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Superconductivity from a melted insulator in 
Josephson junction arrays

S. Mukhopadhyay    1,2, J. Senior    1,2, J. Saez-Mollejo    1, D. Puglia    1, 
M. Zemlicka1, J. M. Fink1 & A. P. Higginbotham    1 

Arrays of Josephson junctions are governed by a competition between 
superconductivity and repulsive Coulomb interactions, and are expected 
to exhibit diverging low-temperature resistance when interactions 
exceed a critical level. Here we report a study of the transport and 
microwave response of Josephson arrays with interactions exceeding 
this level. Contrary to expectations, we observe that the array resistance 
drops dramatically as the temperature is decreased—reminiscent of 
superconducting behaviour—and then saturates at low temperature. 
Applying a magnetic field, we eventually observe a transition to a highly 
resistive regime. These observations can be understood within a theoretical 
picture that accounts for the effect of thermal fluctuations on the insulating 
phase. On the basis of the agreement between experiment and theory,  
we suggest that apparent superconductivity in our Josephson arrays arises 
from melting the zero-temperature insulator.

Quantum phase transitions typically result in a broadened critical 
or crossover region at non-zero temperature1. Josephson arrays are 
a model of this phenomenon2, exhibiting a superconductor–insula-
tor transition at a critical wave impedance3–13, and a well-understood 
insulating phase14,15. Yet high-impedance, one-dimensional arrays 
used in quantum computing16–19 and metrology20 apparently evade 
this transition, displaying superconducting behaviour deep into the 
nominally insulating regime21. The absence of critical behaviour in such 
devices is not well understood. Here we show that, unlike the typical 
quantum-critical broadening scenario, in one-dimensional Josephson 
arrays temperature dramatically shifts the critical region. This shift leads 
to a regime of superconductivity at high temperature, arising from the 
melted zero-temperature insulator. Our results quantitatively explain 
the low-temperature onset of superconductivity in nominally insulating 
regimes, and the transition to the strongly insulating phase. We further 
present an understanding of the onset of anomalous-metallic resistance 
saturation22. This work demonstrates a non-trivial interplay between 
thermal effects and quantum criticality. A practical consequence is that, 
counterintuitively, the coherence of high-impedance quantum circuits 
is expected to be stabilized by thermal fluctuations.

Josephson-array superinductors are characterized by a Josephson 
energy EJ, junction charging energy EC and ground charging energy 

Eg (ref. 17). These parameters must be chosen to deliver high induct-
ance while keeping the superfluid phase stiffness large enough to 
resist phase slips. A common experimental strategy is to minimize 

the single-junction rate for quantum phase slips, y ∝ e−4√2EJ/EC  

(refs. 23–26). However, for high-impedance arrays, the phase-slip rate 
is always renormalized towards infinity as temperature goes to zero13,27, 
resulting in insulating behaviour. Our key insight is that long super-
inductors avoid this fate by operating above the melting point of the 
insulating phase, where the low-temperature renormalization has yet 
to occur, and that this results in apparent superconducting behaviour. 
This effect quantitatively explains the presence of superconducting 
behaviour, resistance saturation and the transition to strongly insulat-
ing regimes in superinductors.

Two nearly identical devices are studied: one galvanically cou-
pled to electrical leads permitting the measurement of resistance, 
and one capacitively coupled to microwave transmission lines per-
mitting the measurement of plasma modes17,21. Both devices consist 
of an array of approximately 1,220 Josephson junctions fabricated 
using electron-beam lithography and a standard shadow evaporation 
process on high-resistivity silicon substrates (Fig. 1a). For nanofabri-
cation reasons, the array islands have alternating thickness, which,  
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than three decades before saturating to a low value of <1 Ω per junction. 
The observed resistance saturation is not compatible with finite-size 
effects; we estimate that the device length exceeds the thermal length 
by an order of magnitude at 150 mK. The precipitous drop in specific 
resistance at low temperature and supercurrent features in nonlinear 
transport give a preliminary indication of the dominance of supercon-
ducting behaviour. We will develop a framework for understanding the 
behaviour of specific resistance in detail, but first turn to the comple-
mentary use of microwave techniques to independently determine 
the system parameters.

