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Geometric properties of wave functions can explain the appearance of 
topological invariants in many condensed-matter and quantum systems1. 
For example, topological invariants describe the plateaux observed 
in the quantized Hall effect and the pumped charge in its dynamic 
analogue—the Thouless pump2–4. However, the presence of interparticle 
interactions can affect the topology of a material, invalidating the idealized 
formulation in terms of Bloch waves. Despite pioneering experiments in 
different platforms5–9, the study of topological matter under variations in 
interparticle interactions has proven challenging10. Here we experimentally 
realize a topological Thouless pump with fully tuneable Hubbard 
interactions in an optical lattice and observe regimes with robust pumping, 
as well as an interaction-induced breakdown. We confirm the pump’s 
robustness against interactions that are smaller than the protecting gap 
for both repulsive and attractive interactions. Furthermore, we identify 
that bound pairs of fermions are responsible for quantized transport at 
strongly attractive interactions. However, for strong repulsive interactions, 
topological pumping breaks down, but we show how to reinstate it by 
modifying the pump trajectory. Our results will prove useful for further 
investigations of interacting topological matter10, including edge effects11 
and interaction-induced topological phases12–15.

Ultracold quantum gases provide a versatile platform for investigating 
topological phenomena16–18, in which atoms take on the role of mobile 
charges. Although atoms are electrically neutral, effective magnetic 
fields can be generated via periodic modulation. However, the simulta-
neous presence of interactions and periodic driving often leads to detri-
mental energy absorption and population of highly excited modes4,19,20. 
Most experiments have so far been restricted to the non-interacting 
regime21–24 or the interactions remained fixed8,25. Conversely, realizing 
a many-body system with topology and variable interactions is still a 
challenge, despite substantial and ongoing theoretical interest12–15,26–43.

In our experiment, we create a dynamically tuneable superlattice 
by overlaying phase-controlled standing waves with an additional 

running-wave component and study topological charge pumping in 
the periodically driven, interacting Rice–Mele model44:

̂H(τ) = −∑
j,σ
[t + (−1) jδ(τ)] ( ̂c†jσ ̂cj+1σ + h.c.)

+∆(τ)∑
j,σ
(−1) j ̂c†jσ ̂cjσ + U∑

j
̂nj↑ ̂nj↓

. (1)

The interactions enter as the Hubbard U for two fermions of opposite 
spin σ ∈ {↑, ↓} occupying the same lattice site j. The fermionic annihi-
lation and number operators are denoted by ̂cjσ  and ̂njσ, respectively. 
Both bond dimerization δ(τ) and sublattice site offset Δ(τ) are 
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scheme with an intermediate lattice to increase the fraction of atoms in 
doubly occupied unit cells. This fraction is characterized with an inde-
pendent measurement, achieving approximately 80% in the strongly 
attractive regime, and around 50% in both weakly interacting and 
strongly repulsive regimes (Extended Data Fig. 2 and Methods).

In a first experiment, we track the many-body polarization by 
measuring the centre-of-mass (c.m.) position of the atomic cloud 
within five pumping cycles for varying interaction strengths U (Fig. 1d). 
We choose the lattice such that the single-particle gap is approximately 
constant over such a pumping cycle and is given by 2Δ0. Fitting a line to 
these data yields the efficiency of the pump, which is plotted versus U 
(Fig. 1e). This measurement characterizes the topological behaviour 
of an interacting Thouless pump, allowing us to distinguish three 
cases. First, quantized pumping (Fig. 1e, black dashed line) persists for 
weak interactions (U ≲ Δ0 = 2.9t), both in the attractive and repulsive 
situations. We attribute deviations from unity to fluctuations in the 
position of our in situ atomic cloud and residual changes in momentum 
distribution owing to drifts in the filling fraction. Second, this plateau 
of nearly quantized topological transport, averaging to an efficiency 
of 0.96(3), extends to large attractive values of U, which exceed the 
single-particle gap 2Δ0. Increasingly large attractive Hubbard |U| leads 
to the formation of double occupancies (DOs)52. Topological pumping 
then relies on the transport of pairs, in contrast to the standard descrip-
tion of pumping with single atoms39. Importantly, we observe a clear 
asymmetry between strongly attractive and strongly repulsive interac-
tions. Beyond U ≃ +2Δ0 = 5.8t, topological pumping breaks down and 
its efficiency decreases down to 0.39(3). For comparison, we perform 

