Abstract
Phonons are the quasiparticles of collective lattice excitations that may carry finite angular momenta, but commonly exhibit negligible magnetic moments. A large phonon magnetic moment enables the direct mutual control of magnetic orders and lattice motions, and could be applied to develop spin–phononic devices. In some non- and paramagnetic systems, a large phonon magnetic moment is found due to coupling with electronic excitations. However, for magnetically ordered systems, a correspondingly large moment has not yet been discovered, and the roles of many-body correlations and fluctuations in phonon magnetism remain unclear. Here we report a phonon magnetic moment that is enhanced by critical fluctuations in a polar antiferromagnet, namely, Fe2Mo3O8. Combining magneto-Raman spectroscopy and inelastic neutron scattering measurements, we show that a pair of low-lying chiral phonons carry large magnetic moments. Once the system is driven to a ferrimagnetic phase, we observe a splitting between the chiral phonons of nearly a quarter of the phonon frequency. We also observe a sixfold enhancement in the phonon magnetic moment in the vicinity of the Néel temperature. A microscopic model based on the coupling between phonons and both magnons and paramagnons accounts for the experimental observations.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
All data that support the plots within this paper and other findings of this study are available from the corresponding authors upon request. Source data are provided with this paper.
References
Nova, T. F. et al. An effective magnetic field from optically driven phonons. Nat. Phys. 13, 132 (2016).
Maehrlein Sebastian, F. et al. Dissecting spin-phonon equilibration in ferrimagnetic insulators by ultrafast lattice excitation. Sci. Adv. 4, eaar5164 (2018).
Stupakiewicz, A. et al. Ultrafast phononic switching of magnetization. Nat. Phys. 17, 489 (2021).
Huang, B. et al. Tuning inelastic light scattering via symmetry control in the two-dimensional magnet CrI3. Nat. Nanotechnol. 15, 212 (2020).
Jin, W. et al. Proc. Natl. Acad. Sci. U.S.A. 117, 24664 (2020).
Juraschek, D. M., Narang, P. & Spaldin, N. A. Phono-magnetic analogs to opto-magnetic effects. Phys. Rev. Research 2, 043035 (2020).
Zhang, L. & Niu, Q. Angular momentum of phonons and the Einstein–de Haas effect. Phys. Rev. Lett. 112, 085503 (2014).
Zhang, L. & Niu, Q. Chiral phonons at high-symmetry points in monolayer hexagonal lattices. Phys. Rev. Lett. 115, 115502 (2015).
Zhu, H. et al. Observation of chiral phonons. Science 359, 579 (2018).
Tauchert, S. R. et al. Polarized phonons carry angular momentum in ultrafast demagnetization. Nature 602, 73 (2022).
Juraschek, D. M. & Spaldin, N. A. Orbital magnetic moments of phonons. Phys. Rev. Mater. 3, 064405 (2019).
Schaack, G. Observation of circularly polarized phonon states in an external magnetic field. J. Phys. C: Solid State Phys. 9, L297 (1976).
Schaack, G. Magnetic field dependent splitting of doubly degenerate phonon states in anhydrous cerium-trichloride. Z. Phys. B 26, 49 (1977).
Mills, D. L. & Ushioda, S. Exciton–optical-phonon coupling in CoF2. Phys. Rev. B 2, 3805 (1970).
Cheng, B. et al. A large effective phonon magnetic moment in a Dirac semimetal. Nano Lett. 20, 5991 (2020).
Baydin, A. et al. Magnetic control of soft chiral phonons in PbTe. Phys. Rev. Lett. 128, 075901 (2022).
Ren, Y., Xiao, C., Saparov, D. & Niu, Q. Phonon magnetic moment from electronic topological magnetization. Phys. Rev. Lett. 127, 186403 (2021).
Saparov, D., Xiong, B., Ren, Y. & Niu, Q. Lattice dynamics with molecular Berry curvature: chiral optical phonons. Phys. Rev. B 105, 064303 (2022).
Hernandez, F. G. G. et al. Chiral phonons with giant magnetic moments in a topological crystalline insulator. Preprint at https://arxiv.org/abs/2208.12235 (2023).
Pimenov, A. et al. Possible evidence for electromagnons in multiferroic manganites. Nat. Phys. 2, 97 (2006).
Sushkov, A. B., Aguilar, R. V., Park, S., Cheong, S. W. & Drew, H. D. Electromagnons in multiferroic YMn2O5 and TbMn2O5. Phys. Rev. Lett. 98, 027202 (2007).
Katsura, H., Balatsky, A. V. & Nagaosa, N. Dynamical magnetoelectric coupling in helical magnets. Phys. Rev. Lett. 98, 027203 (2007).
Valdés Aguilar, R. et al. Colossal magnon-phonon coupling in multiferroic Eu0.75Y0.25MnO3. Phys. Rev. B 76, 060404 (2007).
Valdes Aguilar, R. et al. Origin of electromagnon excitations in multiferroic RMnO3. Phys. Rev. Lett. 102, 047203 (2009).
Seki, S., Kida, N., Kumakura, S., Shimano, R. & Tokura, Y. Electromagnons in the spin collinear state of a triangular lattice antiferromagnet. Phys. Rev. Lett. 105, 097207 (2010).