Microwave spectroscopy is performed by monitoring the transmis-
sion of a weak probe signal while the frequency of a strong pump tone 
is varied17 (see Supplementary Section I.B for details). A series of sharp 
dips are observed in probe-tone transmission S (Fig. 1e), corresponding 
to plasma modes of the array. The plasma modes are evenly spaced at 
low frequency, reflecting the speed of light and length of the array, and 
are clustered at high frequency due to proximity with the single-junction 
plasma frequency. A simple fitting procedure allows extraction of the 
array parameters from the microwave data. Performing two-tone 
spectroscopy as a function of field (Fig. 1f), the array parameters Eg, EC 
and EJ(B) are fully characterized as a function of magnetic field. With 
these values fixed experimentally, it is straightforward to perform 
parameter-free comparisons with the theory of the superconductor–
insulator transition in one dimension. Of particular importance is the 

superfluid phase stiffness, Kg = √EJ/(2Eg), which quantifies the ability 

of the array to resist phase slips. Below a critical value of Kg, theory 
predicts that phase slips dominate and insulating behaviour emerges2,27.

Performing this comparison (Fig. 1g) reveals that the array’s phase 
stiffness is as much as an order of magnitude below the critical value for 
insulating behaviour2,27, in contrast to the observed superconducting 
behaviour in transport. Thus, combining the transport and microwave 
measurements reveals an apparent conflict with basic expectations for 
the superconductor–insulator phase transition. Resolving this conflict 
is the central subject of this work.

in the presence of magnetic field, ideally gives rise to an alternating gap 
structure while maintaining a uniform Josephson energy throughout 
the chain. At zero magnetic field, each junction has nominally identical 
EJ/h ≈ 76 GHz, Eg/h ≈ 1,400 GHz and EC/h ≈ 5 GHz, where h is Planck’s 
constant. These parameters are determined from analysing microwave 
(EJ and Eg) and transport (EC) measurements with several consistency 
checks, as described below and in Supplementary Section I.

The working principle of the experiment is to leverage the com-
plementary strengths of low-frequency electrical transport and 
microwave-domain circuit quantum electrodynamics. These tech-
niques differ by nine orders of magnitude in characteristic frequency, 
and combine to give access to both the scaling behaviour, associated 
with low energies (transport), and the microscopic system parameters, 
associated with high energies (microwave).

In the transport device, a linear current (I)–voltage (V) charac-
teristic at large applied voltage bias gives way to a high-resistance 
region below a critical voltage, whose value is approximately given 
by the number of junctions N times twice the superconducting gap 
Δ (Fig. 1b). Over a smaller range of applied voltage a series of evenly 
spaced current peaks are observed with an apparent supercurrent at 
zero bias (Fig. 1b inset). The transport mechanisms associated with 
the high-bias current peaks are not clearly understood, although 
their locations are suggestive of a picture of successive voltage drops 
across N voltage-biased Josephson junctions, with low current on the 
quasiparticle branches and high current when bias is a multiple of 
2Δ/e, where e is the electron charge (see Supplementary Section VI 
and refs. 11,20).

Increasing magnetic field B parallel to the chip plane suppresses 
supercurrent, suggesting a field-driven transition from a supercon-
ducting to an insulating state (Fig. 1c). The spacing between current 
peaks also decreases with B, indicating a reduction in the supercon-
ducting gap with magnetic field. In the strongly superconducting 
regime (B = 0), zero-bias differential resistance per junction (specific 
resistance) associated with the superconducting branch decreases 
dramatically with cryostat temperature (Fig. 1d), dropping over more 
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Fig. 1 | Device, transport and microwave measurement techniques.  
a, Scanning electron micrograph of a small segment of the one-dimensional 
Josephson array. Left scale bar, 1.5 μm. The arrow indicates the direction of the 
magnetic field B. b, Current I versus source–drain bias voltage V. Inset: 
small-scale current peaks over a narrower voltage range. c, Current I versus bias  
V and magnetic field B over a bias range similar to the inset in b. d, Differential 
resistance per junction (specific resistance) ρ versus cryostat temperature  
T measured at V = 0 and B = 0. The blue line shows the power-law fit. ρ reflects  
the resistance associated with the zero-bias superconducting branch, found by 
measuring the two-probe resistance, subtracting off four-probe-measured line 

resistance and then dividing by number of junctions. e, Two-tone microwave 
spectroscopy. Probe-tone transmission S versus pump-tone frequency f, with 
probe-tone frequency fixed to resonance at approximately 6.11 GHz. Extracted 
plasma-mode resonant frequencies fP indicated by coloured markers. f, Evolution 
of measured plasma-mode frequencies fP with applied magnetic field B.  

