Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fluctuation-enhanced phonon magnetic moments in a polar antiferromagnet

Abstract

Phonons are the quasiparticles of collective lattice excitations that may carry finite angular momenta, but commonly exhibit negligible magnetic moments. A large phonon magnetic moment enables the direct mutual control of magnetic orders and lattice motions, and could be applied to develop spin–phononic devices. In some non- and paramagnetic systems, a large phonon magnetic moment is found due to coupling with electronic excitations. However, for magnetically ordered systems, a correspondingly large moment has not yet been discovered, and the roles of many-body correlations and fluctuations in phonon magnetism remain unclear. Here we report a phonon magnetic moment that is enhanced by critical fluctuations in a polar antiferromagnet, namely, Fe2Mo3O8. Combining magneto-Raman spectroscopy and inelastic neutron scattering measurements, we show that a pair of low-lying chiral phonons carry large magnetic moments. Once the system is driven to a ferrimagnetic phase, we observe a splitting between the chiral phonons of nearly a quarter of the phonon frequency. We also observe a sixfold enhancement in the phonon magnetic moment in the vicinity of the Néel temperature. A microscopic model based on the coupling between phonons and both magnons and paramagnons accounts for the experimental observations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Low-lying phononic excitation in Fe2Mo3O8.
Fig. 2: Large PMMs in Fe2Mo3O8 revealed by magneto-Raman spectroscopy.
Fig. 3: Giant chiral phonon splitting in the FiM phase of Fe2Mo3O8.
Fig. 4: Critical fluctuation-enhanced PMMs near the temperature.

Similar content being viewed by others

Data availability

All data that support the plots within this paper and other findings of this study are available from the corresponding authors upon request. Source data are provided with this paper.

References

  1. Nova, T. F. et al. An effective magnetic field from optically driven phonons. Nat. Phys. 13, 132 (2016).

    Article  Google Scholar 

  2. Maehrlein Sebastian, F. et al. Dissecting spin-phonon equilibration in ferrimagnetic insulators by ultrafast lattice excitation. Sci. Adv. 4, eaar5164 (2018).

    Article  ADS  Google Scholar 

  3. Stupakiewicz, A. et al. Ultrafast phononic switching of magnetization. Nat. Phys. 17, 489 (2021).

    Article  Google Scholar 

  4. Huang, B. et al. Tuning inelastic light scattering via symmetry control in the two-dimensional magnet CrI3. Nat. Nanotechnol. 15, 212 (2020).

    Article  ADS  Google Scholar 

  5. Jin, W. et al. Proc. Natl. Acad. Sci. U.S.A. 117, 24664 (2020).

  6. Juraschek, D. M., Narang, P. & Spaldin, N. A. Phono-magnetic analogs to opto-magnetic effects. Phys. Rev. Research 2, 043035 (2020).

    Article  ADS  Google Scholar 

  7. Zhang, L. & Niu, Q. Angular momentum of phonons and the Einstein–de Haas effect. Phys. Rev. Lett. 112, 085503 (2014).

    Article  ADS  Google Scholar 

  8. Zhang, L. & Niu, Q. Chiral phonons at high-symmetry points in monolayer hexagonal lattices. Phys. Rev. Lett. 115, 115502 (2015).

    Article  ADS  Google Scholar 

  9. Zhu, H. et al. Observation of chiral phonons. Science 359, 579 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  10. Tauchert, S. R. et al. Polarized phonons carry angular momentum in ultrafast demagnetization. Nature 602, 73 (2022).

    Article  ADS  Google Scholar 

  11. Juraschek, D. M. & Spaldin, N. A. Orbital magnetic moments of phonons. Phys. Rev. Mater. 3, 064405 (2019).

    Article  Google Scholar 

  12. Schaack, G. Observation of circularly polarized phonon states in an external magnetic field. J. Phys. C: Solid State Phys. 9, L297 (1976).

    Article  ADS  Google Scholar 

  13. Schaack, G. Magnetic field dependent splitting of doubly degenerate phonon states in anhydrous cerium-trichloride. Z. Phys. B 26, 49 (1977).