Takahashi, Y., Shimano, R., Kaneko, Y., Murakawa, H. & Tokura, Y. Magnetoelectric resonance with electromagnons in a perovskite helimagnet. Nat. Phys. 8, 121 (2011).
Smolenskiĭ, G. A. & Chupis, I. E. Ferroelectromagnets. Sov. Phys. Usp. 25, 475 (1982).
Le Page, Y. & Strobel, P. Structure of iron(ii) molybdenum(iv) oxide Fe2Mo3O8. Acta Cryst. B38, 1265 (1982).
Wang, Y. et al. Unveiling hidden ferrimagnetism and giant magnetoelectricity in polar magnet Fe2Mo3O8. Sci. Rep. 5, 12268 (2015).
Ideue, T., Kurumaji, T., Ishiwata, S. & Tokura, Y. Giant thermal Hall effect in multiferroics. Nat. Mater. 16, 797 (2017).
Kurumaji, T. et al. Electromagnon resonance in a collinear spin state of the polar antiferromagnet Fe2Mo3O8. Phys. Rev. B 95, 020405 (2017).
Yu, S. et al. High-temperature terahertz optical diode effect without magnetic order in polar FeZnMo3O8. Phys. Rev. Lett. 120, 037601 (2018).
Varret, F., Czeskleba, H., Hartmann-Boutron, F. & Imbert, P. Étude par effet Mössbauer de l’ion Fe2+ en symétrie trigonale dans les composés du type (Fe, M)2Mo3O8 (M = Mg, Zn, Mn, Co, Ni) et propriétés magnétiques de (Fe, Zn) 2Mo3O8. J. Phys. France 33, 549 (1972).
Csizi, B. et al. Magnetic and vibronic terahertz excitations in Zn-doped Fe2Mo3O8. Phys. Rev. B 102, 174407 (2020).
Squires, G. L. Introduction to the Theory of Thermal Neutron Scattering 3rd edn (Cambridge Univ. Press, 2012).
Bradley, C. & Cracknell, A. The Mathematical Theory of Symmetry in Solids (Oxford Univ. Press, 2009).
Anastassakis, E. & Burstein, E. Morphic effects. V. Time reversal symmetry and the mode properties of long wavelength optical phonons.J. Phys. C: Solid State Phys. 5, 2468 (1972).
Strobel, P. & Le Page, Y. Growth and morphology of single crystals of hexagonal molybdates(iv) M2Mo3O8 (M = Mn, Fe, Co, Ni). J. Cryst. Growth 61, 329 (1983).
Strobel, P., Page, Y. L. & McAlister, S. P. Growth and physical properties of single crystals of FeII2MoIV3O8. J. Solid State Chem. 42, 242 (1982).
Kajimoto, R. et al. The Fermi Chopper Spectrometer 4SEASONS at J-PARC. J. Phys. Soc. Jpn 80, SB025 (2011).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).
Togo, A., Oba, F. & Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 78, 134106 (2008).
Wolff, U. Collective Monte Carlo updating for spin systems. Phys. Rev. Lett. 62, 361 (1989).
Acknowledgements
We thank J. Li, J. Liu, S. Yu and O. Tchernsyhyov for valuable discussions. We thank R. Kajimoto and M. Nakamura for their help in carrying out the INS experiment. This work was supported by the National Key Research and Development Program of China (grant nos. 2020YFA0309200, 2021YFA1400400 and 2022YFA1403800), the National Natural Science Foundation of China (grant nos. 11974396, 12225407, 12074174, 12125404, 11974162 and 11834006) and the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDB33020300), as well as the Fundamental Research Funds for the Central Universities. S.B. thanks the support from the China Postdoctoral Science Foundation via grant nos. 2022M711569 and 2022T150315 and Jiangsu Province Excellent Postdoctoral Program via grant no. 20220ZB5. The phonon calculations were carried out using supercomputers at the High Performance Computing Center of Collaborative Innovation Center of Advanced Microstructures, the high-performance supercomputing centre of Nanjing University.
Author information
Authors and Affiliations
Contributions
Q.Z. conceived the project. S.B. grew the single crystals under the supervision of J.W. F.W. performed the magneto-Raman measurements and analysed the data under the supervision of Q.Z. S.B. and J.W. performed the INS measurements. Y.Wan. and J.Z. provided the theoretical analysis of the experimental data and performed the model calculations. Y.Wang. and J.S. performed the first-principles calculation of the phonon modes. Q.Z., Y.Wan. and F.W. wrote the manuscript with critical inputs from S.B., J.W. and all the other authors.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–13, Table 1 and discussion.
Source data
Source Data Fig. 1
Statistical source data for Fig. 1.
Source Data Fig. 2
Statistical source data for Fig. 2.
Source Data Fig. 3
Statistical source data for Fig. 3.
Source Data Fig. 4
Statistical source data for Fig. 4.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wu, F., Bao, S., Zhou, J. et al. Fluctuation-enhanced phonon magnetic moments in a polar antiferromagnet. Nat. Phys. 19, 1868–1875 (2023). https://doi.org/10.1038/s41567-023-02210-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-023-02210-4
This article is cited by
-
Observation of phonon Stark effect
Nature Communications (2024)