sinusoidally varied in time τ with period T, but out of phase with respect 
to each other. This cyclic and adiabatic modulation describes a quan-
tum pump, which manifests itself in a drift of the many-body polariza-
tion45. For an insulator or a homogeneously filled band of free fermions 
(U = 0), this drift is quantized, realizing a Thouless pump2, protected by  
the single-particle gap of the bipartite lattice structure (equation (1),  
Extended Data Fig. 1 and Methods). During pumping, our system 
remains in the low-energy sector described by equation (1). For finite 
interactions (U ≠ 0), the Rice–Mele model encompasses a rich many- 
body phase diagram46, including the ionic Hubbard model with maxi-
mum site offset Δ0 and no dimerization47,48, as well as the interacting 
Su–Schrieffer–Heeger model with maximum dimerization δ0 and  
zero site offset49.

The experiments are performed using a balanced spin mixture 
(↑, ↓) of ultracold potassium-40 atoms in a three-dimensional optical  
lattice (Fig. 1, Extended Data Fig. 1 and Methods). The total lattice 
potential comprises interfering laser beams in the x–z plane and addi-
tional non-interfering standing waves in all the three spatial direc-
tions, namely, x, y and z (ref. 50). These potentials combine to form 
one-dimensional superlattices along x. The phase between the interfer-
ing (‘long’) lattice with respect to the non-interfering (‘short’) lattice 
along x is dynamically controlled, inspired by the self-oscillating mech-
anism discussed in another work51. This traces an elliptical path of the 
Rice–Mele parameters δ and Δ around the origin. In contrast to previous 
realizations in optical lattices23,25, our setup uses a single laser source at 
λ = 1,064 nm for all the lattice beams, avoiding wavelength-dependent 
phase shifts in the optical path. Before pumping, we use a loading 
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Fig. 1 | Topological pumping in the interacting Rice–Mele model. a, Schematic 
of the dynamical optical superlattice setup. The interfering lattice (yellow) is 
imbalanced along the x direction, leading to a movement of the ‘long’ lattice 
with respect to the ‘short’ lattice (non-interfering, red arrows) when ramping 
the phase φ of incoming light. The running-wave component is due to a rotated 
polarization of the retro-reflected laser beam (λ/4 waveplate). The standing 
wave in the y direction is not shown for clarity. Here d = λ = 1,064 nm is the 
size of one unit cell. b, Resulting lattice structure along x corresponds to the 
interacting Rice–Mele Hamiltonian (equation (1)). c, Sketch of the pumping 
trajectory in the parameter space spanned by site offset Δ and dimerization 
δ. Here Δ0 corresponds to half of the gap in the ionic Hubbard model (δ = 0). 
d, Measured in situ c.m. position of the fermionic cloud within five pumping 
cycles for U/Δ0 = {–3.1(2), 0, 3.1(2)} (red, grey and blue data points, respectively). 

Attractive and non-interacting atoms exhibit quantized pumping (black 
dashed line), whereas the movement of the repulsive cloud is strongly reduced. 
The data points and error bars correspond to the mean and standard error 
of eight individual measurements. e, Measured pumping efficiency (fitted 
slopes of b, averaged over the pumping direction) as a function of Hubbard 
U. Nearly quantized pumping efficiency persists for weakly interacting atoms 
(both attractive and repulsive) and strongly attractive interactions up to 
|U| = 3.1(2)Δ0 = 9.2(3)t. In the strongly repulsive regime, topological pumping 
breaks down. The error bars in the y direction correspond to the propagated 
error estimated from the uncertainty of the fit and those in the x direction, to the 
propagated error from lattice fluctuations. All the measurements in this figure 
were taken at a fixed period of T = 41.5(1.5)ℏ/t.
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numerical simulations of the many-body ground state at half-filling 
with a density matrix renormalization group (DMRG) algorithm on 
4–64 lattice sites and find that the pumping efficiency drops to zero 
for large U (Extended Data Fig. 3). The remaining pumping efficiency 
of 0.4–0.5 for large repulsive interactions in the experimental data is 
a result of the non-zero fraction of atoms in singly occupied unit cells. 
This agrees with an independent measurement of the initial state, 
where 55(7)% of atoms are found in doubly occupied unit cells. Our 
observations, therefore, support the picture that topological pump-
ing breaks down for doubly occupied unit cells at large repulsive U.