    Article  ADS  Google Scholar 

  14. Mills, D. L. & Ushioda, S. Exciton–optical-phonon coupling in CoF2. Phys. Rev. B 2, 3805 (1970).

    Article  ADS  Google Scholar 

  15. Cheng, B. et al. A large effective phonon magnetic moment in a Dirac semimetal. Nano Lett. 20, 5991 (2020).

    Article  ADS  Google Scholar 

  16. Baydin, A. et al. Magnetic control of soft chiral phonons in PbTe. Phys. Rev. Lett. 128, 075901 (2022).

    Article  ADS  Google Scholar 

  17. Ren, Y., Xiao, C., Saparov, D. & Niu, Q. Phonon magnetic moment from electronic topological magnetization. Phys. Rev. Lett. 127, 186403 (2021).

    Article  ADS  Google Scholar 

  18. Saparov, D., Xiong, B., Ren, Y. & Niu, Q. Lattice dynamics with molecular Berry curvature: chiral optical phonons. Phys. Rev. B 105, 064303 (2022).

    Article  ADS  Google Scholar 

  19. Hernandez, F. G. G. et al. Chiral phonons with giant magnetic moments in a topological crystalline insulator. Preprint at https://arxiv.org/abs/2208.12235 (2023).

  20. Pimenov, A. et al. Possible evidence for electromagnons in multiferroic manganites. Nat. Phys. 2, 97 (2006).

    Article  Google Scholar 

  21. Sushkov, A. B., Aguilar, R. V., Park, S., Cheong, S. W. & Drew, H. D. Electromagnons in multiferroic YMn2O5 and TbMn2O5. Phys. Rev. Lett. 98, 027202 (2007).

    Article  ADS  Google Scholar 

  22. Katsura, H., Balatsky, A. V. & Nagaosa, N. Dynamical magnetoelectric coupling in helical magnets. Phys. Rev. Lett. 98, 027203 (2007).

    Article  ADS  Google Scholar 

  23. Valdés Aguilar, R. et al. Colossal magnon-phonon coupling in multiferroic Eu0.75Y0.25MnO3. Phys. Rev. B 76, 060404 (2007).

    Article  ADS  Google Scholar 

  24. Valdes Aguilar, R. et al. Origin of electromagnon excitations in multiferroic RMnO3. Phys. Rev. Lett. 102, 047203 (2009).

    Article  ADS  Google Scholar 

  25. Seki, S., Kida, N., Kumakura, S., Shimano, R. & Tokura, Y. Electromagnons in the spin collinear state of a triangular lattice antiferromagnet. Phys. Rev. Lett. 105, 097207 (2010).

    Article  ADS  Google Scholar 

  26. Takahashi, Y., Shimano, R., Kaneko, Y., Murakawa, H. & Tokura, Y. Magnetoelectric resonance with electromagnons in a perovskite helimagnet. Nat. Phys. 8, 121 (2011).

    Article  Google Scholar 

  27. Smolenskiĭ, G. A. & Chupis, I. E. Ferroelectromagnets. Sov. Phys. Usp. 25, 475 (1982).

    Article  ADS  Google Scholar 

  28. Le Page, Y. & Strobel, P. Structure of iron(ii) molybdenum(iv) oxide Fe2Mo3O8. Acta Cryst. B38, 1265 (1982).

  29. Wang, Y. et al. Unveiling hidden ferrimagnetism and giant magnetoelectricity in polar magnet Fe2Mo3O8. Sci. Rep. 5, 12268 (2015).

    Article  ADS  Google Scholar 

  30. Ideue, T., Kurumaji, T., Ishiwata, S. & Tokura, Y. Giant thermal Hall effect in multiferroics. Nat. Mater. 16, 797 (2017).

    Article  ADS  Google Scholar 

  31. Kurumaji, T. et al. Electromagnon resonance in a collinear spin state of the polar antiferromagnet Fe2Mo3O8. Phys. Rev. B 95, 020405 (2017).

    Article  ADS  Google Scholar 

  32. Yu, S. et al. High-temperature terahertz optical diode effect without magnetic order in polar FeZnMo3O8. Phys. Rev. Lett. 120, 037601 (2018).