g, Superfluid phase stiffness Kg = √EJ/(2Eg), experimentally inferred from plasma 

modes in f, versus B (black line; black markers show every fifth data point). 
Theoretically expected superconducting and insulating regimes are labelled,  
and demarcated by a band covering the clean2 and dirty27 limits.
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The theoretical picture for understanding our observations was 
developed in ref. 13. Near the superconductor–insulator transition, 
thermal fluctuations are controlled by the timescale τ = h/kBT and the 
associated thermal length lth = vτ, where v is a characteristic velocity 
with dimensions of unit cells per time, kB is the Boltzmann constant 
and T is temperature. lth must be compared with the electrostatic 

screening length in units of unit cells, Λ = √Eg/EC. At high temperature 

(lth < Λ), the system is governed by the local superfluid phase stiffness, 

KC = √EJ/(2EC). In contrast, at low temperature (lth > Λ), the system is 

governed by the long-range superfluid phase stiffness Kg, as assumed 
by standard theories of the superconductor–insulator transition. In 
the superinductor limit superconductivity is locally stiff, KC ≫ Kg, which 
results in a curious regime of local superconductivity that arises from 
a melted T = 0 insulator (Fig. 2). The ‘melting point’ of the insulator, 
above which local superconductivity dominates, is

Tins ≈ √2EJEC/Λ. (1)

In the locally superconducting regime, we find that the high-temperature 
behaviour of the specific resistance follows a power law

ρ = ρ0(T/Tp)
πKC−1, (2)

whereTp = √2EJEC/kB is the plasma temperature and ρ0 is the specific 

resistance at T = Tp (see Supplementary Section XV for further discus-
sion). Local superconductivity gives way to insulating behaviour when 
πKC ≈ 1. In contrast, in the low-temperature limit the power-law expo-
nent is 2πKg − 3, which yields the typical superconductor–insulator 
prediction πKg ≈ 3/2.

The experimentally studied devices have, at B = 0, πKg < 1 < πKC 
and Tins ≈ 70 mK, giving an initial suggestion that they are governed 
by local superconductivity even at low temperatures. This hypothesis 
can be tested by comparing experimental measurements of 
temperature-dependent specific resistance, ρ(T), with the predicted 
power law in equation (2). As shown in Fig. 3a, increasing magnetic 

field weakens the temperature dependence of the specific resistance, 
eventually giving way to a superconductor–insulator transition at 
high magnetic field (B ≈ 44 mT). Fitting each specific resistance curve 
to a power law ρ = ATp indicates that, on the superconducting side, 
the exponent p steadily decreases with field (A is the power-law 
amplitude). Comparing p from the transport measurements with 
the local phase stiffness KC inferred from microwave measurements 
reveals a linear behaviour (Fig. 3b) with a slope of 2.7 ± 0.5 and an 
intercept of −1.3 ± 1.0, in agreement with the predicted slope π and 
intercept −1 for local superconductivity from equation (2), p = πKC − 1. 
The parameter uncertainties are propagated from systematic bands 
in Fig. 3b (for details, see Supplementary Section XI.E). The ampli-
tude dependence on EJ (Fig. 3c) is also in reasonable agreement with 
the prediction of equation (2), A = ρ0/TπKC−1

p , with a single free 
parameter, ρ0 = 3.98 ± 0.02 kΩ, which is slightly larger than the 
single-junction tunnel resistance 2.35 kΩ, reflecting the fact that, at 
the plasma temperature, the observed chain resistance is higher than 
its normal-state value.

Figure 3b,c shows the remarkable predictive power of equation (2)  
in the low-field, superinductor regime. At higher magnetic fields, as the 
superconductor–insulator transition is approached, power-law behav-
iour is interrupted by a shoulder-like feature, violating equation (2).  
The shoulder could reflect the relevance of disorder near the super-
conductor–insulator transition, which is expected to result in complex 
structure in ρ(T) as phase slips become progressively more important13. 
A second possible origin is suppression of the superconducting gap 
due to magnetic field which, particularly at elevated temperature, 
could cause violations of the simple rotor approximation on which 
equation (2) is based (see Supplementary Section X for discussion of 
magnetic-field scales).

The boundaries of local superconductivity can also be understood 
within the picture of Fig. 2. At low temperatures, the experimentally 
observed power-law behaviour in specific resistance saturates at a 
crossover temperature T* (indicated in Fig. 3a). The crossover tempera-
ture decreases with magnetic field, as shown in Fig. 4a, qualitatively 
agreeing with the expected square-root dependence for T* ∝ Tins, albeit 
within large error bars due to uncertainty in the extraction of T*. This 
agreement supports the view that the low-temperature saturation is 
in fact a crossover into the insulating state. At high magnetic fields 
corresponding to πKC > 1, T* instead increases with magnetic field  
(Fig. 4b), consistent with a superconductor–insulator transition enter-
ing into the non-perturbative insulating regime of ref. 13, where the 
phase-slip rate, ∝ e−4√2EJ/EC , is no longer small. We caution that the 
experimental interpretation of T* is complicated for two reasons. First, 
although we have performed normal-state electron thermometry and 
radiation thermometry and found that all characteristic temperatures 
are below T*, thermalization at the actual superconductor–insulator 
transition is difficult to verify directly. Second, different metrics for T* 
can give quantitatively different scaling with B, although the decreasing 
trend predicted by equation (1) and upturn at high field are robust 
features visible even in the raw data.