The observation of pair pumping for strong attractive interactions 
is substantiated by additional observables, including the evolution of 
DO fraction and the timescale for adiabaticity. We detect the fraction 
of pairs over half a trajectory for the non-interacting (U = 0, grey data 
points) and strongly attractive (U/Δ0 = −3.0(1), red data points) systems 
(Fig. 2b). The solid grey and dashed red lines (Fig. 2b) indicate the 
maximum accessible DO given by our lattice loading, which is equal 
to the fraction of the initially doubly occupied unit cells determined 
via an additional measurement (Methods). In the absence of interac-
tions, the delocalization of atoms within a unit cell leads to a finite DO 
at τ = 0 and Δ = 0. A large negative U gives rise to an increased initial DO. 
Although the DO increases by more than 0.2 over the course of a cycle 

for U = 0 when reaching the maximum site offset Δ0, the high fraction 
in the attractive system only increases by half as much. Thus, we can 
conclude that the pairs for U/Δ0 = −3.0(1) largely remain bound over the 
pumping cycle. The residual modulation in DO over half the pumping 
cycle is also reflected by DMRG simulations (Extended Data Fig. 4). By 
analogy, quantized pumping should also be possible with repulsively 
bound pairs12 for U > 0, which we plan to investigate in the future.

The pumping of pairs also manifests itself in a change in adiaba-
ticity timescale, compared with single atoms. Generally, the time-
scale for adiabatic following is determined by the minimum energy 
gap to the first excited state over a pumping cycle, which—in the 
non-interacting Rice–Mele model—corresponds to the second Bloch 
band of the bipartite lattice. In the experiment, the transport efficiency 
for the attractive pairs drops at longer periods compared with U = 0. 
In Fig. 2c, exponential fits to the data points yield 1/e times of 2.7(4)ℏ/t 
for U/Δ0 = −3.0(2) (dashed red line) and 1.0(2)ℏ/t for U/Δ0 = 0 (solid 
grey line). The increase in the adiabaticity timescale indicates that 
the energy gap becomes smaller in the attractive regime and agrees 
with the estimate 2t2/|U| ≃ 0.33(1)t (at τ = 0; Extended Data Fig. 1) for 
the effective tunnelling of hardcore bosons.