    Article  ADS  Google Scholar 

  33. Varret, F., Czeskleba, H., Hartmann-Boutron, F. & Imbert, P. Étude par effet Mössbauer de l’ion Fe2+ en symétrie trigonale dans les composés du type (Fe, M)2Mo3O8 (M = Mg, Zn, Mn, Co, Ni) et propriétés magnétiques de (Fe, Zn) 2Mo3O8. J. Phys. France 33, 549 (1972).

  34. Csizi, B. et al. Magnetic and vibronic terahertz excitations in Zn-doped Fe2Mo3O8. Phys. Rev. B 102, 174407 (2020).

    Article  ADS  Google Scholar 

  35. Squires, G. L. Introduction to the Theory of Thermal Neutron Scattering 3rd edn (Cambridge Univ. Press, 2012).

  36. Bradley, C. & Cracknell, A. The Mathematical Theory of Symmetry in Solids (Oxford Univ. Press, 2009).

  37. Anastassakis, E. & Burstein, E. Morphic effects. V. Time reversal symmetry and the mode properties of long wavelength optical phonons.J. Phys. C: Solid State Phys. 5, 2468 (1972).

    Article  ADS  Google Scholar 

  38. Strobel, P. & Le Page, Y. Growth and morphology of single crystals of hexagonal molybdates(iv) M2Mo3O8 (M = Mn, Fe, Co, Ni). J. Cryst. Growth 61, 329 (1983).

  39. Strobel, P., Page, Y. L. & McAlister, S. P. Growth and physical properties of single crystals of FeII2MoIV3O8. J. Solid State Chem. 42, 242 (1982).

  40. Kajimoto, R. et al. The Fermi Chopper Spectrometer 4SEASONS at J-PARC. J. Phys. Soc. Jpn 80, SB025 (2011).

    Article  Google Scholar 

  41. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  42. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  43. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  44. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  45. Togo, A., Oba, F. & Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 78, 134106 (2008).

    Article  ADS  Google Scholar 

  46. Wolff, U. Collective Monte Carlo updating for spin systems. Phys. Rev. Lett. 62, 361 (1989).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Li, J. Liu, S. Yu and O. Tchernsyhyov for valuable discussions. We thank R. Kajimoto and M. Nakamura for their help in carrying out the INS experiment. This work was supported by the National Key Research and Development Program of China (grant nos. 2020YFA0309200, 2021YFA1400400 and 2022YFA1403800), the National Natural Science Foundation of China (grant nos. 11974396, 12225407, 12074174, 12125404, 11974162 and 11834006) and the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDB33020300), as well as the Fundamental Research Funds for the Central Universities. S.B. thanks the support from the China Postdoctoral Science Foundation via grant nos. 2022M711569 and 2022T150315 and Jiangsu Province Excellent Postdoctoral Program via grant no. 20220ZB5. The phonon calculations were carried out using supercomputers at the High Performance Computing Center of Collaborative Innovation Center of Advanced Microstructures, the high-performance supercomputing centre of Nanjing University.

Author information

Authors and Affiliations

Authors

Contributions

Q.Z. conceived the project. S.B. grew the single crystals under the supervision of J.W. F.W. performed the magneto-Raman measurements and analysed the data under the supervision of Q.Z. S.B. and J.W. performed the INS measurements. Y.Wan. and J.Z. provided the theoretical analysis of the experimental data and performed the model calculations. Y.Wang. and J.S. performed the first-principles calculation of the phonon modes. Q.Z., Y.Wan. and F.W. wrote the manuscript with critical inputs from S.B., J.W. and all the other authors.

Corresponding authors

Correspondence to Jinsheng Wen, Yuan Wan or Qi Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, Table 1 and discussion.

Source data

Source Data Fig. 1

Statistical source data for Fig. 1.

Source Data Fig. 2

Statistical source data for Fig. 2.

Source Data Fig. 3

Statistical source data for Fig. 3.

Source Data Fig. 4

Statistical source data for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Bao, S., Zhou, J. et al. Fluctuation-enhanced phonon magnetic moments in a polar antiferromagnet. Nat. Phys. 19, 1868–1875 (2023). https://doi.org/10.1038/s41567-023-02210-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02210-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing