitted k = 3.26 × 10−5 m2 A−2 s−1. 
Considering the measured η = 1.29 × 10−3 Pa s for water and the colloid 
diameter σ = 4.45 μm s−1, we obtain γm = 6.99 × 10−5 pN μm A−2 m2.

Colloidal recoils with time-dependent magnetic gradients
Because gravitational drift forces on the particles cannot be suddenly 
changed, the translational recoil curves shown in Fig. 3b are meas-
ured using a permanent magnet whose position in the sample plane 
can be suddenly changed (<0.1 s) with a mechanical spring-loaded 
device. To do so, we first put the magnet close to the sample cell, where 

the magnetic field gradient leads to a constant drift velocity for the  
trimers. When we activate the spring-loaded retraction mechanism, 
the magnet is pulled away and the colloidal recoil sets in.

Data availability
Source data are provided with this paper. All relevant data are also  
available from the corresponding author on reasonable request.
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