Next, we investigate how to recover quantized transport in the 
strongly repulsive regime where pumping breaks down (Fig. 1d). To 
that end, we modify the pump trajectory and increase the maximum 
site offset Δ0 (Fig. 3a, paths 2 and 3), compared with the initial trajec-
tory (path 1), whereas keeping the starting point and interactions fixed. 
Path 1 corresponds to the data point with the same absolute U in Fig. 1e 
(U = 2.8(1)Δ0 = 8.0(3)t). As a result of increasing Δ0, single occupancies 
and DOs become resonantly coupled by tunnelling12. Thus, an asymmet-
ric charge distribution within a unit cell becomes energetically allowed. 
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Fig. 2 | Quantized pumping of pairs in the attractive Rice–Mele model. a, In the 
strongly attractive regime, the pumping mechanism is a result of the tunnelling 
of pairs of fermions. b, Measured DO fraction over half a pumping cycle for 
U/Δ0 = 0 (grey points) and U/Δ0 = −3.0(1) (red squares). The large fraction of 
DOs and its small modulation over a pumping cycle for U/Δ0 = −3.0(1) compared 
with U = 0 supports the picture of pair pumping in the strongly attractive 
regime. The solid grey and dashed red lines indicate the maximum attainable 
DO fraction given by our lattice loading scheme. Each data point and error bar 
corresponds to the mean and standard error of six individual measurements 
split equally between the pumping directions. c, Adiabatic timescale of the 
topological pump for non-interacting and strongly attractive atoms. The 
measured efficiency is plotted versus pumping period in units of tunnelling 
times for U = −3.0(2)Δ0 = −9.2(3)t (red squares) and U = 0 (grey points). The data 
points correspond to the fitted slopes of the c.m. drift over two pumping cycles 
averaged over at least nine iterations and the pumping direction. The data point 
at T = 36.5ℏ/t is taken from the dataset for Fig. 1e at U/Δ0 = −3.1(2). The error bars 
correspond to the propagated error estimated from the uncertainty of the fit.
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Fig. 3 | Quantized pumping via resonant tunnelling for strongly repulsive 
interactions (U ≃ 8t). a, Three pumping trajectories with varying maximum 
site offsets Δ0 and fixed maximum dimerization δ0. All the three paths start in the 
same state. The first trajectory (blue path) prohibits the formation of DOs and 
therefore precludes transport. Trajectories 2 and 3, with larger Δ0 (blue and green 
paths), allow for tunnelling between the sites of a unit cell when crossing the 
|Δ(τ)| = U/2 line parallel to the dimerization axis (black dashed lines). b, Measured 
DO fraction over half a pumping cycle for the three trajectories shown in a.  
c, Pumping efficiencies versus maximum site offset Δ0 for varying pumping paths. 
The efficiency increases from 0.40(3) to unity as Δ0 becomes large enough to allow 
for resonant tunnelling between a DO and localized single occupancies on each 
site. Data points and errors bars are obtained analogously to that in Fig. 2b,c.
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This asymmetry manifests in the change in polarization and is neces-
sary for transport. We demonstrate this process in our experiment by 
measuring the DO fraction for all three trajectories (Fig. 3a) over half 
a pumping cycle (for paths 1 to 3, Δ0 = {0.35(1), 0.50(1), 0.61(1)}U with 
fixed U). The initial fraction is below 0.1 for all the paths considered 
here, reflecting the identical initialization. Although the DO for path 1 
remains below 0.17, it reaches values of 0.33(3) and 0.48(2) for paths 2 
and 3, respectively, as the line of Δ = U/2 is crossed and pair formation is 
restored. For path 3, the measured fraction even reaches the maximum 
possible value within error (Fig. 3b, black dash–dot line), determined 
by the initially doubly occupied unit cells (Methods). The observation 
is qualitatively consistent with numerical calculations (Extended Data 
Fig. 5). The influence of resonant pair formation on transport becomes 
clear with a measurement of efficiency versus maximum site offset Δ0 
(Fig. 3c). For low values of Δ0, the pump efficiency is roughly constant 
at around 0.4. Increasing Δ0 leads to a growth in efficiency up to unity 
as the resonance condition for tunnelling is fulfilled.

In conclusion, we have experimentally characterized the topo-
logical properties of interacting Thouless pumps covering the full 
range of Hubbard U, from strongly attractive through intermediate 
to strongly repulsive. Remarkably, we observe a clear asymmetry 
between large attractive and large repulsive interactions. Although 
the robustness of quantized pumping of the former can be explained 
by an effective hardcore boson picture, the latter experiences a marked 
breakdown of transport. The experimental tools presented in this 
work also provide a pathway to study how interactions affect the role 
of spatial10 and temporal disorders, as well as edge physics11. Further-
more, our approach could enable topological transport that has no 
counterpart in the limit U → 0, leading to novel interaction-induced  
topological states12–15.

Note added to proof: During the review of this manuscript, we 
became aware of related works53,54.
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Methods
Experimental sequence
We start by evaporatively precooling a cloud of fermionic 40K in the 
magnetic state F = 9/2, mF = −9/2 and confining it to a crossed dipole 
trap. We then create a spin mixture of mF = {−9/2, −7/2} and further 
evaporatively cool it, yielding 47,000(4,000) atoms at a temperature 
of 0.11(3)T/TF (values in the brackets correspond to the standard devia-
tion over all the measured data points; the atom number is calibrated 
within a systematic error of 10%). The atoms are subsequently loaded 
into a three-dimensional lattice within 200 ms. Using the magnetic 
Feshbach resonance at 202.1 G, we tune the s-wave scattering length 
between the atom in the −7/2 and −9/2 sublevels to be very strongly 
attractive, that is, a → −∞. Subsequently loading the atoms into a shal-
low chequerboard within 200 ms and then deep chequerboard within 
10 ms leads to a high DO fraction50. To reach large repulsive interac-
tions (U/Δ0 ≳ 1; Figs. 1d,e and 3), we then apply a radio-frequency (RF) 
sweep, transferring the atoms in the −7/2 to the −5/2 magnetic sublevel 
and keeping the −9/2 and −7/2 mixture otherwise. To reach the final lat-
tice, we ramp the magnetic field to the scattering length, yielding the 
targeted U and split the sites of the chequerboard lattice into two sites 
along the x direction (Extended Data Fig. 2). This loading procedure 
results in many copies of the ground state of half-filled double wells 
(one of each spin in one unit cell). The improved loading procedure 
results in a larger fraction of atoms in doubly occupied unit cells and 
larger number of holes, which varies with the interaction strength 
during the split.

Compared with the previous loading scheme56, where the atoms 
were directly loaded into the lowest band of the final lattice, this frac-
tion contributes to a larger breakdown signal for repulsive interactions 
(a comparison of pump efficiencies versus U is shown in Extended Data 
Fig. 6 and the DMRG calculations versus U in Extended Data Fig. 3 for 
different system sizes). Also, this preparation precludes the presence of 
atoms in the higher band and therefore a more persistent unity pump-
ing efficiency on the attractive side. The resulting trapping frequen-
cies are 86.1(1.1), 77.3(0.8) and 121.8(1.2) Hz in the x, y and z directions, 
respectively.

Detection methods
After pumping the system for varying times, we either measure the 
in situ c.m. position of our cloud or detect the DO fraction.

Position of c.m. We detect the in situ c.m. position of our atomic cloud 
by taking an absorption image directly after the ramp of the phase, 
in the presence of the dipole trap, optical lattice and homogeneous 
magnetic field. The conversion from pixel size to lattice sites is done 
by independently measuring the displacement of the cloud in a lat-
tice with a very large gap to the next excited band over 50 cycles in 
steps of 10.

DO fraction. For the DO fraction, we first freeze the dynamics of the 
atoms by quenching into a deep cubic lattice within 100 μs. We then 
sweep the magnetic field over the −7/2 and −9/2 Feshbach resonance 
and spectroscopically resolve the interaction shift with RF radiation, 
transferring atoms in the −7/2 (−5/2) state in doubly occupied sites 
to the −5/2 (−7/2) state. The Zeeman sublevels are then separated by 
applying a magnetic-field gradient and 8 ms time of flight20.

Fraction of atoms in half-filled unit cells. For the determination of 
fraction of atoms in doubly occupied unit cells, we take the sum of 
the DO, singlet and triplet fractions. As for the DO measurement, the 
detection of the latter two start with a freeze ramp into a deep cubic 
lattice. DOs are then eliminated by applying two (one) consecutive 
Landau–Zener sweeps, transferring the atoms in the −7/2 (−5/2) state 
to the −3/2 state: doubly occupied sites then host a very short lived 
−3/2 and −9/2 mixture, which is lost from the trap. A magnetic gradient 

leads to an oscillation between the two populations, and the extrema 
yield the singlet and triplet fractions. To measure these, the lattice 
is ramped to a chequerboard configuration, which merges adjacent 
sites. As a consequence of the Pauli exclusion principle, triplets are 
then converted to one atom in the lowest band and one in the higher, 
whereas singlets form DOs in the lowest band. These single occupancies 
or DOs are detected with the same method as previously described for 
DOs. For normalization of the fraction of atoms in half-filled unit cells, 
we take the number of atoms N from the same measurement as the one 
done to assess the number of DOs.