The complete behaviour of the Josephson array can be summa-
rized by measuring a specific resistance ‘phase diagram’. Mapping 
zero-bias differential specific resistance as a function of magnetic field 
and temperature reveals a characteristic dome at low field, already 
identified from the power-law analysis as a local superconductor, giving 
way to a high-specific-resistance insulating phase as the magnetic field 
is increased (Fig. 4c). The low-temperature boundary between super-
conducting and insulating states occurs at πKC ≈ 1, as expected. After 
the high-field boundary of the strongly insulating regime (~145 mT), 
temperature-dependence and current–voltage characteristics resem-
ble a normal array of metallic islands28.

The local superconducting dome and its boundaries can be quan-
titatively modelled as follows. The thermal boundary of the dome is 
T = Tp, the upper cut-off scale of our renormalization-group approach13. 

T

EJ, 1/Z2πKG ≈ 3/2πKC ≈ 1

Tins

Local
superconductor

Superconductor

Insulator

Super-
inductor

Fig. 2 | Proposed phase diagram. Map of superconducting and insulating states 
as a function of Josephson energy EJ and temperature T. The wave impedance 
Z = ℏ/(4e2)K−1

g  satisfies 1/Z2 ∝ EJ for constant Eg. The dashed line marks the 
boundary between long-range and short-range behaviour, Tins, given by equation (1). 
Below Tins, the physics is governed by the long-range phase stiffness Kg with a 
superconductor–insulator transition at πKg ≈ 3/2. Above Tins, physics is governed 
by the short-range phase stiffness KC with a superconductor–insulator transition 
as πKC ≈ 1. The solid black curve traces the crossover from local to global 
superconductor–insulator transition. The outlined box indicates 
superinductance region probed in this experiment.
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For αTins < T < Tp, equation (2) applies, with ρ0 from Fig. 3c. For T < αTins, 
specific resistance saturates due to a crossover into the insulating 
regime, and would presumably increase at lower, experimentally inac-
cessible, temperatures. The constant α = 5, which tunes the crossover 
to insulating behaviour in the model, is fixed from the experimentally 
observed saturation of specific resistance at B = 0 and is in reasonable 
agreement with the constant found in Fig. 4a. For sufficiently large B 
one approaches πKC = 1, which sets the magnetic-field boundaries of 
the dome. Calculating ρ according to this procedure results in a local 
superconducting dome in satisfactory agreement to the experiment 
(Fig. 4d). This gives evidence that the presence of local superconductiv-
ity, and its proximity to insulating phases, is well understood.

Summarizing, by combining transport and microwave measure-
ments, we have uncovered strong evidence for a locally superconduct-
ing state in Josephson arrays arising from a T = 0 insulator. This resolves 
the problem of apparent superconductivity in nominally insulating 
regimes, and clarifies where superconductor–insulator transitions 
are actually observed in experiment. Our work sheds light on the 
observation of the high-quality microwave response in the nominally 
insulating regime of superinductors21, suggesting effects in addition to 
high-frequency mechanisms that have been previously discussed26,29,30. 
Such devices operate near the ‘sweet spot’ T ≈ Tins where temperature 
is low enough for well-developed local superconductivity, yet high 
enough to melt insulating behaviour. As a consequence, we suggest 

that the performance of some high-impedance quantum devices18,19,31 
is actually improved by thermal fluctuations. It is also interesting to 
consider whether experimental studies of insulating behaviour in 
resistively shunted Josephson junctions32–35 could be understood by 
carefully considering the role of non-zero temperature, finite-size or 
non-perturbative effects36.

Viewed from the broader perspective of response functions near 
quantum criticality, we have demonstrated a rare example where the 
thermal fluctuations with timescale τ = h/kBT can be quantitatively 
traced through to experimentally measured specific resistance13. This 
does not result in an effectively Planckian scattering (Supplementary 
Section XII.B), as was recently observed in a different superconduc-
tor–insulator system37. It is also interesting to note that our saturating 
specific resistance curves empirically bear a strong resemblance to 
the anomalous-metallic phase in two-dimensional systems22. In our 
case, saturation is understood as a crossover effect towards insulating 
behaviour. It would be interesting to perform a similar experimental 
programme on a known anomalous-metallic system to test whether 
saturation can be understood as a similar crossover effect.
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