Optical lattice
The lattice is made up of four retro-reflected beams at a wavelength 
of 1,064 nm. The non-interfering beams in the x, y and z directions 
create a cubic lattice to which the interfering beams in the x–z plane 
superimpose a chequerboard lattice. The resulting potential as seen 
by the atoms is given by

V(x, y, z) = −VXIselfcos2(kx + 𝜗𝜗𝜗2)

−VXintIselfcos2(kx)

−VYcos2(ky)

−VZcos2(kz)

−√VXintVZ cos(kz) cos(kx + φ)

−IXZ√VXintVZ cos(kz) cos(kx − φ) ,

(2)

where k = 2π/λ. The lattice depths [VX, VXint, VY, VZ] used in this paper 
are given by [6.02(4), 0.37(3), 14.98(3), 17.0(3)]ER, measured in units 
of recoil energy ER = h2/2mλ2, where m is the mass of the atoms. The 
phase φ, which is the relative phase between the incoming lattice 
beams in the x and z directions, governs the depth and relative position 
of the chequerboard with respect to the square lattice. The angle ϑ, 
defining the relative position between the one-dimensional sinusoidal 
lattice formed by VX and that formed by VXint, is controlled by the dif-
ference in light frequency of the two beams. We calibrate ϑ to 1.000(2)
π by minimizing the DO during splitting of a chequerboard into a 
dimerized lattice at U = 0. The imbalance factors Iself and IXZ are due to 
the λ/4 waveplate in the retro-path (Fig. 1 and Extended Data Fig. 1). 
The factor IXZ plays a crucial role in our pumping scheme, which is 
based on sliding a varying chequerboard lattice over a square lattice. 
The sliding is achieved by ramping the relative phase φ, which is sta-
bilized using a locking scheme, as detailed in the next section. Without 
the imbalance (that is, IXZ = 1), as was the case in our previous work20, 
the phase φ would enter as an overall amplitude cos(φ). However, in 
case of IXZ < 1, the interference terms proportional to √VXintVZ  in equa-
tion (2) acquire a φ-dependent position, explaining the ability to slide 
the chequerboard using φ. We rotated the λ/4 waveplate such that the 
incoming, linearly polarized light is rotated by 26° after passing the 
plate twice. This results in imbalance factors of Iself = 0.98(2) and 
IXZ = 0.81(2), which are independently calibrated using lattice modula-
tion spectroscopy.

The Rice–Mele parameters in equation (1) are calculated via the 
basis of maximally localized Wannier states, spanning the space of 
solutions to the single-particle Hamiltonian with potential equation (2).  
Overlap integrals between these Wannier states yield the relevant 
tight-binding tunnelling elements, on-site energies and interactions U. 
The values of Δ, δ and t are plotted in Extended Data Fig. 1c as a function 
of φ ∈ [0, 2π]. Typical parameters are Δ0 ≃ 3.0t and δ0 ≃ 1.5t, leading 
to small variations in the single-particle bandgap between 1.8Δ0 and 
2.0Δ0 over one period. Sinusoidal fits to this data simplify the theoreti-
cal description; the resulting fit parameters are listed in Table 1. Due 
to the strong confinement along y and z, the tunnellings along those 
directions tY,Z are below 20 Hz over the whole pump cycle. The on-site 
interaction U is 995 Hz for a reference scattering length of 100 Bohr 
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radii, which varies by about 3% over the pump cycle, and the interaction 
between neighbouring sites is always below 50 Hz.

Phase lock
Topological pumping is realized by shifting the interference phase 
φ in time. Extended Data Fig. 7 illustrates the scheme for controlling 
φ, taking the x direction as an example. The setup is replicated on the 
z axis, which is not shown in Extended Data Fig. 7 for clarity. Active 
stabilization of the light phase is necessary since the optical fibre 
introduces considerable phase noise. In short, back-reflection from 
the optical lattice forms a Michelson interferometer together with a 
reference beam, which does not pass through an optical fibre. In this 
manner, the absolute phase of the lattice can be measured, assuming a 
perfectly stable reference arm. We shift the phase of the lattice beam by 
using the frequency modulation input of a Rohde & Schwarz function 
generator (SMC100A), creating the RF frequency for the acousto-optic 
modulator. A small frequency shift will result in a phase shift of the laser 
beam at the position of the atoms (Extended Data Fig. 7, red cloud). 
We additionally correct for small deviations to the absolute phase by 
shifting the phase of the output of the Rohde & Schwarz generator 
to the acousto-optic modulator with a phase shifter. The setpoint of 
the phase can now be varied in two different ways: for long pumping 
periods (longer than 5 ms), an arbitrary waveform generator (Keysight 
33500B) generates a sawtooth signal as the setpoint of the phase lock, 
which results in a linear phase ramp. For short pumping cycles (less than 
10 ms), the bandwidth of the phase lock is not large enough to follow 
the setpoint. In this case, the arbitrary waveform generator creates a 
square signal, which is added to the feedback signal from the phase 
lock before the frequency modulation input using a power splitter. 
The square waveform after integration also results in a linear phase 
shift of the lattice beam. For example, a frequency shift of 400 Hz on 
the RF signal of the acousto-optic modulator leads to a pumping slope 
of Δφ/Δτ = 2π/5 ms.

DMRG calculations
Numerical results of pumping efficiency and DO dynamics pre-
sented are calculated with DMRG using the TeNPy Python package55 
(version 0.6.1). The polarization and DO dynamics (Extended Data 
Figs. 3–5) are calculated using open-boundary conditions, where 
we assume L = 64 and half-filling (one of each spin in one unit cell). 
Throughout the calculation, we have selected the maximum bond 
dimension of χ = 100. The tight-binding parameters used in the 
simulation are identical to those used in the corresponding experi-
ments. The polarization, that is, the c.m. of the ground state |Ψ(t)〉 
is defined by

Popen(t) =
1
L ∑σ

L−1
∑
j=0

⟨Ψ (t)| ( j − j0) ̂njσ |Ψ (t)⟩ ,

and the DO fraction 𝒟𝒟 is defined as the fraction of atoms on doubly 
occupied lattice sites as

𝒟𝒟 = 2
N ∑

j
⟨ ̂nj↑ ̂nj↓⟩,

where N is the total atom number.
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Table 1 | Rice–Mele parameters for the fitted sines

Parameter Offset Amplitude Frequency Phase offset

B (Hz) A (Hz) ν κ

t 625 340 2 π/2

Δ 0 1,750 1 π

δ 0 900 1 π/2

Extended Data Fig. 1 provides details of the fitted sines. The parameters correspond to the 
expression B + Asin(2πντ/T + κ), where τ is the time and T is the pump period.
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Extended Data Fig. 1 | Optical lattice setup and Rice-Mele parameters.  
a, schematic of the optical setup in the x–z plane. The λ/4 waveplate produces 
an intensity imbalance between the different contributing beams in such a way 
that the phase φ can be used to move the chequerboard over the square lattice, 
realising pumping. b, idealised cut through the lattice potential in x-direction, 
corresponding to the two points along the pump cycle shown in d. The site-offset 
case (2) is exaggerated for clarity. c, tight-binding parameters during one pump 
cycle. The phase φ (defined in Eq. 2) is ramped from 0 to 2π. In the main text the 
time dependence of the average tunnelling t has been dropped for clarity. In 

contrast to previous realisations of the Rice-Mele pump with cold atoms23,25, the 
site offset Δ and dimerisation δ follow a sinusoidal waveform over a pump cycle 
(solid lines corresponds to the fitted sinusoid and the corresponding parameters 
are summarized in Table 1. The single-particle gap is dominated by the dimerised 
tunneling at τ = 0 and by the site offset at τ = T/4. d, elliptical trajectory of δ 
and Δ over one pump cycle. The solid line corresponds to the fitted curves in 
c. Single-particle band gap (e) and bandwidth (f) in units of Δ0 over a pump 
half-cycle (the second half is symmetric).
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Extended Data Fig. 2 | Lattice and interaction ramps for two different loading 
schemes. a, The ‘conventional’ lattice ramps with final depths [VX, VXint, VY, VZ] 
of [5.40(5), 0.09(2), 15.02(6), 17.04(8)]ER are made up of s-shaped ramps at the 
final scattering length for the targeted U. b, The improved scheme includes 
an intermediate ramp into a deep checkerboard lattice at strongly attractive 

scattering lengths to maximise the fraction of atoms in half-filled unit cells. 
Intended interactions are then reached by ramping the magnetic field strength, 
for the − 9/2, − 7/2 mixture, or a ramp and a prior RF pulse for the − 9/2, − 5/2 
mixture. Splitting the single cells of the checkerboard pattern in two then yields 
the final lattice depths [6.02(4), 0.37(3), 14.98(3), 17.0(3)]ER.
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Extended Data Fig. 3 | Effect of finite system size. Pumping efficiency vs. 
Hubbard U at different system size L in unit of lattice site, calculated with DMRG, 
assuming half-filling in OBC. The tight-binding parameters are chosen to be 

the same as in Fig. 1e. Smaller system sizes, which we expect from our loading 
scheme, only slightly change the position and steepness of the transition 
between the quantised and break down regime versus U.

http://www.nature.com/naturephysics


Nature Physics

Article https://doi.org/10.1038/s41567-023-02145-w

Extended Data Fig. 4 | Numerical simulation of double occupancy fraction 
over half a pumping cycle with different Hubbard interactions U.  
The numerical simulations assume L = 64 lattice sites in OBC and half-filling.  

The tight-binding parameters are chosen to be the same as in Fig. 2b. Compared 
to the simulations, we record an overall lower double occupancy in the 
experiment (Fig. 2b) as a result of an overall average filling lower than one half.
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Extended Data Fig. 5 | Numerical simulation of double occupancy (DO) 
fraction over half pumping cycle with different pumping trajectories. 
The numerical simulations assume L = 64 lattice sites in OBC and half-filling. 
The maximum site offset Δ0 for path 1,2,3 and the Hubbard U are chosen to be 
the same as in Fig. 3b. The experimental data (Fig. 3b) shows an overall lower 
double occupancy as a result of an average filling lower than one half. For 
path 1 the ground state simulation and experimental data do not exhibit the 
same behaviour versus τ. We attribute the difference to: (i) imperfect double 

occupancy detection around τ = 0 and τ = T/2. Due to a large tunnelling rate, the 
ramp to a square lattice for the DO detection (Methods) is not fast enough to 
completely freeze the dynamics of the atoms, which yields a slightly lower DO 
fraction than its actual value, (ii) at τ = T/4, the system can be characterized by 
an ionic Hubbard model, which exhibits gapless spin excitations. Therefore, the 
ideal adiabatic following of the instantaneous ground state is hindered, resulting 
in a lower than expected DO fraction after τ = T/4.
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Extended Data Fig. 6 | Pumping efficiency vs U for two different loading 
schemes and lattices. The pump efficiency with the improved loading scheme 
(dark circles, [Δ0, δ0, t] = [1750, 900, 625] Hz) exhibits a more pronounced plateau 
for attractive interactions, compared to conventional lattice loading (grey 
squares, [Δ0, δ0, t] = [847, 460, 403] Hz). The significant improvement of the 
signal on the attractive side is a result of both the new loading scheme, as well as 

a different final lattice configuration. In the improved lattice, the energy gap is 
roughly twice as large (3.6 kHz compared to 1.84 kHz in the conventional lattice) 
which reduces the higher band population during the loading. Likewise, the 
breakdown of transport on the repulsive side shows a steeper decline beyond a 
critical U, compared to conventional lattice loading. Error bars correspond to the 
propagated error estimated from the uncertainty of the linear fit.
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Extended Data Fig. 7 | Schematic of the phase control. The back-reflected lattice beam forms a Michelson interferometer together with the reference path before 
the optical fibre. A linear increase in the interference phase can be realized either by linearly ramping the set-point (a) or by using a square waveform as input for the 
frequency modulation, which will also result in a linear phase ramp (b).
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